The Potential Role of Nitrogen Management in Enhancing Grain Yield and Lodging Resistance of Shanlan Upland Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Crop Management
2.3. Data Recording
2.3.1. Yield-Related Parameters
2.3.2. Root- and Stem-Lodging-Related Parameters
2.3.3. Calculation of the Safety Factor
2.3.4. Economic Benefits
2.4. Data Analysis
3. Results
3.1. Grain Yield and Yield Components
3.2. Comparison of Lodging-Related Parameters
3.3. Pearson’s Correlations and PCA Analyses
3.4. Economic Analysis
4. Discussion
4.1. Optimizing N Fertilizer Methods to Achieve Maximum Lodging Resistance
4.2. Optimal N Rate for High Yield and Lodging Resistance
4.3. Effects of Different N Fertilizer Management Strategies on Economic Benefits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 16 January 2025).
- Spracklen, D.V. Global warming: China’s contribution to climate change. Nature 2016, 531, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef]
- Yang, G.; Yang, Y.; Guan, Y.; Xu, Z.; Wang, J.; Yun, Y.; Yan, X.; Tang, Q. Genetic Diversity of Shanlan Upland Rice (Oryza sativa L.) and Association Analysis of SSR Markers Linked to Agronomic Traits. BioMed Res. Int. 2021, 1, 7588652. [Google Scholar] [CrossRef]
- Zhou, S.; He, L.; Lin, W.; Su, Y.; Liu, Q.; Qu, M.; Xiao, L. Integrative analysis of transcriptome and metabolism reveals potential roles of carbon fixation and photorespiratory metabolism in response to drought in Shanlan upland rice. BMC Genom. 2022, 23, 862. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Soratto, R.P.; Nascente, A.S.; Arf, O. Root Distribution, Nutrient Uptake, and Yield of Two Upland Rice Cultivars under Two Water Regimes. Agron. J. 2013, 105, 237–247. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A.; Coelho, A.M. Yield and yield components of upland rice as influenced by nitrogen sources. J. Plant Nutr. 2011, 34, 361–370. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Huang, W.; Xu, J.; Cheng, Y.; Wang, C.; Zhu, T.; Yang, J. Effects of irrigation regimes on yield and quality of upland rice and paddy rice and their interaction with nitrogen rates. Agric. Water Manag. 2020, 241, 106344. [Google Scholar] [CrossRef]
- Liao, P.; Bell, S.M.; Chen, L.; Huang, S.; Wang, H.; Miao, J.; Qi, Y.; Sun, Y.; Liao, B.; Zeng, Y.; et al. Improving rice grain yield and reducing lodging risk simultaneously: A meta-analysis. Eur. J. Agron. 2023, 143, 126709. [Google Scholar] [CrossRef]
- Pinthus, M.J. Lodging in wheat, barley and oats: The phenomenon, its causes and preventative measures. Adv. Agron. 1974, 25, 210–263. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Sylvester-Bradley, R.; Mooney, S.J.; Tams, A.R.; Ennos, A.R. Understanding and reducing lodging in cereals. Adv. Agron. 2004, 84, 215–269. [Google Scholar] [CrossRef]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Wu, W.; Shah, F.; Ma, B.L. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop Environ. 2022, 1, 133–144. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, Y.; Zha, X.; Ullah, J.; Ye, M.; Shah, F.; Yuan, Q.; Wang, P.; Tao, Y.; Wu, W. The potential role of zinc and silicon in improving grain yield and lodging resistance of rice (Oryza sativa L.). Agronomy 2023, 14, 91. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.L. Understanding the trade–off between lodging resistance and seed yield, and developing some non–destructive methods for predicting crop lodging risk in canola production. Field Crops Res. 2022, 288, 108691. [Google Scholar] [CrossRef]
- Hong, W.; Chen, Y.; Huang, S.; Li, Y.; Wang, Z.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. Optimization of nitrogen–silicon (N-Si) fertilization for grain yield and lodging resistance of early-season indica fragrant rice under different planting methods. Eur. J. Agron. 2022, 136, 126508. [Google Scholar] [CrossRef]
