Mixed Plant Viral Infections: Complementation, Interference and Their Effects, a Review
Abstract
:1. Introduction
2. Types of Interactions in Viral Infections in Plants
2.1. Complementation
2.1.1. Synergy
Helper Dependence
Overcoming Cell and Tissue Tropism
Host Range Extension
2.2. Interference
- In mixed infection, the second virus is inhibited because the massive multiplication of the first virus has already occupied the receptor sites.
- Interference can occur due to acute resource depletion because the first virus in the mixture may have exhausted one or more essential materials for the multiplication of the second virus [59].
- The changes provoked in the plant’s metabolism can increase its resistance to infection by another virus. That is, the first virus elicits it, and therefore, inoculation with the second virus no longer achieves infection.
- In the case of variants of the same virus species, interference may be due to the contribution of a defective protein to the replication complex of one of the variants [60].
- Interference dsRNA can be derived from viral sequences even when applied directly to leaf cells, by mechanical inoculation or by means of an agrobacterium-mediated transient expression assay [62].
- Homology-dependent viral RNA interference can be caused by RNAi and/or RNA-directed DNA methylation (RdDM) to target RNA and DNA viruses [63].
2.2.1. Antagonism
Cross-Protection
Mutual Exclusion
Competitive Suppression
Tolerance
High Antagonism and Low Synergism
3. Symptoms in Mixed Viral Infections
3.1. Symptoms in Synergy and Subtypes
3.1.1. Synergy
Helper Dependence
Overcoming Tissue Tropism
3.2. Symptoms of Antagonism and Subtypes
3.2.1. Cross Protection
3.2.2. Mutual Exclusion
3.2.3. High Antagonism and Low Synergism
3.3. Symptoms of Competitive Suppression or Interference
4. Impact of Mixed Infections
5. Detection and Management of Mixed Viral Infections
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehetre, G.T.; Leo, V.V.; Singh, G.; Sorokan, A.; Maksimov, I.; Yadav, M.K.; Upadhyaya, K.; Hashem, A.; Alsaleh, A.N.; Dawoud, T.M.; et al. Current developments and challenges in plant viral diagnostics: A systematic review. Viruses 2021, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.D.; Kumar, D.; Sharma, S. A comprehensive review on transmission mechanism of plant viruses by insects. Int. J. Res. Agron. 2024, 7, 337–344. [Google Scholar] [CrossRef]
- Syller, J. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors. Mol. Plant Pathol. 2014, 15, 417–426. [Google Scholar] [CrossRef]
- Fidan, H.; Çelik, S.; Koç, G. Virus diseases limiting greenhouses and open field production of cucurbits in Antalya province. Mediterr. Agric. Sci. 2024, 37, 57–65. [Google Scholar] [CrossRef]
- Singhal, P.; Nabi, S.U.; Yadav, M.K.; Dubey, A. Mixed infection of plant viruses: Diagnostics, interactions and impact on host. J. Plant Dis. Prot. 2021, 128, 353–368. [Google Scholar] [CrossRef]
- Andret-Link, P.; Fuchs, M. Transmission specificity of plant viruses by vectors. J. Plant Pathol. 2005, 87, 153–165. [Google Scholar]
- Alcaide, C.; Rabadán, M.P.; Moreno-Perez, M.G.; Gómez, P. Implications of mixed viral infections on plant disease ecology and evolution. Adv. Virus Res. 2020, 106, 145–169. [Google Scholar]
- Zhang, X.F.; Qu, F. Cross protection of plant viruses: Recent developments and mechanistic implications. In Current Research Topics in Plant Virology; Springer: Cham, Switzerland, 2016; pp. 241–250. [Google Scholar]
