Combining Depth and Rate of Selenium Fertilizer Basal Application to Improve Selenium Content and Yield in Sweet Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Experimental Materials
2.3. Experimental Design
2.4. Measurement Indicators and Methods
2.4.1. Sample Collection and Processing
2.4.2. Determination of Maize Agronomic Traits
2.4.3. Determination of Se Content for Different Organs in Maize
2.5. Data Processing
3. Results and Discussion
3.1. Effect of Selenium Application on Dry Matter
3.2. Effects of Selenium Application on Selenium Enrichment
3.2.1. Effect of Selenium Application on Grain Selenium Content
3.2.2. Effect of Selenium Application on Grain Selenium Accumulation
3.2.3. Effect of Selenium Application on Plant Selenium Accumulation
3.3. Effect of Selenium Application on Yield and Other Related Indicators
4. Discussion
4.1. Effect of Selenium Application Rate and Depth on Dry Matter Quality of Fresh Sweet Maize
4.2. Effect of Selenium Application Rate and Depth on Selenium Content and Accumulation in Maize
4.3. Effect of Selenium Application Rate and Depth on Maize Yield and Related Indicators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Borchert, A.; Kalms, J.; Roth, S.R.; Rademacher, M.; Schmidt, A.; Holzhutter, H.-G.; Kuhn, H.; Scheerer, P. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2018, 1863, 1095–1107. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.; Tew, K. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. 2003, 57, 134–144. [Google Scholar] [CrossRef]
- Bitterli, C.; Bañuelos, G.S.; Schulin, R. Use of transfer factors to characterize uptake of selenium by plants. J. Geochem. Explor. 2010, 107, 206–216. [Google Scholar] [CrossRef]
- Altekin, E.; Çoker, C.; Şişman, A.R.; Önvural, B.; Kuralay, F.; Kırımlı, Ö. The relationship between trace elements and cardiac markers in acute coronary syndromes. J. Trace Elem. Med. Biol. 2005, 18, 235–242. [Google Scholar] [CrossRef]
- Bergqvist, A.C.; Chee, C.M.; Lutchka, L.; Rychik, J.; Stallings, V.A. Selenium deficiency associated with cardiomyopathy: A complication of the ketogenic diet. Epilepsia 2003, 44, 618–620. [Google Scholar] [CrossRef]
- Boosalis, M.G. The role of selenium in chronic disease. Nutr. Clin. Pract. 2008, 23, 152–160. [Google Scholar] [CrossRef]
- Yang, G.; Chen, J.; Wen, Z.; Ge, K.; Zhu, L.; Chen, X.; Chen, X. The role of selenium in Keshan disease. Adv. Nutr. Res. 1984, 4, 141–161. [Google Scholar] [CrossRef]
- WS/T 578.3-2017; Dietary Reference Intake of Nutrients for Chinese Residents. National Health and Family Planning Commission of the People’s Republic of China (now National Health Commission of the People’s Republic of China): Beijing, China, 2017.
