APSIM NG Model Simulation of Soil N2O Emission from the Dry-Crop Wheat Field and Its Parameter Sensitivity Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Next-Generation APSIM
2.2. Study Area
2.3. Experimental Design
2.4. Method of Global Sensitivity Analysis
2.5. Parameter Selection Settings
2.6. Simulation Program
- (1)
- The APSIM NG simulation platform based on the basic data of 2022–2023 was built in the study area and the ranges of the crop cultivar parameters, soil parameters, meteorological parameters, and field management parameters of the APSIM NG model were determined; the parameter definitions and ranges are shown in Table 1, Table 2 and Table 3.
- (2)
- Uniformly distributed random sampling was performed within the parameter ranges using SimLab 2.2.1 software to generate multidimensional parameters. A total of 51 parameters were entered in this study, generating a total of 51 × 130 = 6630 data sets (in the EFAST method, the number of samples of the parameters needs to be greater than 65 times as many parameters which must be taken into account for the analysis, and in this study, it was set to 130 times accordingly).
- (3)
- The Apsimx package in R4.2.3 was used to input the generated crop cultivar parameters into the model and run the APSIM NG model simulation. Additionally, the simulation was run by the manual trial-and-error method for the generated soil parameters, meteorological parameters, and field management parameters, respectively, one by one, for the perturbation input model.
- (4)
- The output results of the parameter simulation operations were collated, and then the collated data were entered into SimLab 2.2.1 for analysis to obtain the results of the first-order sensitivity and global sensitivity analyses of the parameters.
2.7. Data Sources
3. Results
3.1. Sensitivity Analysis of Crop Cultivar Parameters
3.2. Sensitivity Analysis of Soil Parameters
3.3. Sensitivity Analyses of Meteorological and Field Management Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milam-Guerrero, J.; Yang, B.; To, D.T.; Myung, N.V. Nitrous oxide is no laughing matter: A historical review of nitrous oxide gas-sensing capabilities highlighting the need for further exploration. ACS Sens. 2022, 7, 3598–3610. [Google Scholar] [CrossRef]
- Wuebbles, D.J. Nitrous oxide: No laughing matter. Science 2009, 326, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.; Tang, Y.; Wang, H.; Qin, Q. Crop-specific embodied greenhouse gas emissions inventory for 28 staple crops in China from 2007 to 2017. Sci. Data 2025, 12, 421. [Google Scholar] [CrossRef] [PubMed]
- Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; et al. Couplings between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 499–587. [Google Scholar]
- Wang, K.; Shi, L.; Ma, L.; Wang, S.; Zhang, R.; Li, Z.; Zhai, B. Emission characteristics and microbiological properties of N2O from wheat field soil in the dry zone of Northwest China under organic-inorganic dosing. Environ. Sci. 2021, 42, 6038–6046. [Google Scholar] [CrossRef]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Lagerquist, E.; Vogeler, I.; Kumar, U.; Bergkvist, G.; Lana, M.; Watson, C.A.; Parsons, D. Assessing the effect of intercropped leguminous service crops on main crops and soil processes using APSIM NG. Agric. Syst. 2024, 216, 103884. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.L.; Li, B.G.; Liu, H.T. Construction of a coupled model for hydrothermal carbon and nitrogen processes in soil-crop-atmosphere system. J. Agric. Eng. 2014, 30, 54–66. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Tan, J. Research on the Sensitivity and Uncertainty Analysis Method of Crop Model Parameters. Ph.D. Thesis, Wuhan University, Wuhan, China, 2018. [Google Scholar]
- Zhao, G.; Bryan, B.A.; Song, X. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol. Model. 2014, 279, 1–11. [Google Scholar] [CrossRef]
- Khorashadi Zadeh, F.; Nossent, J.; Sarrazin, F.; Pianosi, F.; Van Griensven, A.; Wagener, T.; Bauwens, W. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environ. Model. Softw. 2017, 91, 210–222. [Google Scholar] [CrossRef]
- Confalonieri, R.; Bellocchi, G.; Tarantola, S.; Acutis, M.; Donatelli, M.; Genovese, G. Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environ. Model. Softw. 2010, 25, 479–488. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 2010, 25, 1508–1517. [Google Scholar] [CrossRef]
- Yang, J.; Si, L.; Li, J.; Xin, W.; Zhao, B.; Wei, B. Sensitivity analysis and compensation for tooth surface deviation of spiral bevel gear machine tool. Sci. Rep. 2024, 14, 22736. [Google Scholar] [CrossRef]
- Confalonieri, R. Monte Carlo based sensitivity analysis of two crop simulators and considerations on model balance. Eur. J. Agron. 2010, 33, 89–93. [Google Scholar] [CrossRef]
- Makowski, D.; Naud, C.; Jeuffroy, M.-H.; Barbottin, A.; Monod, H. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliab. Eng. Syst. Saf. 2006, 91, 1142–1147. [Google Scholar] [CrossRef]
- Kamali, B.; Abbaspour, K.C.; Lehmann, A.; Wehrli, B.; Yang, H. Uncertainty-based auto-calibration for crop yield-the EPIC+ procedure for a case study in sub-Saharan Africa. Eur. J. Agron. 2018, 93, 57–72. [Google Scholar] [CrossRef]
- Sexton, J.; Everingham, Y.L.; Inman-Bamber, G. A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland. Aust. Eur. J. Agron. 2017, 88, 96–105. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Zhu, A.-X.; Shen, F.; Lei, Q.; Duan, Z. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Sci. Total Environ. 2019, 651, 953–968. [Google Scholar] [CrossRef]
- Cheng, S.; Li, G.; Yao, Y.; Yuan, J.; He, J. DNDC model simulation of soil N2O emission and its sensitivity analysis in dry-cropped wheat field under different fertilizer application levels. J. Gansu Agric. Univ. 2024, 59, 44–54. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; Van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM-Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Che, P.; Liu, Q.; Wang, J.; Gao, X.; Han, X. Effects of nitrogen application on spring wheat yield in Longzhong dryland under different tillage practices simulated by APSIM-based model. Trop. Agric. Eng. 2023, 47, 79–86. [Google Scholar]
- Hao, S.; Ryu, D.; Western, A.; Perry, E.; Bogena, H.; Franssen, H.J.H. Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis. Agric. Syst. 2021, 194, 103278. [Google Scholar] [CrossRef]
- He, L.; Zhao, G.; Jin, N.; Zhuang, W.; Yu, Q. Global sensitivity analysis of parameters of APSIM-Wheat model in different climatic zones and at different yield levels. J. Agric. Eng. 2015, 31, 148–157. [Google Scholar]
- Ma, C.; Cai, H.; Lu, Y. Emission of N2O under different water nitrogen treatments based on APSIM model. J. Irrig. Drain. 2020, 39, 120–129. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Luo, Z.; Wang, E.; Wang, G.; Zhou, H.; Li, H.; Xu, S. Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM. Agric. Syst. 2021, 194, 103277. [Google Scholar] [CrossRef]
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Balwinder-Singh Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; Chen, C.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Zheng, B.; Chenu, K.; Doherty, A.; Chapman, S. The APSIM wheat module (7.5 R3008). Agric. Prod. Syst. Simulator (APSIM) Initiat. 2014, 615, 3–8. Available online: https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdf (accessed on 3 October 2023).
