Within-Field Temporal and Spatial Variability in Crop Productivity for Diverse Crops—A 30-Year Model-Based Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. patchCROP Landscape Laboratory
2.3. Soil Data Collection and Soil Available Water Categories
2.4. Climate Data and Seasonal Rainfall Categories
2.5. Crop Management
2.6. Model Description
2.7. Model Set Up and Initial Conditions
2.8. Model Performance
2.9. Grain Yield Spatial and Temporal Variability
2.10. Statistical Approach
3. Results
3.1. Simulated Grain Yield
3.2. Simulated Grain Yield Spatial and Temporal Variability
3.3. Impacts of Soil Available Water and Seasonal Rainfall Category on Simulated Grain Yield
3.4. Main Effects of Soil Available Water and Seasonal Rainfall Category on Simulated Grain Yield
3.5. Interactions Between Soil Available Water and Seasonal Rainfall Categories on Simulated Grain Yield
4. Discussion
4.1. Simulated Grain Yield and Variability
4.2. Main Effects and Interactions of Soil Available Water and Seasonal Rainfall Categories on Simulated Gran Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESS | Ecosystem service |
PAWC | Plant available water capacity |
LAI | Leaf area index |
G × M × E | Genotype × management × environment |
m.a.s.l. | Meters above sea level |
N | Nitrogen |
SOC | Soil organic carbon |
ZALF | Leibniz Centre for Agricultural Landscape Research |
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; Food & Agriculture Organization: Rome, Italy, 2020; p. 320. [Google Scholar]
- Ewert, F.; Baatz, R.; Finger, R. Agroecology for a sustainable agriculture and food system: From local solutions to large-scale adoption. Annu. Rev. Resour. Econ. 2023, 15, 351–381. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.; Bharucha, Z.; Dicks, L.; Flora, C.; Godfray, H.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- IPCC. Fact Sheet Europe, Climate Change Impacts and Risks. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/outreach/IPCC_AR6_WGII_FactSheet_Europe.pdf (accessed on 13 August 2024).
- Godfray, H. The debate over sustainable intensification. Food Secur. 2015, 7, 199–208. [Google Scholar] [CrossRef]
- Kamau, H.; Roman, S.; Biber-Freudenberger, L. Nearly half of the world is suitable for diversified farming for sustainable intensification. Commun. Earth Environ. 2023, 4, 446. [Google Scholar] [CrossRef]
- Cassman, K.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malezieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 2020, 40, 17. [Google Scholar] [CrossRef]
- Hernandez-Ochoa, I.M.; Gaiser, T.; Kersebaum, K.C.; Webber, H.; Seidel, S.J.; Grahmann, K.; Ewert, F. Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review. Agron. Sustain. Dev. 2022, 42, 74. [Google Scholar] [CrossRef]
- Maestrini, B.; Basso, B. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Sci. Rep. 2018, 8, 14833. [Google Scholar] [CrossRef]
- Thompson, L.J.; Archontoulis, S.V.; Puntel, L.A. Simulating within-field spatial and temporal corn yield response to nitrogen with APSIM model. Precis. Agric. 2024, 25, 2421–2446. [Google Scholar] [CrossRef]
- Kersebaum, K.C.; Wallor, E. Process-based modelling of soil–crop Interactions for site-specific decision support in crop management. In Precision Agriculture: Modelling; Cammarano, D., van Evert, F.K., Kempenaar, C., Eds.; Springer: Cham, Switzerland, 2023; pp. 25–47. [Google Scholar] [CrossRef]
- Mulla, D.J.; Schepers, J.S. Key processes and properties for site-specific soil and crop management. In the State of Site Specific Management for Agriculture; ACSESS Publications; Wiley: Hoboken, NJ, USA, 1997; p. 18. [Google Scholar] [CrossRef]