- Hou, F.-F.; Zhang, X.-W.; Wang, J.-Q.; Zhang, J.-Z.; Li, K.-Q.; Yin, X.-B. Effect of selenium fertilizer application position on physiological characters and selenium accumulation in wheat. J. Agric. Sci. Technol. 2023, 25, 144–152. [Google Scholar] [CrossRef]
- Zhang, L.; Song, H.; Guo, Y.; Fan, B.; Huang, Y.; Mao, X.; Liang, K.; Hu, Z.; Sun, X.; Fang, Y. Benefit-risk assessment of dietary selenium and its associated metals intake in China (2017–2019): Is current selenium-rich agro-food safe enough? J. Hazard. Mater. 2020, 398, 123224. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; De Feudis, M.; Guiducci, M.; Businelli, D. Zea mays L. grain: Increase in nutraceutical and antioxidant properties due to Se fortification in low and high water regimes. J. Agric. Food Chem. 2019, 67, 7050–7059. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Serpen, A.; Akıllıoğlu, G.L.; Gökmen, V.; Vančetović, J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Klopfenstein, T.; Erickson, G.; Berger, L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Najeeb, S.; Sheikh, F.; Ahangar, M.; Teli, N. Popularization of sweet corn (Zea mays L. Saccharata) under temperate conditions to boost the socioeconomic conditions. Maize Genet. Coop. Newsl. 2011, 85, 55–67. [Google Scholar] [CrossRef]
- Khush, G.S. Green revolution: Preparing for the 21st century. Genome 1999, 42, 646–655. [Google Scholar] [CrossRef]
- Jarrell, W.; Beverly, R. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar] [CrossRef]
- Lowe, N.M. The global challenge of hidden hunger: Perspectives from the field. Proc. Nutr. Soc. 2021, 80, 283–289. [Google Scholar] [CrossRef]
- Abbood, H.Y.; Al-Shammari, A.A.H. Effect of Spraying With Nano Selenium And Salicylic Acid In Reducing Salt Stress And Growth And Yield Of Corn (Zea mays L.). Nveo-Nat. Volatiles Essent. Oils J. 2021, 8, 1903–1922. [Google Scholar] [CrossRef]
- Al-Omairi, A.; Al-Hilfy, I. Effect of soaking maize seeds with selenium and chitosan on improving germination, vigour and viability of seed and seedling. IOP Publ. 2021, 904, 012075. [Google Scholar] [CrossRef]
- Cary, E.; Rutzke, M. Foliar Application of Selenium to Field Corn 1. Agron. J. 1981, 73, 1083–1085. [Google Scholar] [CrossRef]
- Chernikova, O.; Ampleeva, L.; Mazhaisky, Y.A. Effect of selenium nanoparticles on the formation of corn yield. Russ. Agric. Sci. 2019, 45, 256–259. [Google Scholar] [CrossRef]
- De Feudis, M.; Massaccesi, L.; D’Amato, R.; Businelli, D.; Casucci, C.; Agnelli, A. Impact of Na-selenite fertilization on the microbial biomass and enzymes of a soil under corn (Zea mays L.) cultivation. Geoderma 2020, 373, 114425. [Google Scholar] [CrossRef]
