The Effects of Organic Fertilizer Applications on the Nutrient Elements Content of Eggplant Seeds
Abstract
:1. Introduction
2. Materials and Method
2.1. Fruit Measurements
2.2. Seed Analysis
2.3. Soil Analysis
2.4. Organic Fertilizer Analysis
2.5. Statistical Analysis
3. Results and Discussion
Nutrient Element Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Struik, P.C.; van Eekeren, N. Benefits of organic plant breeding for crop resilience and sustainability in a changing climate. Agron. Sustain. Dev. 2018, 38, 1–15. [Google Scholar]
- Willer, H.; Trávníček, J.; Meier, C.; Schlatter, B. The World of Organic Agriculture 2021: Statistics and Emerging Trends. In The World of Organic Agriculture: Statistics and Emerging Trends; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2021; pp. 23–36. [Google Scholar]
- Lutman, H.E.; Clements, J.; Topp, K.; Loon, W.V. Challenges in ensuring organic seed availability: Global trends and perspectives. Eur. J. Agron. 2021, 127, 126273. [Google Scholar]
- Padel, S.; Orsini, S.; Solfanelli, F.; Zanoli, R. Can the market deliver 100% organic seed and varieties in Europe? Sustainability 2021, 13, 10305. [Google Scholar] [CrossRef]
- IFOAM. The World of Organic Agriculture: Statistics and Emerging Trends. IFOAM—Organics International. 2020. Available online: https://ifoam.bio (accessed on 15 January 2025).
- Mishra, S.L.; Chatterjee, R.; Tamang, A.; Saha, K. Influence of enriched organic manure, biostimulants and bio-mulches on organic okra (Abelmoschus esculentus). Indian J. Agric. Sci. 2020, 90, 1115–1124. [Google Scholar] [CrossRef]
- Afa, M. The Effect of natural guano organic fertilizer on growth and yield of spring onion (Allium fistulosum L.). AgroTech J. 2016, 1, 26–32. [Google Scholar]
- Yang, Y.; Zhao, Z.; Dong, B.; Zhang, R.; Jiang, J.; Ma, F.; Zhang, Y.; Zhao, J.; Du, D.; Qiu, J.; et al. Effects of Different Fertilization Measures on Bacterial Community Structure in Seed Production Corn Fields. Agronomy 2024, 14, 2459. [Google Scholar] [CrossRef]
- Maucieri, C.; Tolomio, M.; Raimondi, G.; Toffanin, A.; Morari, F.; Berti, A.; Borin, M. Organic versus conventional farming: Medium-term evaluation of soil chemical properties. Ital. J. Agron. 2022, 17, 2114. [Google Scholar] [CrossRef]
- Ekinci, M.; Kul, R.; Turan, M.; Yıldırım, E. Effects of organic fertilizers on plant growth, yield and mineral content of Lettuce (Lactuca sativa L.). Erciyes J. Agric. Anim. Sci. 2020, 3, 1–5. [Google Scholar]
- Benhachem, I.; Bentamra, Z.; Amiri, O.; Abbassi, R.; Mehenni, C.; Benkhelifa, M.; Santos, D.R.D. The effects of urban waste compost on physical and chemical soil properties in Mostaganem Region. Plant Arch. 2022, 22, 131–135. [Google Scholar] [CrossRef]
- Iovieno, P.; Morra, L.; Leone, A.; Pagano, L.; Alfani, A. Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two mediterranean horticultural soils. Biol. Fertil. Soils 2009, 45, 555–561. [Google Scholar] [CrossRef]