- Mae, T. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil 1997, 196, 201–210. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; et al. Effect of Nitrogen Management on the Structure and Physicochemical Properties of Rice Starch. J. Agric. Food Chem 2016, 64, 8019–8025. [Google Scholar] [CrossRef]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. Agron. Sustain. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef]
- Wang, F.; Peng, S. Yield potential and nitrogen use efficiency of China’s super rice. J. Integr. Agric. 2017, 16, 1000–1008. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Lin, J.; Liu, J.; Liu, B.; Wang, J.; Huang, A.; Li, H.; Zhao, T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE 2017, 12, e0180825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Li, G.H.; Yang, Y.; Li, Q.; Zhang, J.; Liu, J.Y.; Wang, S.H.; Tang, S.; Ding, Y.F. Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. J. Integr. Agric. 2014, 13, 63–72. [Google Scholar] [CrossRef]
- Islam, M.S.; Peng, S.; Visperas, R.M.; Ereful, N.; Bhuiya, M.S.U.; Julfiquar, A.W. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crop Res. 2007, 101, 240–248. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Wu, X.; Ding, Y.; Li, G.; Li, J.; Weng, F.; Liu, Z.; Tang, S.; Ding, C.; et al. Lodging resistance of japonica rice (Oryza Sativa, L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Fan, C.; Feng, S.; Huang, J.; Wang, Y.; Wu, L.; Li, X.; Wang, L.; Tu, Y.; Xia, T.; Li, J.; et al. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnol. Biofuels 2017, 10, 221. [Google Scholar] [CrossRef]
- Sekhon, R.S.; Joyner, C.N.; Ackerman, A.J.; McMahan, C.S.; Cook, D.D.; Robertson, D.J. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Res. 2020, 249, 107737. [Google Scholar] [CrossRef]
- Ma, B.L.; Herath, A.W. Timing and rates of nitrogen fertilizer application on seedyield, quality and nitrogen–use efficiency of canola. Crop Pasture Sci. 2016, 67, 167–180. [Google Scholar] [CrossRef]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L.; Xue, A. Planting date and nitrogen amendment effects on grain yield and protein content of spring wheat. Crop Sci. 2007, 47, 36–44. [Google Scholar] [CrossRef]
- Ma, B.L.; Biswas, D.K.; Zhou, Q.P.; Ren, C.Z. Comparisons among cultivars of wheat, hulled and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant Sci. 2012, 92, 1213–1222. [Google Scholar] [CrossRef]
- Ohnishi, M.; Horie, T.; Homma, K.; Supapoj, N.; Takano, H.; Yamamoto, S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Res. 1999, 64, 109–120. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Baker, C.J.; Spink, J.; Sparkes, D.L. A calibrated model of wheat lodging compared with field measurements. Agric. For. Meteorol. 2003, 119, 167–180. [Google Scholar] [CrossRef]
- Van Delden, S.H.; Vos, J.; Ennos, A.R.; Stomph, T.J. Analyzing lodging of the panicle bearing cereal teff (Eragrostis tef). N. Phytol. 2010, 186, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Crook, M.J.; Ennos, A.R. Stem and root characteristics associated with lodging resistance in four winter wheat cultivars. J. Agric. Sci. 1994, 123, 167–174. [Google Scholar] [CrossRef]
- Ennos, A.R. The mechanics of root anchorage. Adv. Bot. Res. 2004, 33, 133–157. [Google Scholar] [CrossRef]
- Goodman, A.M.; Crook, M.J.; Ennos, A.R. Anchorage mechanics of the tap root system of winter-sown oilseed rape (Brassica napus L.). Ann. Bot. 2001, 87, 397–404. [Google Scholar] [CrossRef]
- Chen, L.; Yi, Y.; Wang, W.; Zeng, Y.; Tan, X.; Wu, Z.; Chen, X.; Pan, X.; Shi, Q.; Zeng, Y. Innovative furrow ridging fertilization under a mechanical direct seeding system improves the grain yield and lodging resistance of early indica rice in South China. Field Crops Res. 2021, 270, 108184. [Google Scholar] [CrossRef]
- Hirano, K.; Ordonio, R.L.; Matsuoka, M. Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 220–233. [Google Scholar] [CrossRef]