- Sajedi, N.A.; Ardakani, M.R.; Madani, H.; Naderi, A.; Miransari, M. The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol. Mol. Biol. Plants 2011, 17, 215–222. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, J.; Zhou, J. Comparison of soil addition, foliar spraying, seed soaking, and seed dressing of selenium and silicon nanoparticles effects on cadmium reduction in wheat (Triticum turgidum L.). Chemosphere 2024, 362, 142681. [Google Scholar] [CrossRef] [PubMed]
- Haytova, D. A review of foliar fertilization of some vegetables crops. Annu. Rev. Res. Biol. 2013, 3, 455–465. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Rajasekar, M.; Nandhini, D.U.; Suganthi, S. Supplementation of mineral nutrients through foliar spray—A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2504–2513. [Google Scholar] [CrossRef]
- Di Salvo, L.P.; Cellucci, G.C.; Carlino, M.E.; de Salamone, I.E.G. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Appl. Soil Ecol. 2018, 126, 113–120. [Google Scholar] [CrossRef]
- Li, X.; Lu, Q.; Li, D.; Wang, D.; Ren, X.; Yan, J.; Ahmed, T.; Li, B. Effects of two kinds of commercial organic fertilizers on growth and rhizosphere soil properties of corn on new reclamation land. Plants 2022, 11, 2553. [Google Scholar] [CrossRef] [PubMed]
- Soon, Y.; Miller, M. Changes in the rhizosphere due to NH4+ and NO3-fertilization and phosphorus uptake by corn seedlings (Zea mays L.). Soil Sci. Soc. Am. J. 1977, 41, 77–80. [Google Scholar] [CrossRef]
- Vendruscolo, E.C.G.; Mesa, D.; de Souza, E.M. Corn rhizosphere microbial community in different long term soil management systems. Appl. Soil Ecol. 2022, 172, 104339. [Google Scholar] [CrossRef]
- Garousi, F.; Veres, S.; Bódi, É.; Várallyay, S.; Kovács, B. Assessment and comparison of selenium-enriched maize with sodium selenite and sodium selenate. Acta Agraria Debreceniensis 2016, 68, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Płaczek, A.; Patorczyk-Pytlik, B. The dynamics of selenium uptake by maize (Zea mays L.). Agronomy 2021, 11, 1305. [Google Scholar] [CrossRef]
- Wang, L.; Gao, F.; Zhang, L.; Zhao, L.; Deng, Y.; Guo, H.; Qin, L.; Wang, C. Effects of Basal Selenium Fertilizer Application on Agronomic Traits, Yield, Quality, and Se Content of Dryland Maize. Plants 2022, 11, 3099. [Google Scholar] [CrossRef]
- Chen, X.; Ren, H.; Zhang, J.; Zhao, B.; Ren, B.; Wan, Y.; Liu, P. Deep phosphorus fertilizer placement increases maize productivity by improving root-shoot coordination and photosynthetic performance. Soil Tillage Res. 2024, 235, 105915. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, M.; Liu, C.; Xiang, Y.; Hu, Y.; Wang, Y.; Liu, E.; Wu, P.; Ren, X.; Jia, Z. Optimizing fertilization depth to promote yield performance and economic benefit in maize for hybrid seed production. Eur. J. Agron. 2024, 159, 127245. [Google Scholar] [CrossRef]