- Basso, B.; Dumont, B.; Maestrini, B.; Shcherbak, I.; Robertson, G.P.; Porter, J.R.; Smith, P.; Paustian, K.; Grace, P.R.; Asseng, S.; et al. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agric. Environ. Lett. 2018, 3, 5. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Raza, A.; Ahrends, H.E.; Huging, H.; Gaiser, T. Impact of in-field soil heterogeneity on biomass and yield of winter triticale in an intensively cropped hummocky landscape under temperate climate conditions. Precis. Agric. 2022, 23, 912–938. [Google Scholar] [CrossRef]
- Falco, N.; Wainwright, H.M.; Dafflon, B.; Ulrich, C.; Soom, F.; Peterson, J.E.; Brown, J.B.; Schaettle, K.B.; Williamson, M.; Cothren, J.D.; et al. Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery. Sci. Rep. 2021, 11, 7046. [Google Scholar] [CrossRef] [PubMed]
- Stadler, A.; Rudolph, S.; Kupisch, M.; Langensiepen, M.; van der Kruk, J.; Ewert, F. Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. Eur. J. Agron. 2015, 64, 8–20. [Google Scholar] [CrossRef]
- Wendroth, O.; Pohl, W.; Koszinski, S.; Rogasik, H.; Ritsema, C.; Nielsen, D. Spatio-temporal patterns and covariance structures of soil water status in two northeast German field sites. J. Hydrol. 1999, 215, 38–58. [Google Scholar] [CrossRef]
- Kersebaum, K.C.; Lorenz, K.; Reuter, H.I.; Schwarz, J.; Wegehenkel, M.; Wendroth, O. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Phys. Chem. Earth 2005, 30, 59–67. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.F.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil Tillage Res. 2017, 174, 241–250. [Google Scholar] [CrossRef]
- Mzuku, M.; Khosla, R.; Reich, R.; Inman, D.; Smith, F.; MacDonald, L. Spatial variability of measured soil properties across site-specific management zones. Soil Sci. Soc. Am. J. 2005, 69, 1572–1579. [Google Scholar] [CrossRef]
- Malezieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef]
- Asseng, S.; Zhu, Y.; Wang, E.; Zhang, W. Crop modeling for climate change impact and adaptation. In Crop Physiology; Academic Press: Cambridge, MA, USA, 2014; pp. 505–546. [Google Scholar]
- Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 2014, 72, 287–303. [Google Scholar] [CrossRef]
- Teixeira, E.; Zhao, G.; de Ruiter, J.; Brown, H.; Ausseil, A.; Meenken, E.; Ewert, F. The interactions between genotype, management and environment in regional crop modelling. Eur. J. Agron. 2017, 88, 106–115. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Chen, D.; Cafiero, G.; Amato, M.; Bitella, G.; Rossi, R.; Basso, F. Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in Southern Italy. J. Agron. Crop Sci. 2009, 195, 301–312. [Google Scholar] [CrossRef]
- Jeuffroy, M.; Casadebaig, P.; Debaeke, P.; Loyce, C.; Meynard, J. Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agron. Sustain. Dev. 2014, 34, 121–137. [Google Scholar] [CrossRef]
- Leo, S.; Migliorati, M.; Nguyen, T.; Grace, P. Combining remote sensing-derived management zones and an auto-calibrated crop simulation model to determine optimal nitrogen fertilizer rates. Agric. Syst. 2023, 205, 103559. [Google Scholar] [CrossRef]
- Padovan, G.; Martre, P.; Semenov, M.; Masoni, A.; Bregaglio, S.; Ventrella, D.; Lorite, I.; Santos, C.; Bindi, M.; Ferrise, R.; et al. Understanding effects of genotype x environment x sowing window interactions for durum wheat in the Mediterranean basin. Field Crops Res. 2020, 259, 107969. [Google Scholar] [CrossRef]
- Koch, T.; Deumlich, D.; Chifflard, P.; Panten, K.; Grahmann, K. Using model simulation to evaluate soil loss potential in diversified agricultural landscapes. Eur. J. Soil Sci. 2023, 74, e13332. [Google Scholar] [CrossRef]
- Öttl, L.K.; Wilken, F.; Auerswald, K.; Sommer, M.; Wehrhan, M.; Fiener, P. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 2021, 32, 3077–3091. [Google Scholar] [CrossRef]