- González, L.; Peiró, R.; Rubio, L.; Galipienso, L. Persistent southern tomato virus (STV) interacts with cucumber mosaic and/or pepino mosaic virus in mixed-infections modifying plant symptoms, viral titer and small RNA accumulation. Microorganisms 2021, 9, 689. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, S.; Wang, Z.; Yu, C.; Yuan, X. A New Strategy of Cross-Protection Based on Attenuated Vaccines: RNA Viruses Are Used as Vectors to Control DNA Viruses. Agronomy 2023, 13, 2334. [Google Scholar] [CrossRef]
- Bello, M.B.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Peeters, B.P.; Omar, A.R. Diagnostic and vaccination approaches for Newcastle disease virus in poultry: The current and emerging perspectives. BioMed Res. Int. 2018, 2018, 7278459. [Google Scholar] [CrossRef] [PubMed]
- Dandachi, D.; Rodriguez-Barradas, M.C. Viral pneumonia: Etiologies and treatment. J. Investig. Med. 2018, 66, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sharma, S.; Barua, S.; Tripathi, B.N.; Rouse, B.T. Virological and immunological outcomes of coinfections. Clin. Microbiol. Rev. 2018, 31, e00111-17. [Google Scholar] [CrossRef]
- Murin, C.D.; Wilson, I.A.; Ward, A.B. Antibody responses to viral infections: A structural perspective across three different enveloped viruses. Nat. Microbiol. 2019, 4, 734–747. [Google Scholar] [CrossRef]
- Khoury, M.; Cuenca, J.; Cruz, F.F.; Figueroa, F.E.; Rocco, P.R.; Weiss, D.J. Current status of cell-based therapies for respiratory virus infections: Applicability to COVID-19. Eur. Respir. J. 2020, 55, 2000858. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Mirzaei, R.; Goodarzi, P.; Asadi, M.; Soltani, A.; Aljanabi, H.A.A.; Jeda, A.S.; Karampoor, S. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020, 72, 2097–2111. [Google Scholar] [CrossRef]
- McKinney, H.H. Mosaic diseases in the Canary Islands, West Africa, and Gibraltar. J. Agric. Res. 1929, 39, 557–578. [Google Scholar]
- Maliogka, V.I.; Minafra, A.; Saldarelli, P.; Ruiz-García, A.B.; Glasa, M.; Katis, N.; Olmos, A. Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses 2018, 10, 436. [Google Scholar] [CrossRef]
- Skoracka, A.; Rector, B.G.; Hein, G.L. The interface between wheat and the wheat curl mite, Aceria tosichella, the primary vector of globally important viral diseases. Front. Plant Sci. 2018, 9, 1098. [Google Scholar] [CrossRef]
- Moreno, A.B.; López-Moya, J.J. When viruses play team sports: Mixed infections in plants. Phytopathology 2020, 110, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Tatineni, S. Differential Synergistic Interactions among Four Different Wheat-infecting Viruses. Front. Microbiol. 2021, 12, 800318. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.F.; Bowen, K.L. Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology 2006, 96, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Rentería-Canett, I.; Xoconostle-Cázares, B.; Ruiz-Medrano, R.; Rivera-Bustamante, R.F. Geminivirus mixed infection on pepper plants: Synergistic interaction between PHYVV and PepGMV. Virol. J. 2011, 8, 104. [Google Scholar] [CrossRef]
- Fraile Pérez, A.; Sacristán Benayas, S.; Garcia-Arenal Rodriguez, F. A quantitative analysis of complementation of deleterious mutants in plant virus populations. Span. J. Agric. Res. 2008, 6, 195–200. [Google Scholar] [CrossRef]
- Latham, J.R.; Wilson, A.K. Transcomplementation and synergism in plants: Implications for viral transgenes? Mol. Plant Pathol. 2008, 9, 85–103. [Google Scholar] [CrossRef]
- Pant, A.; Dsouza, L.; Yang, Z. Alteration in cellular signaling and metabolic reprogramming during viral infection. mBio 2021, 12, 10–112. [Google Scholar] [CrossRef]
- Hacker, D.L.; Fowler, B.C. Complementation of the host range restriction of southern cowpea mosaic virus in bean by southern bean mosaic virus. Virology 2000, 266, 140–149. [Google Scholar] [CrossRef]