- Lu, B.; An, H.; Song, X.; Yang, B.; Jian, Z.; Cui, F.; Xue, J.; Gao, Z.; Du, T. Enhancement of Nutritional Substance, Trace Elements, and Pigments in Waxy Maize Grains through Foliar Application of Selenite. Foods 2024, 13, 1337. [Google Scholar] [CrossRef]
- Lauer, J. Methods for calculating corn yield. Field Crops 2002, 28, 33. [Google Scholar]
- Wang, X.; Wu, G.; Wang, Y.; Lu, M.; Guo, Y.; Yin, W.; Sun, C.; Chen, Y.; Yin, X. Selenium enhancement strategy under precise fertilization in foxtail millet rhizosphere. Heliyon 2024, 10, e32764. [Google Scholar] [CrossRef] [PubMed]
- LS/T 6115-2016; Inspection of Grain and Oils—Rapid Determination of Cadmium in Rice—X-Ray Fluorescence Spectrometry. State Grain Administration: Beijing, China, 2016.
- Jiang, C.; Zu, C.; Lu, D.; Zheng, Q.; Shen, J.; Wang, H.; Li, D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 2017, 7, 42039. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, H. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000, 225, 193–200. [Google Scholar] [CrossRef]
- Mombo, S.; Schreck, E.; Dumat, C.; Laplanche, C.; Pierart, A.; Longchamp, M.; Besson, P.; Castrec-Rouelle, M. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Environ. Geochem. Health 2015, 38, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.; Anwar-ul-Haq, M.; Wang, X.; Farooq, N.; Awais, M.; Sattar, H.; Ahmed Malik, H.; Mustafa, A.; Ahmad, J.; El-Esawi, M.A. Influence of Selenium on Growth, Physiology, and Antioxidant Responses in Maize Varies in a Dose-Dependent Manner. J. Food Qual. 2021, 2021, 6642018. [Google Scholar] [CrossRef]
- Shi, W.-X.; Zhang, Q.; Li, L.-T.; Tan, J.-F.; Xie, R.-H.; Wang, Y.-L. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation. J. Integr. Agric. 2023, 22, 1184–1198. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, T.; Liu, Z.; Wang, Q.; Zhao, H.; Liu, S. Study on filling performance of hole fertilization device and optimization of cavity. INMATEH Agric. Eng. 2021, 64, 141–148. [Google Scholar] [CrossRef]
- Smith, K.; Jackson, D.; Withers, P. Nutrient losses by surface run-off following the application of organic manures to arable land. 2. Phosphorus. Environ. Pollut. 2001, 112, 53–60. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.; Yin, C.; Xie, X. Nutrition loss through surface runoff from slope lands and its implications for agricultural management. Agric. Water Manag. 2019, 212, 226–231. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Li, W.; Gong, Z.; Jia, C.; Li, P. Effect of foliar application of the selenium-rich nutrient solution on the selenium accumulation in grains of Foxtail millet (Zhangzagu 10). Environ. Sci. Pollut. Res. 2022, 29, 5569–5576. [Google Scholar] [CrossRef]
- Song, T.; Su, X.; He, J.; Liang, Y.; Zhou, T.; Liu, C. Selenium (Se) uptake and dynamic changes of Se content in soil-plant systems. Environ. Sci. Pollut. Res. 2018, 25, 34343–34350. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef]