- Grahmann, K.; Reckling, M.; Hernández-Ochoa, I.; Donat, M.; Bellingrath-Kimura, S.; Ewert, F. Co-designing a landscape experiment to investigate diversified cropping systems. Agric. Syst. 2024, 217, 103950. [Google Scholar] [CrossRef]
- Donat, M.; Geistert, J.; Grahmann, K.; Bloch, R.; Bellingrath-Kimura, S. Patch cropping- a new methodological approach to determine new field arrangements that increase the multifunctionality of agricultural landscapes. Comput. Electron. Agric. 2022, 197, 106894. [Google Scholar] [CrossRef]
- Pendleton, R.L.; Nickerson, D. Soil colors and special Munsell soil color charts. Soil Sci. 1954, 71, 35–44. [Google Scholar] [CrossRef]
- Eckelmann, W.; Sponagel, H.; Grottenthaler, W.; Hartmann, K.J.; Hartwich, R.; Janetzko, P.; Joisten, H.; Kühn, D.; Sabel, K.J.; Traidl, R. Bodenkundliche Kartieranleitung, KA5; Federal Institute for Geosciences: Hannover, Germany, 2005. [Google Scholar]
- FAO. Guidelines for Soil Description; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 109. [Google Scholar]
- ISO 11277:2002; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation (ISO 11277:1998 + ISO 11277:1998 Corrigendum 1:2002). DIN: Berlin, Germany, 2002.
- WRB. International soil classification system for naming soils and creating legends for soil maps, IUSS Working Group WRB. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Wosten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Wosten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Mirschel, W.; Weiland, E.; Luzi, K.; Groth, K. Model-based estimation of irrigation water demand for different agricultural crops under climate change, presented for the federal state of Brandenburg, Germany. In Landscape Modelling and Decision Support; Wilfried, M., Terleev, V.V., Wenkel, K.O., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Wetterdienst, D. Precipitation in Germany in 2024, by Federal State (in Liters per Square Meter)-Graph. 2024. Available online: https://www.statista.com/statistics/982669/precipitation-federal-states-germany/ (accessed on 3 February 2025).
- von Czettritz, H.J.; Hosseini-Yekani, S.A.; Schuler, J.; Kersebaum, K.C.; Zander, P. Adapting cropping patterns to climate change: Risk management effectiveness of diversification and irrigation in Brandenburg (Germany). Agriculture 2023, 13, 1740. [Google Scholar] [CrossRef]
- Enders, A.; Vianna, M.; Gaiser, T.; Krauss, G.; Webber, H.; Srivastava, A.K.; Seidel, S.J.; Tewes, A.; Rezaei, E.E.; Ewert, F. SIMPLACE-a versatile modelling and simulation framework for sustainable crops and agroecosystems. Silico Plants 2023, 5, diad006. [Google Scholar] [CrossRef]
- Hernandez-Ochoa, I.M.; Gaiser, T.; Grahmann, K.; Engels, A.; Kersebaum, K.C.; Seidel, S.; Ewert, T. Cross model validation for a diversified cropping system. Eur. J. Agron. 2024, 157, 127181. [Google Scholar] [CrossRef]
- Engels, A.; Gaiser, T.; Ewert, F.; Grahmann, K.; Hernandez-Ochoa, I.M. Calibrating and validating soil moisture simulation under heterogeneous soil conditions in a diversified cropping system. In Proceedings of the Congress of the European Society of Agronomy, Rennes, France, 26–30 August 2024. [Google Scholar]
- Engels, A.; Gaiser, T.; Ewert, F.; Grahmann, K.; Hernandez-Ochoa, I.M. Simulating soil moisture dynamics in a diversified cropping system under heterogeneous soil conditions. MDPI Agron. 2025, 15, 407. [Google Scholar] [CrossRef]
- Schillerberg, T.; Tian, D.; Miao, R. Spatiotemporal patterns of maize and winter wheat yields in the United States: Predictability and impact from climate oscillations. Agric. For. Meteorol. 2019, 275, 208–222. [Google Scholar] [CrossRef]
- Statistik. Archive: Statistical Report, Harvest Reporting on Field Crops and Grassland (Final Result) in the State of Brandenburg (C II 2-j). 2024. Available online: https://www.statistik-berlin-brandenburg.de/archiv/c-ii-2-j (accessed on 17 January 2025).