- Dangi, S.; Gao, S.; Duan, Y.; Wang, D. Soil microbial community structure affected by biochar and fertilizer Sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Kılıç, B.; Sönmez, I. Determination of the effects of different organic fertilizers and doses on soil properties. Mediterr. Agric. Sci. 2019, 32, 91–96. [Google Scholar]
- Yağmur, B.; Okur, B. The Effect of the Some Natural Soil Conditioners on Yield Parameters of Maize (Zea mays L.). J. Agric. Fac. Ege Univ. 2018, 55, 111–120. [Google Scholar]
- Sarioglu, A.; Dogan, K.; Kiziltug, T.; Coskan, A. Organo-mineral fertilizer applications for sustainable agriculture. Sci. Pap. Ser. A Agron. 2017, 60, 161–166. [Google Scholar]
- Holatko, J.; Hammerschmiedt, T.; Datta, R.; Baltazar, T.; Kintl, A.; Latal, O.; Pecina, V.; Novak, P.; Balakova, L.; Danish, S.; et al. Humic acid mitigates the negative effects of high rates of biochar application on microbial activity. Sustainability 2020, 12, 9524. [Google Scholar] [CrossRef]
- Susic, M. Replenishing humic acids in agricultural soils. Agronomy 2016, 6, 45. [Google Scholar] [CrossRef]
- Bellitürk, K. Vermicomposting Technology for Solid Waste Management in Sustainable Agricultural Production. Çukurova Tarım Gıda Bilim. Derg. 2016, 31, 1–5. [Google Scholar]
- Durukan, H.; Saraç, H.; Demirbaş, A. The Effect of Different Doses of Vermicompost Application on Yield and Nutrient Uptake of Maize Plant. In Proceedings of the 13th National and 1st International Field Crops Congress of Türkiye, Sivas Cumhuriyet University, Antalya, Türkiye, 1–4 November 2019; pp. 45–51. [Google Scholar]
- Yaviç, Ş.; Demir, S.; Boyno, G. Determination of Effects of Worm Manure (Vermicompost) Application to Root Rot Dısease Caused by Sclerotinia sclerotiorum (Lib.) de Bary on Tomato (Lycopersicon esculentum). Yüzüncü Yıl Üniversitesi Fen Bilim. Enstitüsü Derg. 2020, 25, 13–20. [Google Scholar]
- Alas, E.; Öztekin, G.B.; Boyacı, H.F. Recent situation of eggplant production in Turkey. Bahçe 2022, 51, 435–447. (In Turkish) [Google Scholar]
- Amal, K.; El-Goud, A. Efficiency Response of vermicompost and vermitea levels on growth and yield of eggplant (Solanum melongena, L.). Alex. Sci. Exch. J. 2020, 41, 69–75. [Google Scholar]
- Kacar, B.; İnal, A. Plant Analysis; No: 1241; Nobel Publishing: Ankara, Turkey, 2010. [Google Scholar]
- Mclean, E.O. Soil pH and Lime Requirement. In Methods of Soil Analysis; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Rhoades, J.D. Soluble Salts. In Methods of Soil Analysis, Chemical and Microbiological Properties; Page, A.L., Ed.; Agronomy Series; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 167–178. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; Page, A.L., Ed.; Agronomy Series; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Nelson, R.E. Carbonate and Gypsum. In Methods of Soil Analysis, Chemical and Microbiological Properties; Page, A.L., Ed.; Agronomy Series; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 181–196. [Google Scholar]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Washington, DC, USA, 2001. [Google Scholar]