- Karyeija, R.F.; Kreuze, J.F.; Gibson, R.W.; Valkonen, J.P.T. Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology 2000, 269, 26–36. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, R.; Fan, W.; Wang, Y.; Pattanaik, S.; Zhou, X.; Yu, Y.; Liu, Y.; Yang, J.; Li, Y.; et al. Cell-type-specific response in host plants to the co-infection by sweet potato viruses. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Vanterpool, T.C. Streak or winter blight of tomato in Quebec. Phytopathology 1926, 16, 311–331. [Google Scholar]
- Rowhani, A.; Daubert, S.; Arnold, K.; Al Rwahnih, M.; Klaassen, V.; Golino, D.; Uyemoto, J.K. Synergy between grapevine vitiviruses and grapevine leafroll viruses. Eur. J. Plant Pathol. 2018, 151, 919–925. [Google Scholar] [CrossRef]
- McLeish, M.J.; Fraile, A.; García-Arenal, F. Evolution of plant–virus interactions: Host range and virus emergence. Curr. Opin. Virol. 2019, 34, 50–55. [Google Scholar] [CrossRef]
- Anandalakshmi, R.; Pruss, G.J.; Ge, X.; Marathe, R.; Mallory, A.C.; Smith, T.H.; Vance, V.B. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 1998, 95, 13079–13084. [Google Scholar] [CrossRef]
- Dobbs, E.; Deakin, G.; Bennett, J.; Fleming-Archibald, C.; Jones, I.; Grogan, H.; Burton, K. Viral interactions and pathogenesis during multiple viral infections in Agaricus bisporus. mBio 2021, 12, e03470-20. [Google Scholar] [CrossRef]
- Tee, E.E.; Faulkner, C. Plasmodesmata and intercellular molecular traffic control. New Phytol. 2024, 243, 32–47. [Google Scholar] [CrossRef]
- Kumar, G.; Dasgupta, I. Variability, functions and interactions of plant virus movement proteins: What do we know so far? Microorganisms 2021, 9, 695. [Google Scholar] [CrossRef]
- Solovyev, A.G.; Atabekova, A.K.; Lezzhov, A.A.; Solovieva, A.D.; Chergintsev, D.A.; Morozov, S.Y. Distinct mechanisms of endomembrane reorganization determine dissimilar transport pathways in plant RNA viruses. Plants 2022, 11, 2403. [Google Scholar] [CrossRef]
- Morozov, S.Y.; Solovyev, A.G. Mechanisms of plant virus cell-to-cell transport: New lessons from complementation studies. Front. Plant Sci. 2024, 15, 1453464. [Google Scholar] [CrossRef]
- McLeish, M.J.; Fraile, A.; García-Arenal, F. Population genomics of plant viruses: The ecology and evolution of virus emergence. Phytopatholog 2021, 111, 32–39. [Google Scholar] [CrossRef]
- Tatineni, S.; Graybosch, R.A.; Hein, G.L.; Wegulo, S.N.; French, R. Wheat cultivar-specific disease synergism and alteration of virus accumulation during co-infection with Wheat streak mosaic virus and Triticum mosaic virus. Phytopathology 2010, 100, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Friesen, M.L. Social evolution and cheating in plant pathogens. Annu. Rev. Phytopathol. 2020, 58, 55–75. [Google Scholar] [CrossRef] [PubMed]
- DaPalma, T.; Doonan, B.P.; Trager, N.M.; Kasman, L.M. A systematic approach to virus–virus interactions. Virus Res. 2010, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.P.; Pai, H.; Thompson, R.; Marchal, C.; Claeys, J.; Adachi, H.; Kamoun, S. The nucleotide-binding domain of NRC-dependent disease resistance proteins is sufficient to activate downstream helper NLR oligomerization and immune signaling. New Phytol. 2024, 243, 345–361. [Google Scholar] [CrossRef]
- Shi, X.M.; Miller, H.; Verchot, J.; Carrington, J.C.; Vance, V.B. Mutations in the region encoding the central domain of helper component-proteinase (HC-Pro) eliminate potato virus X/potyviral synergism. Virology 1997, 231, 35–42. [Google Scholar] [CrossRef]
- Saha, S.; Lõhmus, A.; Dutta, P.; Pollari, M.; Mäkinen, K. Interplay of HCPro and CP in the regulation of Potato Virus A RNA expression and encapsidation. Viruses 2022, 14, 1233. [Google Scholar] [CrossRef]