- Commision, E. Agri-Food Data Portal. 2025. Available online: https://agridata.ec.europa.eu/extensions/DataPortal/home.html (accessed on 16 January 2025).
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef]
- Ali, A.A.; Lamlom, S.F.; El-Sorady, G.A.; Elmahdy, A.M.; Abd Elghany, S.H.; Usman, M.; Alamri, A.; Shaghaleh, H.; Hamoud, Y.A.; Abdelghany, A.M. Boosting resilience and yields in water-stressed sunflower through coordinated irrigation scheduling and silica gel applications. Helyion 2024, 10, e38129. [Google Scholar] [CrossRef]
- Ullah, A.; Farooq, M. The challenge of drought stress for grain legumes and options for improvement. Arch. Agron. Soil Sci. 2022, 68, 1601–1618. [Google Scholar] [CrossRef]
- López-Castañeda, C.; Richards, R. Variation in temperate cereals in rain-fed environments I. Grain-yield, biomass and agronomic characteristics. Field Crops Res. 1994, 37, 51–62. [Google Scholar] [CrossRef]
- Schittenhelm, S.; Kraft, M.; Wittich, K. Performance of winter cereals grown on field-stored soil moisture only. Eur. J. Agron. 2014, 52, 247–258. [Google Scholar] [CrossRef]
- Odone, A.; Popovic, O.; Thorup-Kristensen, K. Deep roots: Implications for nitrogen uptake and drought tolerance among winter wheat cultivars. Plant Soil 2024, 500, 13–32. [Google Scholar] [CrossRef]
- Kravchenko, A.; Robertson, G.; Thelen, K.; Harwood, R. Management, topographical, and weather effects on spatial variability of crop grain yields. Agron. J. 2005, 97, 514–523. [Google Scholar] [CrossRef]
- Ye, H.; Roorkiwal, M.; Valliyodan, B.; Zhou, L.; Chen, P.; Varshney, R.; Nguyen, H. Genetic diversity of root system architecture in response to drought stress in grain legumes. J. Exp. Bot. 2018, 69, 3267–3277. [Google Scholar] [CrossRef]
Soil Water Category | No. of Profiles | Soil PAWC (cm 2m−1) | Average Clay Content (%) | Average Sand Content (%) | Top SOC (%) |
---|---|---|---|---|---|
1 | 8 | 9.57–12.05 | 2.93–5.33 | 84.73–89.39 | 0.49–0.81 |
2 | 5 | 12.051–14.52 | 4.40–7.83 | 76.60–87.37 | 0.62–0.80 |
3 | 4 | 14.521–17.00 | 6.23–7.63 | 75.37–84.37 | 0.64–0.84 |
4 | 7 | 17.001–19.48 | 6.55–14.23 | 66.27–79.70 | 0.58–1.09 |
5 | 25 | 19.481–21.95 | 7.17–15.70 | 60.73–68.17 | 0.60–1.11 |
Crop/Category | Seasonal Rainfall Range (mm) |
---|---|
Maize, soybean, sunflower | |
1 | 100–200 |
2 | 200–300 |
3 | 300–400 |
4 | >400 |
Lupine | |
1 | 50–150 |
2 | 150–250 |
3 | 250–400 |
Winter crops | |
1 | 250–350 |
2 | 350–450 |
3 | 450–550 |
4 | >550 |
