Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Design
2.2. Data Collection and Computation of Economically Optimum N Rates (EONR)
2.3. Statistical Analysis
3. Results
3.1. N Response Curve and EONR
3.2. Treatment Effects on Yield
3.3. Vegation Indices Response to Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenzweig, C.; Tubiello, F.N.; Goldberg, R.; Mills, E.; Bloomfield, J. Increased Crop Damage in the US from Excess Precipitation under Climate Change. Glob. Environ. Chang. 2002, 12, 197–202. [Google Scholar] [CrossRef]
- Kunkel, K.E. North American Trends in Extreme Precipitation. Nat. Hazards 2003, 29, 291–305. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Iizumi, T.; Hosokawa, N.; Tanoue, M.; Hirabayashi, Y. Flood Impacts on Global Crop Production: Advances and Limitations. Environ. Res. Lett. 2023, 18, 054007. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The Contribution of Commercial Fertilizer Nutrients to Food Production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Deutsch, C.; Sarmiento, J.L.; Sigman, D.M.; Gruber, N.; Dunne, J.P. Spatial Coupling of Nitrogen Inputs and Losses in the Ocean. Nature 2007, 445, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Ortez, O.; LaBarge, G.; Lindsey, A.; Novais, W. Managing Corn and Nitrogen with Water Excess Conditions. Crop Obs. Recomm. Netw. Newsl. 2022, 19. [Google Scholar]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and Management Strategies for Crop Production in Waterlogged or Flooded Soils: A Review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef]
- Kaur, G.; Zurweller, B.A.; Nelson, K.A.; Motavalli, P.P.; Dudenhoeffer, C.J. Soil Waterlogging and Nitrogen Fertilizer Management Effects on Corn and Soybean Yields. Agron. J. 2017, 109, 97–106. [Google Scholar] [CrossRef]
- Lu, N.; Wang, W.; Zhang, Q.; Li, D.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Baret, F.; Liu, S.; et al. Estimation of Nitrogen Nutrition Status in Winter Wheat from Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef] [PubMed]
- Jaberi-Aghdam, M.; Momayezi, M.R.; Bagheri, N.; Azizi, P.; Nasri, M. Nitrogen Assessment by Remote Sensing and Multispectral Imagery in Maize (Zea mays L.). J. Crop Sci. Biotechnol. 2023, 27, 31–41. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Flores, M.d.S.; Paschoalete, W.M.; Baio, F.H.R.; Campos, C.N.S.; Pantaleão, A.d.A.; Teodoro, L.P.R.; da Silva Júnior, C.A.; Teodoro, P.E. Relationship between Vegetation Indices and Agronomic Performance of Maize Varieties under Different Nitrogen Rates. Biosci. J. 2020, 36, 1638–1644. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium-Volume I: Technical Presentations. NASA SP-351; Freden, S.C., Mercanti, E.P., Becker, M.A., Eds.; NASA: Washington, DC, USA, 1973; pp. 307–317. [Google Scholar]
- Rehman, T.H.; Lundy, M.E.; Linquist, B.A. Comparative Sensitivity of Vegetation Indices Measured via Proximal and Aerial Sensors for Assessing N Status and Predicting Grain Yield in Rice Cropping Systems. Remote Sens. 2022, 14, 2770. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M. 3.09—Leaf Pigment Content. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 117–142. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Inf. Switz. 2019, 10, 349. [Google Scholar] [CrossRef]
- Nelson, K.A.; Scharf, P.C.; Stevens, W.E.; Burdick, B.A. Rescue Nitrogen Applications for Corn. Soil Sci. Soc. Am. J. 2011, 75, 143–151. [Google Scholar] [CrossRef]
- PIX4Dmapper, Version 4.7.5. The Leading Photogrammetry Software for Professional Drone Mapping. Pix4D. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/ (accessed on 24 April 2022).
- Setiyono, T. Precise Positioning in Nitrogen Fertility Sensing in Maize (Zea mays L.). Sensors 2024, 24, 5322. [Google Scholar] [CrossRef]
- Geospatial Data Abstraction Library (GDAL)/OGR Simple Features Library (OGR) Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Open-Source Geospatial Foundation. Available online: https://zenodo.org/records/12545688 (accessed on 15 September 2023).