- Gallo, A.; Valli, A.; Calvo, M.; García, J.A. A functional link between RNA replication and virion assembly in the potyvirus. J. Virol. 2018, 92, e02179-17. [Google Scholar] [CrossRef]
- Harper, S.J.; Cowell, S.J.; Robertson, C.J.; Dawson, W.O. Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology 2014, 460, 91–99. [Google Scholar] [CrossRef]
- Mascia, T.; Gallitelli, D. Synergies and antagonisms in virus interactions. Plant Sci. 2016, 252, 176–192. [Google Scholar] [CrossRef]
- Alves-Júnior, M.; Alfenas-Zerbini, P.; Andrade, E.C.; Esposito, D.A.; Silva, F.N.; da Cruz, A.C.F.; Ventrella, M.C.; Otoni, W.C.; Zerbini, F.M. Synergism and negative interference during co-infection of tomato and Nicotiana benthamiana with two bipartite begomoviruses. Virology 2009, 387, 257–266. [Google Scholar] [CrossRef]
- Wege, C.; Siegmund, D. Synergism of a DNA and an RNA virus: Enhanced tissue infiltration of the begomovirus Abutilon mosaic virus (AbMV) mediated by Cucumber mosaic virus (CMV). Virology 2007, 357, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Savenkov, E.; Valkonen, J. Potyviral Helper—Component Proteinase Expressed in transgenic plants enhances Titers of Potato Leaf Roll Virus but does Not Alleviate Its Phloem limitation. Virology 2001, 283, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.J.; Kim, K.S. Evidence that bean golden mosaic virus invades non-phloem tissue in double infections with tobacco mosaic virus. J. Gen. Virol. 1983, 64, 2489–2492. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.C.; Ding, T.B.; Chu, D. Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus Mixed Infection on Host Tomato Plants and the Whitefly Vector. Front. Plant Sci. 2021, 12, 1032. [Google Scholar] [CrossRef]
- Choi, S.K.; Yoon, J.Y.; Ryu, K.H.; Choi, J.K.; Palukaitis, P.; Park, W.M. Systemic movement of a movement-deficient strain of Cucumber mosaic virus in zucchini squash is facilitated by a cucurbit-infecting potyvirus. J. Gen. Virol. 2002, 83, 3173–3178. [Google Scholar] [CrossRef]
- Bennett, C.W. Fenómenos de interferencia entre virus de plantas. Annu. Rev. Microbiol. 1951, 5, 295–308. [Google Scholar] [CrossRef]
- Bawden, F.C.; Kassanis, B. La supresión de un virus de plantas por otro. Ann. Appl. Biol. 1945, 32, 52–57. [Google Scholar] [CrossRef]
- Kassanis, B. Interactions of Viruses in Plants. Adv. Virus Res. 1964, 10, 219–255. [Google Scholar]
- Whitaker-Dowling, P.; Youngner, J.S. Viral interference-dominance of mutant viruses over wild-type virus in mixed infections. Microbiol. Rev. 1987, 51, 179–191. [Google Scholar] [CrossRef]
- Sarika, A.M.; Akram, M.; Iquebal, M.A.; Naimuddin, K. Prediction of MHC binding peptides and epitopes from coat protein of mungbean yellow mosaic india virus-Ub05. J. Proteom. Bioinform. 2010, 3, 173–178. [Google Scholar]
- Tenllado, F.; Dıaz-Ruız, J.R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 2001, 75, 12288–12297. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhao, J.; Guo, H. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr. Opin. Virol. 2021, 46, 65–72. [Google Scholar] [CrossRef]
- Syller, J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 2012, 13, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Lozano, J.; Torres-Pacheco, I.; Fauquet, C.M.; Rivera-Bustamante, R.F. Interactions between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 2003, 93, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Saldana, J.; Elena, S.F.; Solé, R.V. Coinfection and superinfection in RNA virus populations: A selection–mutation model. Math. Biosci. 2003, 183, 135–160. [Google Scholar] [CrossRef]