- Nilsson, S.I.; Jhonson, L.; Jennische, P. Sludge, Treated Biowaste and Soil-Determination of pH, a Horizantal Standard for pH Measurement-the Influence on pH Measurements of Sample Pretreatment, Ionic Composition/Ionic Strength of the Extractant and Centrifugation/Filtration; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2005. [Google Scholar]
- Anonymous. Organic Matter in Peat. In Fertilizer AOAC Official Method of Analysis, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 36–40. [Google Scholar]
- Isaac, A.R.; Johnson, W.C. Elemental Determination by Inductively Coupled Plasma Atomic Emissio Spectrometry. In Handbook of Reference Methods for Plant Analysis; Karla, Y.P., Ed.; CRC Press: Washington, DC, USA, 1998; pp. 165–170. [Google Scholar]
- Kurt, D.; Ayan, A.K. Effect of the different organic fertilizer sources and doses on yield in organic tobacco (Nicotiana tabacum L.) production. J. Agric. Fac. Gaziosmanpasa Univ. 2014, 31, 7–14. [Google Scholar] [CrossRef]
- Azman, W.I.W. Effect of fertilizer rates on agronomic and chemical compozation of flue-cured Virginia Tobacco (Nicotiana Tabacum L.) in Peninsular Malaysia. Mardi Res. Bull. 1985, 13, 38–43. [Google Scholar]
- Camas, N.; Caliskan, O.; Odabas, M.S.; Ayan, A.K. The effects of organic originated fertilizer doses on yield and quality of esendal tobacco cultivar. In Proceedings of the Turkey VIII, Field Crops Congress, Hatay, Turkey, 28 December 2022; pp. 251–254. [Google Scholar]
- Başay, S. Determination of yield and quality characteristics in organic eggplant (Solanum melongana L. var. Pala-49) seed production. Alatarım 2021, 20, 88–95. [Google Scholar]
- Zhuang, L.; Wang, P.; Hu, W.; Yang, R.; Zhang, Q.; Jian, Y.; Zou, Y. A Comprehensive Study on the Impact of Chemical Fertilizer Reduction and Organic Manure Application on Soil Fertility and Apple Orchard Productivity. Agronomy 2024, 14, 1398. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, J.; Zheng, Y.; Yi, S. Effects of Combined Potassium and Organic Fertilizer Application on Newhall Navel Orange Nutrient Uptake, Yield, and Quality. Agronomy 2021, 11, 1990. [Google Scholar] [CrossRef]
- Abdul-Rahman, A.B. Combined Effect of Organic and Inorganic Fertilizers on Growth of Rice Plants; United Nations University Land Restoration Training Programme, Keldhahold: Reykjavit, Iceland, 2019. [Google Scholar]
- Önal, M.K.; Topcuoğlu, B. Mantar kompostu atığının serada yetiştirilen domates bitkisinin gelişme, meyvesel özellikler ve mineral içerikleri üzerine etkisi. In Proceedings of the Türkiye V, Ulusal Bahçe Bitkileri Kongresi, Erzurum, Turkey, 4–8 October 2011; pp. 254–257. (In Turkish). [Google Scholar]
- Aşık, B.B.; Turan, M.A.; Celik, H.; Katkat, A.V. Uptake of wheat (Triticum durun cv. Salihli) under conditions of salinity. Asian J. Crop Sci. 2009, 1, 87–95. [Google Scholar] [CrossRef]
- Ekici, E.N.; Demirkıran, A.R.; Boydak, E. The effect of leonardite as organic material on growth of Chickpea in the Kahramanmaraş condition. J. Agric. 2023, 6, 118–134. [Google Scholar]