- Corbin, J.; Orlowski, J.; Harrell, D.; Golden, B.; Falconer, L.; Krutz, L.; Gore, J.; Cox, M.; Walker, T. Nitrogen strategy and seeding rate affect rice lodging, yield, and economic returns in the Midsouthern United States. Agron. J. 2016, 108, 1938–1943. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Cui, J.; Yan, P.; Wang, X.; Yang, J.; Li, Z.; Yang, X.; Sui, P.; Chen, Y. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China plain. J. Clean. Prod. 2018, 193, 524–532. [Google Scholar] [CrossRef]
Abbreviation | Unit | Full Name | Equation | Detailed Explanation |
---|---|---|---|---|
Root-lodging-related parameters | ||||
SFr | Unitless | Safety factor of the root | SFr = Sr/Mr | Number of times a root can withstand the moment of its own weight and the plant organs it supports |
Sr | N cm | Root anchorage strength | / | Parameter of plant’s resistance to root anchorage failure |
Mr | N cm | Bending moment of whole plant | Mr = sin 30° × hr × mr × g | Self-weight moments of the whole plant at 30° from the vertical position |
g | N kg−1 | Gravitational acceleration | / | / |
hr | cm | The height of the center of gravity for the whole plant | / | Distance between the balance point and the base end of the whole plant |
mr | g | Fresh weight of the whole plant | / | Fresh weight of the whole plant, including the basal stem |
Stem-lodging-related parameters | ||||
SFs | Unitless | Stem safety factor | SFs = Ss/Ms | Number of times a stem can withstand the moment of its own weight and the plant organs it supports |
Ss | N cm | Stem-bending strength | Ss = Fmax × Ls/4 | Maximum bending strength of the basal stem |
Ms | N cm | Bending moment of stem | Ms = sin 30° × hs × ms × g | Self-weight moments of the stem at 30° from the vertical position |
Fmax | N | Maximum bending force | / | Maximum force generated when the basal stem is bending |
Ls | cm | Length of stem fulcra | / | Length between the two fulcra when conducting the three-point bending test, set as 5 cm |
hs | cm | The height of the center of gravity for the stem | / | Distance between the balance point and the base end of the basal stem |
ms | g | Fresh weight of the stem | / | Fresh weight of the plant without the basal stem |
I | mm4 | Second moment of area | I = π × a3 × b/4 | Geometrical property of the basal internode that reflects how its points are distributed with regard to an arbitrary axis |
a | mm | Diameter of the minimum axis | / | Outer diameter of the minimum axis in an oval cross-section for the basal stem segment near the breaking position |
b | mm | Diameter of the maximum axis | / | Outer diameter of the maximum axis in an oval cross-section for the basal stem segment near the breaking position |
N Fertilizer Method | N Rate | Grain Yield | Panicle Number, m−2 | Spikelets/Panicle | Thousand-Grain Weight | Grain Filling | Aboveground Biomass | Harvest Index |
---|---|---|---|---|---|---|---|---|
2023 | ||||||||
N0 | 1.83 | 174.76 | 78.30 | 24.08 | 63.14 | 4.78 | 43.50 | |
CNF | N80 | 2.45b | 181.43bc | 88.74a | 23.93a | 67.90a | 5.80b | 45.00a |
N120 | 2.66ab | 195.24ab | 88.19a | 24.56a | 69.54a | 6.30b | 47.48a | |
N160 | 3.02a | 213.33a | 94.10a | 24.22a | 72.09a | 7.05a | 47.19a | |
Mean | 2.71B | 196.67A | 90.34B | 24.24A | 69.84A | 6.39B | 46.59A | |
CRNF | N80 | 2.68b | 183.81a | 94.52a | 23.89a | 71.02a | 6.24b | 46.79b |
N120 | 3.27a | 198.57a | 101.18a | 24.31a | 73.38a | 6.93a | 51.29a | |
N160 | 3.44a | 211.43a | 96.90a | 24.23a | 74.00a | 7.26a | 50.46ab | |
Mean | 3.13A | 197.94A | 97.53AB | 24.14A | 72.80A | 6.81AB | 49.51A | |
SPNF | N80 | 2.85b | 180.48b | 102.49a | 23.76a | 69.82a | 6.73b | 45.78a |
N120 | 3.27a | 201.43a | 99.93a | 24.36a | 72.34a | 7.05b | 50.39a | |
N160 | 3.67a | 206.67a | 104.88a | 24.54a | 74.02a | 8.12a | 48.45a | |
Mean | 3.26A | 196.19A | 102.43A | 24.22A | 72.06A | 7.30A | 48.21A | |
2024 | ||||||||
N0 | 2.54 | 187.50 | 85.67 | 24.68 | 68.49 | 5.20 | 52.33 | |