- Ziebell, H.; Carr, J.P. Cross-protection: A century of mystery. In Advances in Virus Research; Academic Press: Cambridge, MA, USA, 2010; Volume 76, pp. 211–264. [Google Scholar]
- Folimonova, S.Y. Developing an understanding of cross-protection by Citrus tristeza virus. Front. Microbiol. 2013, 4, 76. [Google Scholar] [CrossRef]
- Tatineni, S.; French, R. The coat protein and NIa protease of two Potyviridae family members independently confer superinfection exclusion. J. Virol. 2016, 90, 10886–10905. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Guo, Q.; Sun, R.; Wei, T.; Qu, F. A New Mechanistic Model for Viral Cross Protection and Superinfection Exclusion. Front. Plant Sci. 2018, 9, 319005. [Google Scholar] [CrossRef]
- Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A new era for mild strain cross-protection. Viruses 2019, 11, 670. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, Y.T.; Park, S.; Jung, Y.J.; Lee, Y.; Ko, E.J.; Kang, S.M. Neuraminidase expressing virus-like particle vaccine provides effective cross protection against influenza virus. Virology 2019, 535, 179–188. [Google Scholar] [CrossRef]
- Syller, J. Interspecific and intraspecific interactions among plant viruses in mixed infections. In Applied Plant Virology; Academic Press: Cambridge, MA, USA, 2020; pp. 437–453. [Google Scholar]
- Jedlinski, H.; Brown, C.M. Cross protection and mutual exclusion by three strains of barley yellow dwarf virus in Avena sativa L. Virology 1965, 26, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Maiss, E. Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J. Gen. Virol. 2003, 84, 2871–2876. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, M.; Shigemune, N.; Kikuhara, K.; Furuya, N.; Takanami, Y. Spatial analysis for exclusive interactions between subgroups I and II of Cucumber mosaic virus in cowpea. Virology 2004, 328, 45–51. [Google Scholar] [CrossRef]
- Takahashi, T.; Sugawara, T.; Yamatsuta, T.; Isogai, M.; Natsuaki, T.; Yoshikawa, N. Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology 2007, 97, 1200–1206. [Google Scholar] [CrossRef]
- Gallois, J.L.; Moury, B.; German-Retana, S. Role of the genetic background in resistance to plant viruses. Int. J. Mol. Sci. 2018, 19, 2856. [Google Scholar] [CrossRef]
- Leeks, A.; Segredo-Otero, E.A.; Sanjuan, R.; West, S.A. Beneficial coinfection can promote within-host viral diversity. Virus Evol. 2018, 4, vey028. [Google Scholar] [CrossRef]
- Elena, S.F.; Bedhomme, S.; Carrasco, P.; Cuevas, J.M.; de la Iglesia, F.; Lafforgue, G.; Lalić, J.; Pròsper, À.; Tromas, N.; Zwart, M.P. The evolutionary genetics of emerging plant RNA viruses. Mol. Plant-Microbe Interact. 2011, 24, 287–293. [Google Scholar] [CrossRef]
- Ren, R.; Zheng, L.; Han, J.; Carvalho, C.P.; Miyashita, S.; Zhang, D.; Qu, F. Intracellular bottlenecking permits no more than three tomato yellow leaf curl virus genomes to initiate replication in a single cell. PLoS Pathog. 2023, 19, e1011365. [Google Scholar] [CrossRef]
- Perdoncini Carvalho, C.; Ren, R.; Han, J.; Qu, F. Natural selection, intracellular bottlenecks of virus populations, and viral superinfection exclusion. Annu. Rev. Virol. 2022, 9, 121–137. [Google Scholar] [CrossRef]
- Escobedo-Bonilla, C.M. Mini Review: Virus Interference: History, Types and Occurrence in Crustaceans. Front. Immunol. 2021, 12, 2332. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Chakraborty, S. Chloroplast: The Trojan horse in plant–virus interaction. Mol. Plant Pathol. 2018, 19, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, X.; Hong, Y.; Liu, Y. Chloroplast in plant-virus interaction. Front. Microbiol. 2016, 7, 1565. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.D. Primary metabolism and plant defense—Fuel for the fire. Mol. Plant-Microbe Interact. 2009, 22, 487–497. [Google Scholar] [CrossRef]