- Quantum Geographic Information System (QGIS) Development Team. QGIS Geographic Information System. Version 3.28.1. Open-Source Geospatial Foundation. Available online: http://qgis.org (accessed on 15 September 2023).
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2000; pp. 1–15. [Google Scholar]
- Dobermann, A.; Wortmann, C.S.; Ferguson, R.B.; Hergert, G.W.; Shapiro, C.A.; Tarkalson, D.D.; Walters, D.T. Nitrogen Response and Economics for Irrigated Corn in Nebraska. Agron. J. 2011, 103, 67–75. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Yang, H.; Walters, D.T.; Dobermann, A.; Ferguson, R.B.; Roberts, D.F.; Lyon, D.J.; Clay, D.E.; Cassman, K.G. Maize-N: A Decision Tool for Nitrogen Management in Maize. Agron. J. 2011, 103, 1276–1283. [Google Scholar] [CrossRef]
- Nickalls, R.W.D. A New Approach to Solving the Cubic: Cardan’s Solution Revealed. Math. Gaz. 1993, 77, 354–359. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- United State Department of Agriculture (USDA). USDA-NASS NASS-Quick Stats. National Agricultural Statistics Service (NASS). Available online: https://www.nal.usda.gov/services/agdatacommons (accessed on 20 September 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org (accessed on 15 September 2023).
- Wickham, H.; Bryan, J. Readxl: Read Excel Files. Available online: https://readxl.tidyverse.org/ (accessed on 15 September 2023).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Henry, L.; Pedresen, T.L.; Takahashi, K.; Claus, W.; Yutani, H.; Dunnnington, D.; van den Brand, T. ggplot2. ggplot2. Available online: https://ggplot2.tidyverse.org/ (accessed on 15 September 2023).
- Auguie, B.; Antonov, A. gridExtra: Miscellaneous Functions for “Grid” Graphics. Available online: https://rdrr.io/cran/gridExtra/ (accessed on 15 September 2023).
- Lei, M.; Lomax, R.G. The Effect of Varying Degrees of Nonnormality in Structural Equation Modeling. Struct. Equ. Model. 2005, 12, 1–27. [Google Scholar] [CrossRef]
- Vanotti, M.B.; Bundy, L.G. An Alternative Rationale for Corn Nitrogen Fertilizer Recommendations. J. Prod. Agric. 1994, 7, 243–249. [Google Scholar] [CrossRef]
- Jang, C.; Namoi, N.; Wolske, E.; Wasonga, D.; Behnke, G.; Bowman, N.D.; Lee, D.K. Integrating Plant Morphological Traits with Remote-Sensed Multispectral Imageries for Accurate Corn Grain Yield Prediction. PLoS ONE 2024, 19, e0297027. [Google Scholar] [CrossRef] [PubMed]
- Holland, K.H.; Schepers, J.S. Derivation of a Variable Rate Nitrogen Application Model for In-Season Fertilization of Corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
Site Year | Soil Type and Description |
---|---|
RRS, 2022 | LaA-Latanier clay, 0 to 1% slopes |
RRS, 2023 | Fine sandy loam to silt loam, 0 to 1% slopes |
CRS, 2022 | 54.9% CmA-Cancienne silt loam, 0 to 1 percent slopes 45.1% ThA-Thibaut silty clay, 0 to 1 percent slopes |
CRS, 2023 | 27.6% CmA-Cancienne silt loam, 0 to 1% slopes 72.4% ThA-Thibaut silty clay, 0 to 1% slopes |