Crop | Cultivar | Sowing Date (dd/mm) | N Fertilization Date (dd/mm) | N Fertilizer Amount (kg ha−1) |
---|---|---|---|---|
Grain maize | P8329 | 16/04 | 26/05 | 100.0 |
26/06 | 40.0 | |||
Soybean | Acardia | 30/04 | - | - |
Lupine | Boragine | 28/03 | - | - |
Sunflower | Sea bird | 08/04 | 05/04 | 20.0 |
16/04 | 42.6 | |||
Rapeseed | Ambassador | 29/08 | 29/08 | 50.0 |
07/03 | 50.0 | |||
25/03 | 42.5 | |||
Barley | Wallace | 20/09 | 10/03 | 65.4 |
05/04 | 54.0 | |||
09/05 | 44.2 | |||
Wheat | Universum | 17/10 | 12/03 | 65.4 |
01/04 | 54.0 | |||
13/05 | 44.2 | |||
Rye | Tayo | 20/09 | 07/03 | 42.5 |
05/04 | 70.0 |
Crops | Soil PAWC Category | Seasonal Rainfall Category | Seasonal Rainfall Category × Soil PAWC Category Interaction | ||||||
---|---|---|---|---|---|---|---|---|---|
Rapeseed | < | 2.22 × 10−16 | *** 1 | < | 2.22 × 10−16 | *** | 6.24 × 10−10 | *** | |
Barley | < | 2.22 × 10−16 | *** | 2.12 × 10−12 | *** | < | 2.22 × 10−16 | *** | |
Wheat | < | 2.00 × 10−16 | *** | < | 2.00 × 10−16 | *** | 0.74591 | NS | |
Rye | < | 2.00 × 10-−16 | *** | < | 2.00 × 10−16 | *** | 0.045239 | * | |
Maize | < | 2.22 × 10−16 | *** | < | 2.22 × 10−16 | *** | 0.008198 | ** | |
Soybean | < | 2.00 × 10−16 | *** | < | 2.00 × 10−16 | *** | 0.68674 | NS | |
Lupine | < | 2.00 × 10−16 | *** | < | 2.00 × 10−16 | *** | 0.80205 | NS | |
Sunflower | < | 2.22 × 10−16 | *** | < | 2.22 × 10−16 | *** | < | 2.22 × 10−16 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Ochoa, I.M.; Gaiser, T.; Grahmann, K.; Engels, A.M.; Ewert, F. Within-Field Temporal and Spatial Variability in Crop Productivity for Diverse Crops—A 30-Year Model-Based Assessment. Agronomy 2025, 15, 661. https://doi.org/10.3390/agronomy15030661
Hernández-Ochoa IM, Gaiser T, Grahmann K, Engels AM, Ewert F. Within-Field Temporal and Spatial Variability in Crop Productivity for Diverse Crops—A 30-Year Model-Based Assessment. Agronomy. 2025; 15(3):661. https://doi.org/10.3390/agronomy15030661
Chicago/Turabian StyleHernández-Ochoa, Ixchel Manuela, Thomas Gaiser, Kathrin Grahmann, Anna Maria Engels, and Frank Ewert. 2025. "Within-Field Temporal and Spatial Variability in Crop Productivity for Diverse Crops—A 30-Year Model-Based Assessment" Agronomy 15, no. 3: 661. https://doi.org/10.3390/agronomy15030661
APA StyleHernández-Ochoa, I. M., Gaiser, T., Grahmann, K., Engels, A. M., & Ewert, F. (2025). Within-Field Temporal and Spatial Variability in Crop Productivity for Diverse Crops—A 30-Year Model-Based Assessment. Agronomy, 15(3), 661. https://doi.org/10.3390/agronomy15030661