Soil Fertility and Maize Residue Quality All Effect the Exogenous Carbon Sequestration Only in the Short Term in Macroaggregates, but Not in Microaggregates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Plant Materials Preparation
2.2. Incubation Experiment
2.3. Soil Aggregate Fractionation
2.4. Soil Samples Analysis
2.5. Data Analyses
3. Results
3.1. Organic Carbon in Soil Aggregates
3.2. Maize Residue-Derived C and Native C in Soil Aggregates
3.3. Amino Sugars in Soil Aggregates
3.4. Contribution of Microbial Residue C to SOC in Soil Aggregates
4. Discussion
4.1. Microaggregates Exhibited Larger C Sequestrating Capacity than Macroaggregates
4.2. Soil Fertility Affected the C Sequestration in the Short Term but Not in the Long Term, and High Fertility Facilitated the Priming Effect
4.3. Maize Residue Quality Influenced the C Sequestration in the Short Term but Not in the Long Term Only in Macroaggregates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; Courcelles, V.D.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Ding, X.; Ling, N.; Zhang, W.; Lu, M.; Wen, J.; He, H.; Zhang, X. Distinct carbon incorporation from 13C-labelled rice straw into microbial amino sugars in soils applied with manure versus mineral fertilizer. Geoderma 2023, 436, 116537. [Google Scholar]
- Christianson, R.; Fox, J.; Law, N.; Wong, C. Effectiveness of Cover Crops for Water Pollutant Reduction from Agricultural Areas. Trans. ASABE 2021, 64, 1007–1017. [Google Scholar]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Till. Res. 2019, 188, 41–52. [Google Scholar]
- Cadisch, G.; Giller, K. Soil organic matter management: The roles of residue quality in C sequestration and N supply. In Sustainable Management of Soil Organic Matter; CABI: Wallingford, UK, 2001; pp. 97–219. [Google Scholar]
- Whalen, J.K.; Gul, S.; Poirier, V.; Yanni, S.F.; Simpson, M.J.; Clemente, J.S.; Feng, X.; Grayston, S.J.; Barker, J.; Gregorich, E.G.; et al. Transforming plant carbon into soil carbon: Process-level controls on carbon sequestration. Can. J. Plant Sci. 2014, 94, 1065–1073. [Google Scholar]
- Schmatz, R.; Recous, S.; Aita, C.; Tahir, M.M.; Schú, A.L.; Chaves, B.; Giacomini, S.J. Crop residue quality and soil type influence the priming effect but not the fate of crop residue C. Plant Soil. 2017, 414, 229–245. [Google Scholar]
- Abiven, S.; Recous, S.; Reyes, V.; Oliver, R. Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biol. Fertil. Soils 2005, 42, 119–128. [Google Scholar]
- Thippayarugs, S.; Toomsan, B.; Vityakon, P.; Limpinuntana, V.; Patanothai, A.; Cadisch, G. Interactions in decomposition and N mineralization between tropical legume residue components. Agrofor. Syst. 2007, 72, 137–148. [Google Scholar]
- Wang, X.; Butterly, C.R.; Baldock, J.A.; Tang, C. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH. Sci. Total Environ. 2017, 587–588, 502–509. [Google Scholar]
- Xu, Y.; Ding, F.; Gao, X.; Wang, Y.; Li, M.; Wang, J. Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type. J. Soils Sediments 2018, 19, 1407–1415. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [PubMed]
- Rabbi, S.M.F.; Wilson, B.R.; Lockwood, P.V.; Daniel, H.; Young, I.M. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma 2014, 216, 10–18. [Google Scholar]
- Semenov, V.M.; Lebedeva, T.N.; Pautova, N.B.; Khromychkina, D.P.; Kovalev, I.V.; Kovaleva, N.O. Relationships between the Size of Aggregates, Particulate Organic Matter Content, and Decomposition of Plant Residues in Soil. Eurasian Soil. Sci. 2020, 53, 454–466. [Google Scholar]
- Gentile, R.; Vanlauwe, B.; Six, J. Litter quality impacts short-but not long-term soil carbon dynamics in soil aggregate fractions. Ecol. Appl. 2011, 21, 695–703. [Google Scholar] [CrossRef]