- Küçükyumuk, Z.; Demirekin, H.; Almaz, M.; Erdal, İ. Effects of leonardite and mycorrhiza on plant growth and mineral nutrition in pepper plant. Suleyman Demirel Univ. J. Agric. Fac. 2014, 9, 42–48. [Google Scholar]
- Sefaoğlu, F. Effect of organic and inorganic fertilizers or their combinations on yield and quality components of oil seed sunflower in a semi-arid environment. Turk. J. Field Crops 2021, 26, 88–95. [Google Scholar] [CrossRef]
- Amir, K.; Fouzia, I. Chemical nutrient analysis of different composts (vermicompost and pitcompost) and their effect on the growth of a vegetative crop Pisum Sativum. Asian J. Plant Sci. Res. 2011, 1, 116–130. [Google Scholar]
- Ramnarain, Y.I.; Ori, L.; Ansari, A.A. Effect of the use of vermicompost on the plant growth parameters of pak Choi (Brassica rapa var. chinensis) and on the soil Structure in Suriname. J. Glob. Agric. Ecol. 2018, 8, 8–15. [Google Scholar]
- Ravimycin, T. Effects of vermicompost (VC) and farmyard manure (FYM) on the germination percentage growth biochemical and nutrient content of Coriander (Coriandrum sativum L.). Int. J. Adv. Res. Biol. Sci. 2016, 3, 91–98. [Google Scholar]
- Tepecik, M.; Kayıkçıoğlu, H.H.; Barlas, N.T.; Aşçıoğul, T.K.; Bozokalfa, M.K.; Eşiyok, D.; Ayyılmaz, T.; Uzmay, C. The effect of composted farmyard manure applications on plant nutrient content of cabbage (Brassica oleraceae L. var. Capitata). ISPEC J. Agric. Sci. 2020, 4, 366–377. [Google Scholar]
- Li, Q.; Zhang, D.; Song, Z.; Ren, L.; Jin, X.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation. Environ. Pollut. 2022, 295, 118653. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, Z.; Ye, Q.; Peng, Z.; Zhu, S.; Chen, H.; Liu, D.; Li, Y.; Deng, L.; Shu, X.; et al. Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. Plants 2023, 12, 3790. [Google Scholar] [CrossRef] [PubMed]
- Maucieri, C.; Barco, A.; Borin, M. Compost as a substitute for mineral N fertilization? Effects on crops, soil and N leaching. Agronomy 2019, 9, 193. [Google Scholar] [CrossRef]
- Yılmaz, F.I.; Kurt, S. Effect of biochar and vermicompost applications on some biological properties of soil. Toprak Bilim. Bitki Besleme Derg. 2018, 6, 143–150. [Google Scholar]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Das, S.; Hussain, N.; Gogoi, B.; Buragohain, A.K.; Bhattacharya, S.S. Vermicompost and farmyard manure improves food quality, antioxidant and antibacterial potential of Cajanus cajan (L.Mill sp.) leaves. Sci. Food Agric. 2017, 97, 956–966. [Google Scholar] [CrossRef]
- Jamal, A.; Saeed, M.F.; Mihoub, A.; Hopkins, B.G.; Ahmad, I.; Naeem, A. Integrated use of phosphorus fertilizer and farmyard manure improves wheat productivity by improving soil quality and P availability in calcareous soil under subhumid conditions. Front. Plant Sci. 2023, 14, 1034421. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Bhattacharyya, S.; Pal, K. IoT-based applications in healthcare devices. J. Healthc. Eng. 2021, 1, 6632599. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A.; Muhammad, D.; Jamal, H. Application of adsorption isotherms in evaluating the influence of humic acid and farmyard manure on phosphorous adsorption and desorption capacity of calcareous soil. World Sci. News 2018, 107, 136–149. [Google Scholar]