- Wang, S.; Liang, D.; Wang, D.; Wei, W.; Fu, D.; Lin, Z. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci. Total Environ. 2012, 427/428, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Rehaman, A.; Islam, S.N.U.; Arshad, M.; Khan, N.A. Appraisal of Functions and Role of Selenium in Heavy Metal Stress Adaptation in Plants. Agriculture 2023, 13, 1083. [Google Scholar] [CrossRef]
- Longchamp, M.; Castrec-Rouelle, M.; Biron, P.; Bariac, T. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem. 2015, 182, 128–135. [Google Scholar] [CrossRef]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Shabbir, R.N.; Bukhari, M.A. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2014, 175, 350–357. [Google Scholar] [CrossRef]
- Gui, J.-Y.; Rao, S.; Huang, X.; Liu, X.; Cheng, S.; Xu, F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. Sci. Total Environ. 2022, 853, 158673. [Google Scholar] [CrossRef]
- Taha, R.S.; Seleiman, M.F.; Shami, A.; Alhammad, B.A.; Mahdi, A.H.A. Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. Plants 2021, 10, 1040. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wu, Q.; Lu, P.; Kang, Q.; Zhao, M.; Wang, A.; Dong, Q.; Sun, M.; Yang, Z.; et al. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat (Triticum aestivum L.) Grains. J. Agric. Food Chem. 2022, 70, 13431–13444. [Google Scholar] [CrossRef]
- Liu, K.; Cai, M.; Hu, C.; Sun, X.; Cheng, Q.; Jia, W.; Yang, T.; Nie, M.; Zhao, X. Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environ. Pollut. 2019, 254, 113051. [Google Scholar] [CrossRef]
- Chen, H.; Gao, L.; Li, M.; Liao, Y.; Liao, Q. Fertilization depth effect on mechanized direct-seeded winter rapeseed yield and fertilizer use efficiency. J. Sci. Food Agric. 2022, 103, 2574–2584. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tian, H.; Zhang, M.; Fan, P.; Ashraf, U.; Liu, H.; Chen, X.; Duan, M.; Tang, X.; Wang, Z.; et al. Deep placement of nitrogen fertilizer increases rice yield and nitrogen use efficiency with fewer greenhouse gas emissions in a mechanical direct-seeded cropping system. Crop J. 2021, 9, 1386–1396. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B.; Li, Z.; Wang, Z. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L.) and their dependency on phosphorus placement depth. Field Crops Res. 2022, 276, 108378. [Google Scholar] [CrossRef]
- Kang, L.-Y.; Yue, S.-C.; Li, S.-Q. Effects of Phosphorus Application in Different Soil Layers on Root Growth, Yield, and Water-Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions. J. Integr. Agric. 2014, 13, 2028–2039. [Google Scholar] [CrossRef]
- Ikezawa, H.; Nagumo, Y.; Hattori, M.; Nonaka, M.; Ohyama, T.; Harada, N. Suppressive effect of the deep placement of lime nitrogen on N2O emissions in a soybean field. Sci. Total Environ. 2021, 804, 150246. [Google Scholar] [CrossRef]
Year | 2023 | 2024 |