- Sun, W.; Huang, Y.; Zhang, W.; Yu, Y. Carbon sequestration and its potential in agricultural soils of China. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Dang, P.; Li, C.; Huang, T.; Lu, C.; Li, Y.; Qin, X.; Siddique, K.H.M. Effects of different continuous fertilizer managements on soil total nitrogen stocks in China: A meta-analysis. Pedosphere 2022, 32, 39–48. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 2015, 21, 3200–3209. [Google Scholar]
- Xu, Y.; Gao, X.; Liu, Y.; Li, S.; Liang, C.; Lal, R.; Wang, J. Differential accumulation patterns of microbial necromass induced by maize root vs. shoot residue addition in agricultural Alfisols. Soil Biol. Biochem. 2022, 164, 108474. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Zhou, F.; Liu, Y.; He, H.; Zhang, X. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 2020, 142, 107723. [Google Scholar] [CrossRef]
- Bao, Y.; Dolfing, J.; Chen, R.; Li, Z.; Lin, X.; Feng, Y. Trade-off between microbial ecophysiological features regulated by soil fertility governs plant residue decomposition. Soil Till. Res. 2023, 229, 105679. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, J.; Li, X.; Sun, J.; Herzberger, A.; Wei, D.; Zhang, W.; Dou, Z.; Zhang, F. Cropping System Conversion led to Organic Carbon Change in China’s Mollisols Regions. Sci. Rep. 2017, 7, 18064. [Google Scholar]
- An, T.; Schaeffer, S.; Li, S.; Fu, S.; Pei, J.; Li, H.; Zhuang, J.; Radosevich, M.; Wang, J. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 2015, 80, 53–61. [Google Scholar]
- Mary, E.; Schutter, R.P.D. Microbial Community Profiles and Activities among Aggregates of Winter Fallow and Cover-Cropped Soil. Soil Sci. Soc. Am. J. 2002, 66, 142–153. [Google Scholar]
- Spargo, J.T.; Alley, M.M. Modification of the Illinois Soil Nitrogen Test to Improve Measurement Precision and Increase Sample Throughput. Soil Sci. Soc. Am. J. 2008, 72, 823–829. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.U.; Watanabe, F.S.; Deen, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Miscellaneous Paper Institute for Agricultural Research Samaru; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Helmke, P.A.; Sparks, D.L. Lithium, sodium, potassium, rubidium, and cesium. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series No 5; SSSA: Madison, WI, USA, 1996. [Google Scholar]
- Zhang, X.; Wulf, A. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 1996, 28, 1201–1206. [Google Scholar]
- De Troyer, I.; Amery, F.; Van Moorleghem, C.; Smolders, E.; Merckx, R. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biol. Biochem. 2011, 43, 513–519. [Google Scholar]
- Engelking, B.; Flessa, H.; Joergensen, R.G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 2007, 39, 2111–2118. [Google Scholar]
- Joergensen, R.G.; Mäder, P.; Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fertil. Soils 2010, 46, 303–307. [Google Scholar] [CrossRef]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 2019, 25, 3578–3590. [Google Scholar] [PubMed]
- Appuhn, A.; Joergensen, R. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 2006, 38, 1040–1051. [Google Scholar]
- Xu, F.; Li, C.; Chen, Y.; Wu, J.; Bai, H.; Fan, S.; Yang, Y.; Zhang, Y.; Li, S.; Su, J. Soil microbial community structure and soil fertility jointly regulate soil microbial residue carbon during the conversion from subtropical primary forest to plantations. Geoderma 2024, 441, 116767. [Google Scholar]
- Lehmann, J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C. Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 2008, 1, 238–242. [Google Scholar]
- Huber, M.E.; Yavitt, J.B.; Wright, S.J.; Kirkham, M.B. Mineralogical control on physically protected soil organic matter in a neotropical moist forest. Soil Res. 2023, 61, 569–581. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agricul-ture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar]
- Ding, X.; Liang, C.; Zhang, B.; Yuan, Y.; Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 2015, 84, 137–146. [Google Scholar]
- Liu, S.; Six, J.; Zhang, H.X.; Zhang, Z.B.; Peng, X.H. Integrated aggregate turnover and soil organic carbon sequestration using rare earth oxides and 13C isotope as dual tracers. Geoderma 2023, 430, 116313. [Google Scholar]