- Wu, Y.; Li, Y.; Zheng, C.; Zhang, Y.; Sun, Z. Organic amendment application influence soil organism abundance in saline alkali soil. Eur. J. Soil Biol. 2013, 54, 32–40. [Google Scholar] [CrossRef]
Months | Old-Field Average | Year 2020 | Year 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Precipitation (mm) | Relative Humidity (%) | Temperature (°C) | Precipitation (mm) | Relative Humidity (%) | Temperature (°C) | Precipitation (mm) | Relative Humidity (%) | |
May | 17.43 | 44.30 | 62.17 | 17.50 | 93.70 | 68.80 | 18.60 | 14.50 | 67.10 |
June | 22.57 | 36.30 | 57.74 | 21.70 | 40.50 | 67.90 | 20.90 | 61.70 | 73.00 |
July | 24.85 | 17.28 | 56.12 | 24.80 | 1.30 | 64.10 | 25.50 | 32.80 | 66.10 |
August | 24.56 | 13.70 | 57.37 | 24.70 | 1.50 | 62.00 | 25.90 | 0.10 | 60.60 |
Total | - | 111.58 | - | - | 148.70 | - | - | 109.10 | - |
Average | 22.35 | - | 58.35 | 22.18 | - | 65.70 | 22.73 | 66.70 |
Characteristics | Values | Limit Values * |
---|---|---|
% Sand | 27.2 | Clay |
% Silt | 21.9 | |
% Clay | 50.8 | |
pH | 8.1 | Slightly alkaline |
EC, µS cm−1 | 315 | No Salt |
Lime, % | 5.8 | Medium calcareous |
Organic matter, % | 3.1 | High |
Total N, % | 0.298 | High |
Available P, mg kg−1 | 25.0 | Very high |
Available Na, mg kg−1 | 130.0 | Low |
Available K, mg kg−1 | 54.6 | Very low |
Available Ca, mg kg−1 | 4900 | Very high |
Available e Mg, mg kg−1 | 23.6 | Very low |
DTPA-Cu, mg kg−1 | 27.4 | Very high |
DTPA-Zn, mg kg−1 | 2.0 | Low |
DTPA-Mn, mg kg−1 | 12.9 | Low |
DTPA-Fe, mg kg−1 | 14.7 | Middle |
FYM | L | VC | |
---|---|---|---|
pH | 7.70 | 4.18 | 9.18 |
EC, mS cm−1 | 3.2 | 3.75 | 6.97 |
Organic matter, % | 75.03 | 55.14 | 47.3 |
Total N, % | 2.1 | 1.45 | 0.95 |
C:N ratio | 20.72 | 22.05 | 28.8 |
Total P, % | 1.05 | 0.03 | 0.38 |
Total K, % | 0.81 | 0.60 | 0.88 |
Total Fe, % | 0.08 | 1.27 | 0.96 |
Total Cu, mg kg−1 | 55.4 | 25.1 | 41.0 |
Total Zn, mg kg−1 | 397.0 | 15.2 | 95.0 |
Total Mn, mg kg−1 | 332.0 | 26.3 | 283.0 |
Years | Application | Vegetative Growth Height (cm) | Plant Diameter Width (cm) | Fruit Height (cm) | Fruit Diameter (cm) |
---|---|---|---|---|---|
1st Year | Control | 57.26 b * | 54.00 ab | 15.85 b | 5.02 b |
FYM | 68.06 a | 61.20 a | 21.90 a | 6.73 a | |
L | 55.93 b | 52.13 b | 14.68 b | 5.06 b | |
VC | 61.13 ab | 59.00 ab | 16.61 b | 4.89 b | |
Means | 60.59 A | 56.58 A | 17.26 A | 5.42 B | |
2nd Year | Control | 55.81 b | 53.02 ab | 16.76 b | 4.73 c |
FYM | 65.12 a | 60.50 a | 20.73 a | 6.70 a | |
L | 52.65 b | 51.85 b | 14.67 b | 5.06 bc | |
VC | 61.47 ab | 58.70 ab | 15.57 b | 5.54 b | |
Means | 58.76 B | 56.01 B | 16.93 B | 5.50 A |