---|---|---|
pH | 8.55 | 8.99 |
Organic matter content (g kg−1) | 31.02 | 33.98 |
Total nitrogen content (g kg−1) | 1.46 | 1.31 |
Total phosphorus content (g kg−1) | 1.21 | 0.99 |
Total potassium content (g kg−1) | 16.97 | 17.39 |
Alkaline nitrogen content (mg kg−1) | 84.97 | 105.1 |
Available phosphorus content (mg kg−1) | 70.85 | 70.69 |
Available potassium content (mg kg−1) | 105.4 | 91.66 |
Selenium content (mg kg−1) | 0.38 | 0.33 |
Combination | Selenium Fertilizer Rate (kg ha−1) | Vertical Depth of Fertilizer Application (cm) | Combination | Selenium Fertilizer Rate (kg ha−1) | Vertical Depth of Fertilizer Application (cm) |
---|---|---|---|---|---|
1 | 0 (CK) | 0 (CK) | 14 | 450 (Se3) | 10 (D3) |
2 | 150 (Se1) | 1 (D1) | 15 | 450 (Se3) | 15 (D4) |
3 | 150 (Se1) | 5 (D2) | 16 | 450 (Se3) | 20 (D5) |
4 | 150 (Se1) | 10 (D3) | 17 | 600 (Se4) | 1 (D1) |
5 | 150 (Se1) | 15 (D4) | 18 | 600 (Se4) | 5 (D2) |
6 | 150 (Se1) | 20 (D5) | 19 | 600 (Se4) | 10 (D3) |
7 | 300 (Se2) | 1 (D1) | 20 | 600 (Se4) | 15 (D4) |
8 | 300 (Se2) | 5 (D2) | 21 | 600 (Se4) | 20 (D5) |
9 | 300 (Se2) | 10 (D3) | 22 | 750 (Se5) | 1 (D1) |
10 | 300 (Se2) | 15 (D4) | 23 | 750 (Se5) | 5 (D2) |
11 | 300 (Se2) | 20 (D5) | 24 | 750 (Se5) | 10 (D3) |
12 | 450 (Se3) | 1 (D1) | 25 | 750 (Se5) | 15 (D4) |
13 | 450 (Se3) | 5 (D2) | 26 | 750 (Se5) | 20 (D5) |
Year | Fertilization Rate (kg ha−1) | Fertilization Depth (cm) | Fresh Ear Weight (g) | Ear Weight (g) | Grain Yield (kg ha−1) | Maize Cob Length (cm) | Maize Cob Diameter (cm) |
---|---|---|---|---|---|---|---|
2023–2024 | 150 (Se1) | 0 (CK) | 390.0 ± 24.3 a | 129.1 ± 6.8 a | 5051 ± 311 a | 19.77 ± 1.08 a | 5.75 ± 0.32 a |
1 (D1) | 390.4 ± 22.3 a | 132.7 ± 5.5 a | 5247 ± 311 a | 19.89 ± 1.24 a | 5.78 ± 0.39 a | ||
5 (D2) | 391.6 ± 27.0 a | 133.7 ± 8.7 a | 5271 ± 210 a | 20 ± 1.04 a | 5.8 ± 0.52 a | ||
10 (D3) | 399.4 ± 17.1 a | 135.0 ± 8.8 a | 5310 ± 403 a | 20.12 ± 0.95 a | 5.84 ± 0.47 a | ||
15 (D4) | 402.3 ± 16.7 a | 138.5 ± 8.7 a | 5500 ± 351 a | 20.43 ± 1.17 a | 5.9 ± 0.37 a | ||
20 (D5) | 394.9 ± 21.6 a | 133.7 ± 5.5 a | 5311 ± 410 a | 19.92 ± 0.91 a | 5.8 ± 0.47 a | ||
300 (Se2) | 0 (CK) | 390.0 ± 24.3 a | 129.1 ± 6.8 a | 5051 ± 311 a | 19.77 ± 1.08 a | 5.75 ± 0.32 a | |
1 (D1) | 394.3 ± 23.6 a | 133.3 ± 6.7 a | 5266 ± 371 a | 19.9 ± 1 a | 5.81 ± 0.56 a | ||
5 (D2) | 397.8 ± 12.0 a | 138.1 ± 8.5 a | 5500 ± 254 a | 20.14 ± 0.82 a | 5.85 ± 0.5 a | ||
10 (D3) | 406.8 ± 19.3 a | 139.9 ± 6.4 a | 5553 ± 280 a | 20.54 ± 1.03 a | 5.93 ± 0.24 a | ||
15 (D4) | 409.9 ± 15.6 a | 143.5 ± 4.8 a | 5730 ± 295 a | 20.83 ± 1.09 a | 5.96 ± 0.54 a | ||
20 (D5) | 407.2 ± 18.8 a | 138.2 ± 6.0 a | 5427 ± 296 a | 20.19 ± 1.09 a | 5.87 ± 0.31 a | ||
450 (Se3) | 0 (CK) | 390.0 ± 24.3 a | 129.1 ± 6.8b | 5051 ± 311 c | 19.77 ± 1.08 a | 5.75 ± 0.32 a | |