- Guan, S.; Dou, S.; Chen, G.; Wang, G.; Zhuang, J. Isotopic characterization of sequestration and transformation of plant residue carbon in relation to soil aggregation dynamics. Appl. Soil. Ecol. 2015, 96, 18–24. [Google Scholar]
- White, P.M.; Rice, C.W. Tillage Effects on Microbial and Carbon Dynamics during Plant Residue Decomposition. Soil Sci. Soc. Am. J. 2009, 73, 138–145. [Google Scholar]
- Blesh, J.; Ying, T. Soil fertility status controls the decomposition of litter mixture residues. Ecosphere 2020, 11, e03237. [Google Scholar]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar]
- Shahbaz, M.; Kuzyakov, Y.; Sanaullah, M.; Heitkamp, F.; Zelenev, V.; Kumar, A.; Blagodatskaya, E. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biol. Fertil. Soils 2017, 53, 287–301. [Google Scholar]
- Lindedam, J.; Magid, J.; Poulsen, P.; Luxhøi, J. Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots. Soil Biol. Biochem. 2009, 41, 1040–1049. [Google Scholar]
- Adhikari, A.D.; Shrestha, P.; Ghimire, R.; Liu, Z.; Pollock, D.A.; Acharya, P.; Aryal, D.R. Cover crop residue quality regulates litter decomposition dynamics and soil carbon mineralization kinetics in semi-arid cropping systems. Appl. Soil. Ecol. 2024, 193, 105160. [Google Scholar]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar]
- Zhu, S.; Sainju, U.M.; Zhang, S.; Tan, G.; Wen, M.; Dou, Y.; Yang, R.; Chen, J.; Zhao, F.; Wang, J. Cover cropping promotes soil carbon sequestration by enhancing microaggregate-protected and mineral-associated carbon. Sci. Total Environ. 2024, 908, 168330. [Google Scholar]
- Xu, Y.; Sun, L.; Lal, R.; Bol, R.; Wang, Y.; Gao, X.; Ding, F.; Liang, S.; Li, S.; Wang, J. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols. Soil Biol. Biochem. 2020, 148, 107901. [Google Scholar]
- Mo, F.; Zhang, Y.Y.; Liu, Y.; Liao, Y.C. Microbial carbon-use efficiency and straw-induced priming effect within soil aggregates are regulated by tillage history and balanced nutrient supply. Biol. Fertil. Soils 2021, 57, 409–420. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.; Collins, D.; Dougherty, W.J.; Singh, B.K. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues. Soil Biol. Biochem. 2018, 116, 22–38. [Google Scholar]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar]
- Lang, J.; Hu, J.; Ran, W.; Xu, Y.; Shen, Q. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol. Fertil. Soils 2011, 48, 191–203. [Google Scholar] [CrossRef]
- Xu, H.; Vandecasteele, B.; Zavattaro, L.; Sacco, D.; Wendland, M.; Boeckx, P.; Haesaert, G.; Sleutel, S. Maize root-derived C in soil and the role of physical protection on its relative stability over shoot-derived C. Eur. J. Soil Sci. 2019, 70, 935–946. [Google Scholar]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Wang, H.; Boutton, T.W.; Xu, W.; Hu, G.; Jiang, P.; Bai, E. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Sci. Rep. 2015, 5, 10102. [Google Scholar]
- Fanin, N.; Alavoine, G.; Bertrand, I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma 2020, 377, 114576. [Google Scholar]
- Craig, M.E.; Geyer, K.M.; Beidler, K.V.; Brzostek, E.R.; Frey, S.D.; Stuart Grandy, A.; Liang, C.; Phillips, R.P. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat. Commun. 2022, 13, 1229. [Google Scholar]
- Kaštovská, E.; Choma, M.; Angst, G.; Remus, R.; Augustin, J.; Kolb, S.; Wirth, S. Root but not shoot litter fostered the formation of mineral-associated organic matter in eroded arable soils. Soil Till. Res. 2024, 235, 105871. [Google Scholar]
- Córdova, S.C.; Olk, D.C.; Dietzel, R.N.; Mueller, K.E.; Archontouilis, S.V.; Castellano, M.J. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biol. Biochem. 2018, 125, 115–124. [Google Scholar] [CrossRef]
- Ge, Z.; Li, S.; Bol, R.; Zhu, P.; Peng, C.; An, T.; Cheng, N.; Liu, X.; Li, T.; Xu, Z.; et al. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition. Soil Till. Res. 2021, 213, 105120. [Google Scholar]