Years | Application | Plant Nutrient Element | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N, % | P, % | K, % | Ca, % | Na, mg kg−1 | Fe, mg kg−1 | Cu, mg kg−1 | Mn, mg kg−1 | Zn, mg kg−1 | ||
1st Year | Control | 0.242 ns | 0.286 ns | 0.210 b * | 0.026 ns | 0.091 ns | 11.9 c | 37.6 ns | 77.6 d * | 29.3 c * |
FYM | 0.254 | 0.279 | 0.272 a | 0.038 | 0.103 | 17.6 c | 45.3 | 85.4 cd | 32.5 c | |
L | 0.251 | 0.274 | 0.236 ab | 0.028 | 0.099 | 16.1 c | 43.8 | 93.7 cd | 28.8 c | |
VC | 0.258 | 0.292 | 0.237 ab | 0.036 | 0.103 | 15.8 c | 47.3 | 110.3 c | 39.3 bc | |
Means | 0.251 | 0.283 B ** | 0.239 | 0.032 | 0.099 | 15.3 B ** | 43.5 B ** | 91.7 B ** | 32.5 B ** | |
2nd Year | Control | 0.247 ns | 0.417 ns | 0.248 ab | 0.034 ns | 0.084 ns | 22.6 bc | 72.0 ns | 146.6 b | 41.7 bc |
FYM | 0.271 | 0.431 | 0.309 a | 0.049 | 0.092 | 31.7 ab | 85.4 | 152.5 b | 52.5 ab | |
L | 0.266 | 0.433 | 0.277 ab | 0.025 | 0.090 | 30.0 ab | 83.2 | 172.4 ab | 45.1 abc | |
VC | 0.270 | 0.456 | 0.274 ab | 0.047 | 0.094 | 35.1 a | 89.8 | 200.7 a | 63.7 a | |
Means | 0.264 | 0.434 A | 0.277 | 0.039 | 0.090 | 29.9 A | 82.6 A | 168.0 A | 50.7 A |
Years | Treatment | Soil Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N, % | P, mg kg−1 | K, g kg−1 | Ca, g kg−1 | Na, mg kg−1 | Fe, mg kg−1 | Cu, mg kg−1 | Mn, mg kg−1 | Zn, mg kg−1 | ||
1st Year | Control | 0.145 | 92.5 | 0.078 | 4.083 | 0.079 | 46.61 | 6.51 | 33.3 | 6.51 b * |
FYM | 0.164 | 114.5 | 0.122 | 4.224 | 0.083 | 59.32 | 6.90 | 32.0 | 6.90 b | |
L | 0.145 | 124.8 | 0.065 | 4.396 | 0.083 | 53.70 | 6.62 | 29.2 | 6.90 b | |
VC | 0.154 | 149.0 | 0.082 | 4.316 | 0.084 | 51.15 | 8.29 | 38.8 | 8.29 a | |
Means | 0.152B * | 120.2 B * | 0.089 B | 4.255 A | 0.082 B | 52.697 | 7.08 | 32.2 B | 17.72 | |
2nd Year | Control | 0.164 | 136.5 b * | 0.086 | 4.105 | 0.110 | 50.07 | 7.10 | 41.81 | 18.92 |
FYM | 0.181 | 196.2 a | 0.196 | 4.081 | 0.109 | 51.14 | 7.09 | 55.13 | 22.17 | |
L | 0.190 | 202.4 a | 0.154 | 4.164 | 0.104 | 49.86 | 7.29 | 44.21 | 18.73 | |
VC | 0.164 | 198.7 a | 0.176 | 4.084 | 0.104 | 60.40 | 8.04 | 59.90 | 25.66 | |
Means | 0.190 A | 183.4 A | 0.167 A | 4.109 B | 0.107 A | 52.863 | 7.38 | 48.3 A | 21.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Başay, S.; Dorak, S.; Aşik, B.B. The Effects of Organic Fertilizer Applications on the Nutrient Elements Content of Eggplant Seeds. Agronomy 2025, 15, 439. https://doi.org/10.3390/agronomy15020439
Başay S, Dorak S, Aşik BB. The Effects of Organic Fertilizer Applications on the Nutrient Elements Content of Eggplant Seeds. Agronomy. 2025; 15(2):439. https://doi.org/10.3390/agronomy15020439
Chicago/Turabian StyleBaşay, Sevinç, Saliha Dorak, and Barış Bülent Aşik. 2025. "The Effects of Organic Fertilizer Applications on the Nutrient Elements Content of Eggplant Seeds" Agronomy 15, no. 2: 439. https://doi.org/10.3390/agronomy15020439
APA StyleBaşay, S., Dorak, S., & Aşik, B. B. (2025). The Effects of Organic Fertilizer Applications on the Nutrient Elements Content of Eggplant Seeds. Agronomy, 15(2), 439. https://doi.org/10.3390/agronomy15020439