1 (D1) | 402.3 ± 30.8 a | 135.8 ± 7.3 ab | 5327 ± 232 bc | 19.92 ± 1.55 a | 5.82 ± 0.34 a | ||
5 (D2) | 402.6 ± 23.5 a | 138.3 ± 6.6 ab | 5473 ± 396 bc | 20.34 ± 0.91 a | 5.83 ± 0.52 a | ||
10 (D3) | 421.7 ± 15.0 a | 147.4 ± 10.0 ab | 5895 ± 216 ab | 20.79 ± 0.89 a | 5.98 ± 0.38 a | ||
15 (D4) | 437.4 ± 19.9 a | 157.5 ± 12.3 a | 6280 ± 334 a | 21.02 ± 1.03 a | 6.05 ± 0.54 a | ||
20 (D5) | 412.8 ± 25.9 a | 140.7 ± 10.6 ab | 5565 ± 231 abc | 20.69 ± 1.38 a | 5.91 ± 0.53 a | ||
600 (Se4) | 0 (CK) | 390.0 ± 24.3 a | 129.1 ± 6.8 ab | 5051 ± 311 ab | 19.77 ± 1.08 a | 5.75 ± 0.32 a | |
1 (D1) | 407.8 ± 20.0 a | 142.4 ± 5.2 a | 5665 ± 310 a | 20.77 ± 0.72 a | 5.9 ± 0.5 a | ||
5 (D2) | 416.4 ± 25.9 a | 142.0 ± 6.8 a | 5614 ± 266 a | 20.79 ± 0.7 a | 5.98 ± 0.43 a | ||
10 (D3) | 373.5 ± 15.7 a | 128.8 ± 5.0 ab | 5039 ± 242 ab | 19.77 ± 1.14 a | 5.75 ± 0.3 a | ||
15 (D4) | 371.9 ± 17.2 a | 123.3 ± 7.5 b | 4843 ± 240 b | 19.6 ± 0.69 a | 5.65 ± 0.34 a | ||
20 (D5) | 379.9 ± 16.6 a | 122.4 ± 7.2 b | 4687 ± 241 b | 19.77 ± 0.97 a | 5.68 ± 0.51 a | ||
750 (Se5) | 0 (CK) | 390.0 ± 24.3 a | 129.1 ± 6.8 ab | 5051 ± 311 a | 19.77 ± 1.08 a | 5.75 ± 0.32 a | |
1 (D1) | 389.7 ± 19.6 a | 127.0 ± 7.7 ab | 4930 ± 258 a | 19.91 ± 0.68 a | 5.7 ± 0.46 a | ||
5 (D2) | 374.1 ± 23.1 a | 131.9 ± 6.3 a | 5138 ± 283 a | 19.88 ± 0.57 a | 5.77 ± 0.38 a | ||
10 (D3) | 365.8 ± 23.2 a | 117.4 ± 8.1 ab | 4655 ± 234 a | 19.11 ± 0.83 a | 5.64 ± 0.47 a | ||
15 (D4) | 363.2 ± 25.0 a | 111.6 ± 8.2 b | 4606 ± 239 a | 19.33 ± 0.92 a | 5.57 ± 0.35 a | ||
20 (D5) | 373.0 ± 24.0 a | 127.9 ± 7.8 ab | 5009 ± 396 a | 19.62 ± 1.01 a | 5.67 ± 0.44 a | ||
2024–2025 | 150 (Se1) | 0 (CK) | 359.0 ± 18.2 a | 114.2 ± 8.2 a | 4552 ± 254 a | 17.45 ± 0.87 a | 5.05 ± 0.3 a |
1 (D1) | 359.6 ± 19.6 a | 115.8 ± 7.6 a | 4536 ± 266 a | 17.68 ± 1.22 a | 5.07 ± 0.43 a | ||
5 (D2) | 361.4 ± 25.2 a | 116.8 ± 5.4 a | 4571 ± 191 a | 18.26 ± 0.29 a | 5.1 ± 0.19 a | ||
10 (D3) | 363.4 ± 14.6 a | 119.9 ± 5.4 a | 4658 ± 287 a | 18.27 ± 1.09 a | 5.2 ± 0.21 a | ||
15 (D4) | 365.5 ± 25.8 a | 124.1 ± 6.3 a | 4863 ± 318 a | 18.75 ± 1.76 a | 5.23 ± 0.18 a | ||
20 (D5) | 362.0 ± 26.6 a | 116.5 ± 8.2 a | 4670 ± 321 a | 18.22 ± 1.02 a | 5.1 ± 0.28 a | ||
300 (Se2) | 0 (CK) | 359.0 ± 18.2 a | 114.2 ± 8.2 b | 4552 ± 254 b | 17.45 ± 0.87 a | 5.05 ± 0.3 a | |
1 (D1) | 361.8 ± 16.1 a | 116.1 ± 7.0 b | 4533 ± 325 b | 17.84 ± 0.59 a | 5.12 ± 0.25 a | ||
5 (D2) | 362.6 ± 23.0 a | 120.4 ± 5.3 b | 4698 ± 183 b | 18.58 ± 1.21 a | 5.21 ± 0.23 a | ||
10 (D3) | 369.6 ± 23.9 a | 124.2 ± 7.9 ab | 4863 ± 364 b | 18.78 ± 0.99 a | 5.29 ± 0.3 a | ||
15 (D4) | 375.8 ± 16.5 a | 139.3 ± 8.4 a | 5703 ± 327 a | 19.2 ± 0.73 a | 5.3 ± 0.22 a | ||
20 (D5) | 371.2 ± 14.3 a | 122.9 ± 6.1 ab | 4784 ± 193 b | 18.61 ± 0.61 a | 5.21 ± 0.21 a | ||
450 (Se3) | 0 (CK) | 359.0 ± 18.2 a | 114.2 ± 8.2 c | 4552 ± 254 c | 17.45 ± 0.87b | 5.05 ± 0.3 a | |