- Brown, R.W.; Chadwick, D.R.; Bending, G.D.; Collins, C.D.; Whelton, H.L.; Daulton, E.; Covington, J.A.; Bull, I.D.; Jones, D.L. Nutrient (C, N and P) enrichment induces significant changes in the soil metabolite profile and microbial carbon partitioning. Soil Biol. Biochem. 2022, 172, 108779. [Google Scholar]
- Bourget, M.Y.; Fanin, N.; Fromin, N.; Hättenschwiler, S.; Roumet, C.; Shihan, A.; Huys, R.; Sauvadet, M.; Freschet, G.T. Plant litter chemistry drives long-lasting changes in the catabolic capacities of soil microbial communities. Funct. Ecol. 2023, 37, 2014–2028. [Google Scholar]
- Duan, X.; Gunina, A.; Rui, Y.; Xia, Y.; Hu, Y.; Ma, C.; Qiao, H.; Zhang, Y.; Wu, J.; Su, Y.; et al. Contrasting processes of microbial anabolism and necromass formation between upland and paddy soils across regional scales. Catena 2024, 239, 107902. [Google Scholar]
- Chen, X.; Xia, Y.; Rui, Y.; Ning, Z.; Hu, Y.; Tang, H.; He, H.; Li, H.; Kuzyakov, Y.; Ge, T.; et al. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agric. Ecosyst. Environ. 2020, 292, 106816. [Google Scholar]
- Van De Vreken, P.; Gobin, A.; Baken, S.; Van Holm, L.; Verhasselt, A.; Smolders, E.; Merckx, R. Crop residue management and oxalate-extractable iron and aluminium explain long-term soil organic carbon sequestration and dynamics. Eur. J. Soil Sci. 2016, 67, 332–340. [Google Scholar]
- Helfrich, M.; Ludwig, B.; Thoms, C.; Gleixner, G.; Flessa, H. The role of soil fungi and bacteria in plant litter decomposition and macroaggregate formation determined using phospholipid fatty acids. Appl. Soil Ecol. 2015, 96, 261–264. [Google Scholar]
- Pan, F.; Li, Y.; Chapman, S.J.; Khan, S.; Yao, H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 2016, 559, 15–23. [Google Scholar]
Soil | HF | LF | F |
---|---|---|---|
SOC (g kg−1) | 18.0 ± 0.04 | 16.7 ± 0.03 | 0.07 |
TN (g kg−1) | 1.75 ± 0.45 | 1.53 ± 0.00 | 0.012 |
C/N ratio | 10.3 ± 0.02 | 11.0 ± 0.22 | 0.039 |
δ13C value (‰) | 21.7 ± 0.03 | 21.5 ± 0.02 | 0.006 |
pH (H2O) | 6.15 ± 0.16 | 6.75 ± 0.01 | 0.021 |
Available N (mg kg−1) | 153.23 ± 9.44 | 135.70 ± 0.46 | 0.137 |
Available P (mg kg−1) | 98.77 ± 7.74 | 12.53 ± 0.59 | <0.001 |
Available K (mg kg−1) | 159.67 ± 2.19 | 177.33 ± 9.17 | 0.134 |
Wheat grain yield (kg ha−1) | 3427.55 ± 483.95 | 966.32 ± 142.83 | 0.008 |
Total amino sugars (mg kg−1) | 1171.82 ± 20.54 | 990.02 ± 6.09 | 0.001 |
Sand (%) | 40.6 ± 1.17 | 42.78 ± 0.93 | 0.221 |
Silt (%) | 27.1 ± 0.64 | 25.92 ± 0.59 | 0.249 |
Clay (%) | 32.29 ± 0.53 | 31.3 ± 0.39 | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Sun, L.; Xu, Y.; Li, S.; Li, J.; Xue, P.; Yang, H.; Mörchen, R.; Wang, J. Soil Fertility and Maize Residue Quality All Effect the Exogenous Carbon Sequestration Only in the Short Term in Macroaggregates, but Not in Microaggregates. Agronomy 2025, 15, 806. https://doi.org/10.3390/agronomy15040806
Ma N, Sun L, Xu Y, Li S, Li J, Xue P, Yang H, Mörchen R, Wang J. Soil Fertility and Maize Residue Quality All Effect the Exogenous Carbon Sequestration Only in the Short Term in Macroaggregates, but Not in Microaggregates. Agronomy. 2025; 15(4):806. https://doi.org/10.3390/agronomy15040806
Chicago/Turabian StyleMa, Nan, Liangjie Sun, Yingde Xu, Shuangyi Li, Jiayan Li, Pingluo Xue, Hongbo Yang, Ramona Mörchen, and Jingkuan Wang. 2025. "Soil Fertility and Maize Residue Quality All Effect the Exogenous Carbon Sequestration Only in the Short Term in Macroaggregates, but Not in Microaggregates" Agronomy 15, no. 4: 806. https://doi.org/10.3390/agronomy15040806
APA StyleMa, N., Sun, L., Xu, Y., Li, S., Li, J., Xue, P., Yang, H., Mörchen, R., & Wang, J. (2025). Soil Fertility and Maize Residue Quality All Effect the Exogenous Carbon Sequestration Only in the Short Term in Macroaggregates, but Not in Microaggregates. Agronomy, 15(4), 806. https://doi.org/10.3390/agronomy15040806