CNF | N80 | 3.10b | 197.79a | 95.73b | 24.97a | 71.31a | 7.20a | 47.15a |
N120 | 3.43ab | 200.67a | 104.99ab | 23.90a | 73.75a | 7.77a | 48.02a | |
N160 | 3.73a | 209.34a | 107.90a | 24.83a | 72.55a | 8.21a | 49.39a | |
Mean | 3.42B | 202.60A | 102.88A | 24.56A | 72.54A | 7.73A | 48.19B | |
CRNF | N80 | 3.40b | 202.39a | 104.01b | 24.47a | 72.60a | 6.85b | 54.57a |
N120 | 4.08ab | 208.23a | 113.85a | 25.03a | 75.97a | 8.67a | 52.24a | |
N160 | 4.21a | 220.84a | 111.75a | 24.92a | 74.44a | 9.10a | 50.37a | |
Mean | 3.89A | 210.49A | 109.87A | 24.81A | 74.34A | 8.21A | 52.39AB | |
SPNF | N80 | 3.49b | 201.91a | 103.97a | 25.24a | 73.79b | 7.09b | 54.84a |
N120 | 4.15ab | 216.75a | 109.84a | 24.88a | 77.24a | 8.21ab | 55.76a | |
N160 | 4.35a | 214.97a | 119.40a | 25.01a | 74.01b | 9.49a | 50.21a | |
Mean | 4.00A | 211.21A | 111.07A | 25.05A | 75.01A | 8.26A | 53.61A |
N Fertilizer Method | N Rate | Plant Height | Center of Gravity Height | Fresh Weight | Stem Diameter | Mass Density | Second Moment of Area |
---|---|---|---|---|---|---|---|
2023 | |||||||
N0 | 74.31 | 29.67 | 4.24 | 3.58 | 28.52 | 7.26 | |
CNF | N80 | 78.95b | 36.67c | 6.98a | 3.63b | 33.61a | 7.71b |
N120 | 76.05b | 40.96b | 7.60ab | 4.00b | 35.85a | 11.30b | |
N160 | 85.79a | 47.67a | 8.56a | 4.58a | 35.06a | 19.52a | |
Mean | 80.26A | 41.76A | 7.71A | 4.07A | 34.84A | 12.85A | |
CRNF | N80 | 75.73b | 33.75c | 7.43a | 4.10b | 33.19b | 12.69b |
N120 | 79.32b | 37.33b | 8.13a | 4.36a | 40.65a | 16.28a | |
N160 | 87.51a | 45.46a | 8.36a | 4.26a | 34.63b | 14.81a | |
Mean | 80.85A | 38.85A | 7.98A | 4.24A | 36.16A | 14.59A | |
SPNF | N80 | 73.37b | 32.13c | 6.63b | 4.05a | 34.99a | 11.80a |
N120 | 79.96ab | 35.50b | 8.78a | 4.33a | 33.04a | 14.56a | |
N160 | 90.52a | 45.33a | 9.76a | 4.32a | 36.15a | 14.89a | |
Mean | 81.28A | 37.65A | 8.39A | 4.23A | 34.73A | 13.75A | |
2024 | |||||||
N0 | 93.25 | 43.67 | 6.77 | 4.28 | 49.99 | 19.89 | |
CNF | N80 | 108.89a | 52.08a | 9.21a | 4.88a | 53.25a | 34.62a |
N120 | 112.15a | 53.08a | 8.83a | 4.73a | 55.61a | 28.24a | |
N160 | 111.78a | 54.00a | 9.04a | 4.51a | 47.72a | 29.01a | |
Mean | 110.94A | 53.06A | 9.02A | 4.71A | 52.19A | 30.62A | |
CRNF | N80 | 107.03a | 48.88a | 7.70c | 4.64b | 58.38a | 24.14c |
N120 | 109.27a | 50.33a | 9.62b | 5.35a | 60.23a | 44.25a | |
N160 | 111.69a | 51.83a | 10.92a | 4.93ab | 57.53a | 32.56b | |
Mean | 109.33A | 50.35B | 9.42A | 4.97A | 58.72A | 33.65A | |
SPNF | N80 | 106.28b | 50.33a | 8.42b | 4.71a | 51.11a | 29.17a |
N120 | 108.83b | 51.08a | 9.80ab | 4.85a | 56.32a | 30.91a | |
N160 | 114.86a | 53.58a | 10.32a | 5.11a | 64.36a | 39.29a | |
Mean | 109.99A | 51.67AB | 9.51A | 4.89A | 57.27A | 33.13A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liao, Q.; Shah, F.; Li, Z.; Tao, Y.; Wang, P.; Xiong, L.; Yuan, Q.; Wu, W. The Potential Role of Nitrogen Management in Enhancing Grain Yield and Lodging Resistance of Shanlan Upland Rice (Oryza sativa L.). Agronomy 2025, 15, 614. https://doi.org/10.3390/agronomy15030614
Wu J, Liao Q, Shah F, Li Z, Tao Y, Wang P, Xiong L, Yuan Q, Wu W. The Potential Role of Nitrogen Management in Enhancing Grain Yield and Lodging Resistance of Shanlan Upland Rice (Oryza sativa L.). Agronomy. 2025; 15(3):614. https://doi.org/10.3390/agronomy15030614
Chicago/Turabian StyleWu, Jun, Qiansi Liao, Farooq Shah, Zhaojie Li, Yang Tao, Peng Wang, Li Xiong, Qianhua Yuan, and Wei Wu. 2025. "The Potential Role of Nitrogen Management in Enhancing Grain Yield and Lodging Resistance of Shanlan Upland Rice (Oryza sativa L.)" Agronomy 15, no. 3: 614. https://doi.org/10.3390/agronomy15030614
APA StyleWu, J., Liao, Q., Shah, F., Li, Z., Tao, Y., Wang, P., Xiong, L., Yuan, Q., & Wu, W. (2025). The Potential Role of Nitrogen Management in Enhancing Grain Yield and Lodging Resistance of Shanlan Upland Rice (Oryza sativa L.). Agronomy, 15(3), 614. https://doi.org/10.3390/agronomy15030614