1 (D1) | 365.2 ± 19.3 a | 120.2 ± 5.1 c | 4652 ± 264 c | 18.25 ± 0.77 ab | 5.13 ± 0.33 a | ||
5 (D2) | 368.2 ± 27.0 a | 124.0 ± 5.5 bc | 4857 ± 293 c | 18.75 ± 0.45 ab | 5.15 ± 0.13 a | ||
10 (D3) | 384.1 ± 21.4 a | 142.3 ± 6.2 ab | 5853 ± 230 ab | 19.12 ± 0.65 ab | 5.32 ± 0.36 a | ||
15 (D4) | 392.6 ± 26.2 a | 146.1 ± 10.1 a | 6068 ± 412 a | 19.43 ± 0.51 a | 5.34 ± 0.24 a | ||
20 (D5) | 377.3 ± 21.5 a | 128.2 ± 9.8 abc | 5047 ± 410 bc | 19.03 ± 0.77 ab | 5.25 ± 0.29 a | ||
600 (Se4) | 0 (CK) | 359.0 ± 18.2 a | 114.2 ± 8.2 bc | 4552 ± 254 b | 17.45 ± 0.87 a | 5.05 ± 0.3 a | |
1 (D1) | 375.0 ± 21.5 a | 135.4 ± 8.1 a | 5497 ± 406 a | 19.07 ± 1.32 a | 5.24 ± 0.27 a | ||
5 (D2) | 382.9 ± 15.6 a | 130.3 ± 7.1 ab | 5160 ± 311 ab | 19.19 ± 0.57 a | 5.31 ± 0.31 a | ||
10 (D3) | 356.1 ± 19.0 a | 114.2 ± 7.7 bc | 4599 ± 278 b | 17.46 ± 0.66 a | 5.01 ± 0.1 a | ||
15 (D4) | 343.8 ± 25.5 a | 113.3 ± 7.0 bc | 4646 ± 266 b | 17.28 ± 1.26 a | 4.88 ± 0.32 a | ||
20 (D5) | 356.8 ± 13.1 a | 111.6 ± 4.8 c | 4448 ± 188 b | 17.5 ± 0.42 a | 4.97 ± 0.2 a | ||
750 (Se5) | 0 (CK) | 359.0 ± 18.2 a | 114.2 ± 8.2 a | 4552 ± 254 a | 17.45 ± 0.87 a | 5.05 ± 0.3 a | |
1 (D1) | 358.2 ± 25.2 a | 113.8 ± 5.3 a | 4527 ± 252 a | 17.88 ± 0.77 a | 5 ± 0.19 a | ||
5 (D2) | 356.4 ± 24.0 a | 115.1 ± 8.6 a | 4457 ± 312 a | 17.54 ± 1.11 a | 5.06 ± 0.19 a | ||
10 (D3) | 349.9 ± 19.2 a | 106.8 ± 5.6 a | 4303 ± 183 a | 16.55 ± 1.60 a | 4.8 ± 0.32 a | ||
15 (D4) | 334.3 ± 15.1 a | 99.58 ± 5.8 a | 4013 ± 273 a | 16.65 ± 0.48 a | 4.65 ± 0.25 a | ||
20 (D5) | 350.7 ± 24.9 a | 113.9 ± 6.5 a | 4646 ± 250 a | 17.35 ± 1.19 a | 4.97 ± 0.26 a | ||
Source of variation | Year (Y) | ** | ** | ** | ** | ** | |
Fertilization rate | ** | ** | ** | * | NS | ||
Fertilization depth | NS | NS | * | NS | NS | ||
Fertilization rate × Fertilization depth | NS | ** | ** | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Sun, H.; Guo, Y.; Chen, Y.; Yin, X. Combining Depth and Rate of Selenium Fertilizer Basal Application to Improve Selenium Content and Yield in Sweet Maize. Agronomy 2025, 15, 775. https://doi.org/10.3390/agronomy15040775
Peng Z, Sun H, Guo Y, Chen Y, Yin X. Combining Depth and Rate of Selenium Fertilizer Basal Application to Improve Selenium Content and Yield in Sweet Maize. Agronomy. 2025; 15(4):775. https://doi.org/10.3390/agronomy15040775
Chicago/Turabian StylePeng, Zhiwei, Haoyuan Sun, Yukun Guo, Youtao Chen, and Xuebin Yin. 2025. "Combining Depth and Rate of Selenium Fertilizer Basal Application to Improve Selenium Content and Yield in Sweet Maize" Agronomy 15, no. 4: 775. https://doi.org/10.3390/agronomy15040775
APA StylePeng, Z., Sun, H., Guo, Y., Chen, Y., & Yin, X. (2025). Combining Depth and Rate of Selenium Fertilizer Basal Application to Improve Selenium Content and Yield in Sweet Maize. Agronomy, 15(4), 775. https://doi.org/10.3390/agronomy15040775