- Kale, R.; Hebert, A.E.; Frankel, L.K.; Sallans, L.; Bricker, T.M.; Pospisil, P. Amino acid oxida-tion of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc. Natl. Acad. Sci. USA 2017, 114, 2988–2993. [Google Scholar] [CrossRef]
- Jimbo, H.; Yutthanasirikul, R.; Nagano, T.; Hisabori, T.; Hihara, Y.; Nishiyama, Y. Oxidation of translation factor EF-Tu inhibits the repair of photosystem II. Plant Physiol. 2018, 176, 2691–2699. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Bi, H.; Zhang, P. Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. J. Integr. Plant Biol. 2014, 56, 122–132. [Google Scholar] [CrossRef]
- Souza, P.F.; Garcia-Ruiz, H.; Carvalho, F.E. What proteomics can reveal about plant–virus interactions? Photosynthesis-related proteins on the spotlight. Theor. Exp. Plant Physiol. 2019, 31, 227–248. [Google Scholar] [CrossRef]
- Pagán, I.; García-Arenal, F. Tolerance of plants to pathogens: A unifying view. Annu. Rev. Phytopathol. 2020, 58, 77–96. [Google Scholar] [CrossRef]
- Paudel, D.B.; Sanfocon, H. Exploring diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018, 9, 1575. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Kumar, R.; Sharma, I.; Vats, A.K. PR proteins: Kyy genes for engeering disease resistance in plants. In Crop Improvement; CRC Press: Boca Raton, FL, USA, 2021; pp. 81–98. [Google Scholar]
- Prigigallo, M.I.; KrizniK, M.; De Paola, D.; Catalano, D.; Gruden, K.; Finette-Sialer, M.M.; Cillo, F. Ptatovirusy infections alters small RNA metabolism and inmune response in tomato. Viruses 2019, 11, 1100. [Google Scholar] [CrossRef]
- Rimbaud, L.; Dallot, S.; Delaunay, A.; Borron, S.; Soubeyrand, S.; Thébaud, G.; Jacquot, E. Assessing the mismatch between incubation and latent periods for vector-borne diseases: The case of sharka. Phytopathology 2015, 105, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, G.; Zwart, M.P.; Elena, S.F. Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. J. R. Soc. Interface 2014, 11, 20140555. [Google Scholar] [CrossRef] [PubMed]
- Murant, A.F. Complexes of transmission-dependent and helper viruses. In Diagnosis of Plant Virus Diseases; CRC Press: Boca Raton, FL, USA, 2019; pp. 333–358. [Google Scholar]
- Hadidi, A.; Sun, L.; Randles, J.W. Modes of viroid transmission. Cells 2022, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.A. Potato spindle tuber viroid: The simplicity paradox resolved? Mol. Plant Pathol. 2007, 8, 549–560. [Google Scholar] [CrossRef]
- Malmstrom, C.M.; Bigelow, P.; Trębicki, P.; Busch, A.K.; Friel, C.; Cole, E.; Abdel-Azim, H.; Phillippo, C.; Alexander, H.M. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR). Virus Res. 2017, 241, 172–184. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, B.; Wang, X.; Zheng, C.; Zhou, G. Three digoxigenin-labeled cDNA probes for specific detection of the natural population of Barley yellow dwarf viruses in China by dot-blot hybridization. J. Virol. Methods 2007, 145, 22–29. [Google Scholar] [CrossRef]
- Medina-Salguero, A.X.; Cornejo-Franco, J.F.; Grinstead, S.; Mowery, J.; Mollov, D.; Quito-Avila, D.F. Genetic characterization of a mild isolate of papaya ringspot virus type-P (PRSV-P) and assessment of its cross-protection potential under greenhouse and field conditions. PLoS ONE 2021, 16, e0241652. [Google Scholar] [CrossRef]