Treatments | RRS 2022 | RRS 2023 | CRS 2022 | CRS 2023 |
---|---|---|---|---|
N Rates | <2 × 10−16 * | 0.00196 * | <2 × 10−16 * | 7.85 × 10−11 * |
Flooding/No flooding | 7.36 × 10−5 * | 7.1 × 10−5 * | 0.199 | 0.157 |
N rates * Flooding | 0.275 | 0.579 | 0.605 | 0.474 |
Location | N Rates Kg ha−1 | Yield Loss % 2022 | N Rates Kg ha−1 | Yield Loss % 2023 |
---|---|---|---|---|
RRS | 0 | 36.2 ns | 0 | 6.9 ns |
45 | 53.5 ns | 45 | 16.5 ns | |
179 | 11.4 ns | 135 | 19 ns | |
224 | 10.7 * | 224 | 14.6 ns | |
269 | 20.2 ns | |||
CRS | 0 | −7.2 ns | 0 | −37 ns |
45 | −17 ns | 45 | 28.6 ns | |
179 | −0.2 ns | 179 | 2.2 ns | |
224 | −1.6 ns | 224 | 8.2 ns | |
269 | 9.1 ns |
Plot No. | Water | N Rate | Plot No. | Water | N Rate |
---|---|---|---|---|---|
Field H, RRS, 2022 | Field H, RRS, 2022 | ||||
1, 2, 3, 4 | W1 | 0 | 33, 34, 35, 36 | W2 | 0 |
5, 6, 7, 8 | W1 | 45 | 29, 30, 31, 32 | W2 | 45 |
9, 10, 11, 12 | W1 | 179 | 25, 26, 27, 28 | W2 | 179 |
13, 14, 15, 16 | W1 | 224 | 21, 22, 23, 24 | W2 | 224 |
Field C, RRS, 2023 | Field C, RRS, 2023 | ||||
17, 18, 19, 20 | W1 | 0 | 21, 22, 23, 24 | W2 | 0 |
13, 14, 15, 16 | W1 | 45 | 25, 26, 27, 28 | W2 | 45 |
9, 10, 11, 12 | W1 | 135 | 29, 30, 31, 32 | W2 | 135 |
5, 6, 7, 8 | W1 | 224 | 33, 34, 35, 36 | W2 | 224 |
1, 2, 3, 4 | W1 | 269 | 37, 38, 39, 40 | W1 | 269 |
Field 31, CRS, 2022 | Field 31, CRS, 2022 | ||||
29, 30, 31, 32 | W1 | 0 | 25, 26, 27, 28 | W2 | 0 |
17, 18, 19, 20 | W1 | 45 | 21, 22, 23, 24 | W2 | 45 |
13, 14, 15, 16 | W1 | 179 | 9, 10, 11, 12 | W2 | 179 |
1, 2, 3, 4 | W1 | 224 | 5, 6, 7, 8 | W2 | 224 |
Field 33, CRS, 2023 | Field 33, CRS, 2023 | ||||
1, 6, 19, 20 | W1 | 0 | 33, 34, 47, 48 | W2 | 0 |
2, 7, 18, 21 | W1 | 45 | 32, 35, 46, 49 | W2 | 45 |
5, 8, 17, 22 | W1 | 179 | 31, 36, 45, 50 | W2 | 179 |
4, 9, 16, 23 | W1 | 224 | 30, 37, 44, 51 | W2 | 224 |
3, 10, 15, 24 | W1 | 269 | 29, 38, 43, 52 | W1 | 269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, B.; Dodla, S.; Tubana, B.; Gentimis, T.; Rontani, F.; Adhikari, R.; Duron, D.; Bortolon, G.; Setiyono, T. Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing. Agronomy 2025, 15, 434. https://doi.org/10.3390/agronomy15020434
Acharya B, Dodla S, Tubana B, Gentimis T, Rontani F, Adhikari R, Duron D, Bortolon G, Setiyono T. Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing. Agronomy. 2025; 15(2):434. https://doi.org/10.3390/agronomy15020434
Chicago/Turabian StyleAcharya, Bhawana, Syam Dodla, Brenda Tubana, Thanos Gentimis, Fagner Rontani, Rejina Adhikari, Dulis Duron, Giulia Bortolon, and Tri Setiyono. 2025. "Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing" Agronomy 15, no. 2: 434. https://doi.org/10.3390/agronomy15020434
APA StyleAcharya, B., Dodla, S., Tubana, B., Gentimis, T., Rontani, F., Adhikari, R., Duron, D., Bortolon, G., & Setiyono, T. (2025). Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing. Agronomy, 15(2), 434. https://doi.org/10.3390/agronomy15020434