- Huang, X.D.; Fang, L.; Gu, Q.S.; Tian, Y.P.; Geng, C.; Li, X.D. Cross protection against the watermelon strain of Papaya ringspot virus through modification of viral RNA silencing suppressor. Virus Res. 2019, 265, 166–171. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Achor, D.; Bar-Joseph, M. Walking together: Cross-protection, genome conservation, and the replication machinery of Citrus tristeza virus. Viruses 2020, 12, 1353. [Google Scholar] [CrossRef]
- Ranjan, P.; Bhatt, B.; Singh, A.K. Implications of Mixed Infection on Disease Pathogenicity and Epidemiology. In New and Emerging Plant Viruses; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 275–296. [Google Scholar]
- Ghosh, S.K.; Chatterjee, T. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Associated Proteins (Cas)[CRISPR–Cas]: An Emerging Technique in Plant Disease Detection and Management. In Gene Editing in Plants: CRISPR-Cas and Its Applications; Springer Nature: Singapore, 2024; pp. 589–645. [Google Scholar]
- Hwarari, D.; Radani, Y.; Ke, Y.; Chen, J.; Yang, L. CRISPR/Cas genome editing in plants: Mechanisms, applications, and overcoming bottlenecks. Funct. Integr. Genom. 2024, 24, 50. [Google Scholar] [CrossRef]
- Mahas, A.; Aman, R.; Mahfouz, M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol. 2019, 20, 263. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G. Establishing the CRISPR/Cas13a Genome Editing System in Nicotiana Benthamiana for RNA Targeting Applications. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2021. [Google Scholar]
- Bocos-Asenjo, I.T.; Niño-Sánchez, J.; Ginésy, M.; Diez, J.J. New insights on the integrated management of plant diseases by RNA strategies: Mycoviruses and RNA interference. Int. J. Mol. Sci. 2022, 23, 9236. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vargas, I.; Travanty, E.A.; Keene, K.M.; Franz, A.W.; Beaty, B.J.; Blair, C.D.; Olson, K.E. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res. 2004, 102, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Choua, M.; Bonachela, J.A. Ecological and evolutionary consequences of viral plasticity. Am. Nat. 2019, 193, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M.; Raban, R.R.; Kandul, N.P.; Edula, J.R.; León, T.M.; Akbari, O.S. Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies. Front. Genet. 2019, 10, 1072. [Google Scholar] [CrossRef]
- Islam, K.; Kumar, N.; Yadava, S.K.; Momo, J.; Ramchiary, N. Genomic Designing for breeding biotic stress resistant Pepper Crop. In Genomic Designing for Biotic Stress Resistant Vegetable Crops; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–145. [Google Scholar]
- Di Carli, M.; Benvenuto, E.; Donini, M. Recent insights into plant–virus interactions through proteomic analysis. J. Proteome Res. 2012, 11, 4765–4780. [Google Scholar] [CrossRef]
- Hernández, J.A.; Gullner, G.; Clemente-Moreno, M.J.; Künstler, A.; Juhász, C.; Díaz-Vivancos, P.; Király, L. Oxidative stress and antioxidative responses in plant–virus interactions. Physiol. Mol. Plant Pathol. 2016, 94, 134–148. [Google Scholar] [CrossRef]
- García-Marcos, A.; Pacheco, R.; Martiáñez, J.; González-Jara, P.; Díaz-Ruíz, J.R.; Tenllado, F. Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Mol. Plant-Microbe Interact. 2009, 22, 1431–1444. [Google Scholar] [CrossRef]
- Ding, S.W. Transgene silencing, RNA interference, and the antiviral defense mechanism directed by small interfering RNAs. Phytopathology 2023, 113, 616–625. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Farooq, M.A.; Zhao, T.; Wang, P.; Tabusam, J.; Wang, Y.; Xuan, S.; Zhao, J.; Chen, X.; Shen, S.; et al. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int. J. Mol. Sci. 2023, 24, 5608. [Google Scholar] [CrossRef]
- Paudel, S. Effects of Plant Viruses on Vectors and Non-Vector Herbivores in Three Different Pathosystems. Ph.D. Thesis, Louisiana State University and Agricultural Mechanical College, Baton Rouge, LA, USA, 2019. [Google Scholar]
- Shams-Bakhsh, M.; Canto, T.; Palukaitis, P. Enhanced resistance and neutralization of defense responses by suppressors of RNA silencing. Virus Res. 2007, 130, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, F.; Mannas, J.P.; Feldman, T.; Sumner, L.W.; Roossinck, M.J. Virus infection improves drought tolerance. New Phytol. 2008, 180, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, D.; Lecoq, H. Evidence that heteroencapsidation between two potyviruses is involved in aphid transmission of a non-aphid-transmissible isolate from mixed infections. Phytopathology 1991, 81, 1459–1464. [Google Scholar] [CrossRef]
- James, D.; Varga, A.; Pallas, V.; Candresse, T. Trategies for simultaneous detection of multiple plant viruses. Can. J. Plant Pathol. 2006, 28, 16–29. [Google Scholar] [CrossRef]
- Bacci, L.; Convertini, S.; Rossaro, B. A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J. Entomol. Acarol. Res. 2018, 50. [Google Scholar] [CrossRef]
- Sarwar, M.; Shad, N.A.; Batool, R. Integrated management of vectored viral diseases of plants. In Applied Plant Virology; Academic Press: Cambridge, MA, USA, 2020; pp. 707–724. [Google Scholar]
- Warghane, A.; Saini, R.; Shri, M.; Andankar, I.; Ghosh, D.K.; Chopade, B.A. Application of nanoparticles for management of plant viral pathogen: Current status and future prospects. Virology 2024, 592, 109998. [Google Scholar] [CrossRef]
- Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Avila-Juarez, L.; Torres-Pacheco, I. Nanoparticles as potential antivirals in agriculture. Agriculture 2020, 10, 444. [Google Scholar] [CrossRef]
- Mejía-Teniente, L.; Durán-Flores, B.A.; Torres-Pacheco, I.; González-Chavira, M.M.; Rivera-Bustamante, R.F.; Feregrino-Perez, A.A.; Pérez-Ramírez, I.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R.; Guevara-González, R.G. Hydrogen peroxide protects pepper (Capsicum annuum L.) against pepper golden mosaic geminivirus (PepGMV) infections. Physiol. Mol. Plant Pathol. 2019, 106, 23–29. [Google Scholar] [CrossRef]
- Shahriar, S.A.; Islam, M.N.; Chun, C.N.W.; Rahim, M.A.; Paul, N.C.; Uddain, J.; Siddiquee, S. Control of plant viral diseases by CRISPR/Cas9: Resistance mechanisms, strategies and challenges in food crops. Plants 2021, 10, 1264. [Google Scholar] [CrossRef]
- Khatodia, S.; Bhatotia, K.; Tuteja, N. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered 2017, 8, 274–279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Tovar, M.R.; Rivera-Bustamante, R.F.; Saavedra-Trejo, D.L.; Guevara-González, R.G.; Torres-Pacheco, I. Mixed Plant Viral Infections: Complementation, Interference and Their Effects, a Review. Agronomy 2025, 15, 620. https://doi.org/10.3390/agronomy15030620
Sánchez-Tovar MR, Rivera-Bustamante RF, Saavedra-Trejo DL, Guevara-González RG, Torres-Pacheco I. Mixed Plant Viral Infections: Complementation, Interference and Their Effects, a Review. Agronomy. 2025; 15(3):620. https://doi.org/10.3390/agronomy15030620
Chicago/Turabian StyleSánchez-Tovar, Monica R., Rafael F. Rivera-Bustamante, Diana L. Saavedra-Trejo, Ramón Gerardo Guevara-González, and Irineo Torres-Pacheco. 2025. "Mixed Plant Viral Infections: Complementation, Interference and Their Effects, a Review" Agronomy 15, no. 3: 620. https://doi.org/10.3390/agronomy15030620
APA StyleSánchez-Tovar, M. R., Rivera-Bustamante, R. F., Saavedra-Trejo, D. L., Guevara-González, R. G., & Torres-Pacheco, I. (2025). Mixed Plant Viral Infections: Complementation, Interference and Their Effects, a Review. Agronomy, 15(3), 620. https://doi.org/10.3390/agronomy15030620