- Thorburn, P.J.; Biggs, J.S.; Collins, K.; Probert, M.E. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agric. Ecosyst. Environ. 2010, 136, 343–350. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Kulmala, A.E.; Phongpan, S. General model for N2O and N2 gas emissions from soils due to dentrification. Glob. Biogeochem. Cycles 2000, 14, 1045–1060. [Google Scholar] [CrossRef]
- Verburg, K.; Pasley, H.R.; Biggs, J.S.; Vogeler, I.; Wang, E.; Mielenz, H.; Snow, V.O.; Smith, C.J.; Pasut, C.; Basche, A.D.; et al. Review of APSIM’s soil nitrogen modelling capability for agricultural systems analyses. Agric. Syst. 2025, 224, 104213. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Meier, E.A.; Probert, M.E. Modelling nitrogen dynamics in sugarcane systems: Recent advances and applications. Field Crops Res. 2005, 92, 337–351. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S.; Chan, K.P.-S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Liu, H.; Xu, X.; Wang, J. Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier amplitude sensitivity test method. J. Integr. Agric. 2019, 18, 1547–1561. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Ascough, J.C.; Ahmadi, M.; Andales, A.A.; Arabi, M. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments. Ecol. Model. 2012, 231, 113–125. [Google Scholar] [CrossRef]
- Deng, X.; Dong, L.; Li, G.; Nie, Z.G.; Xu, J.J.; Wang, J.; Lu, Y.L. Global sensitivity analysis of Apsim-Wheat model parameters in northwest spring wheat region. J. Triticeae Crops 2022, 42, 746–754. [Google Scholar]
- Xu, Z.; Dong, L.; Li, G.; Yan, Z.; Wang, J.; Nie, Z.; Lu, Y. Global sensitivity analysis of N2O emission from APSIM model based on EFAST method. Agric. Res. Arid Reg. 2024, 42, 244–251. [Google Scholar]
- Brown, H.E.; Huth, N.I.; Holzworth, D.P. The APSIM Wheat Model (Version 2023.7.7280.0). Available online: https://www.apsim.info (accessed on 28 October 2023).
- Zhang, M.; Gao, Y.; Zhang, Y. Sensitivity study and model calibration validation of APSIM NG model for winter wheat under different sowing density and irrigation management. Chin. J. Ecol. Agric. 2023, 31, 102–112. (In English) [Google Scholar]
- Davidson, E.A.; Swank, W.T. Environmental Parameters Regulating Gaseous Nitrogen Losses from Two Forested Ecosystems via Nitrification and Denitrification. Appl. Environ. Microbiol. 1986, 52, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; He, J.; Zhang, L. Characteristics of nitrification/denitrification and its functional microorganisms under different moisture conditions in paddy soil. Environ. Sci. 2014, 35, 4275–4283. [Google Scholar] [CrossRef]
- Huang, G.; Chen, K.; Han, B.; Van Cleemput, O. Soil water content and N2O production pathways. J. Appl. Ecol. 1999, 9, 55–58. [Google Scholar]
- Xu, H.; Li, N.; Feng, Y.; Ren, G.; Xie, C.; Lv, H.; Ma, X.; Hao, J. Effects of nitrogen fertiliser and straw return on N2O emission from wheat and jade rotational cropping soils. Environ. Sci. 2020, 41, 5668–5676. [Google Scholar] [CrossRef]
- Čuhel, J.; Šimek, M.; Laughlin, R.J.; Bru, D.; Chèneby, D.; Watson, C.J.; Philippot, L. Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity. Appl. Environ. Microbiol. 2010, 76, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Gu, Z.; Jiao, X.; Wei, Q.; Xu, J.; Liu, K. Enhanced N2O Emissions from Winter Wheat Field Induced by Winter Irrigation in the North China Plain. Agronomy 2022, 12, 955. [Google Scholar] [CrossRef]
- Keane, B.J.; Ineson, P.; Vallack, H.W.; Blei, E.; Bentley, M.; Howarth, S.; McNamara, N.P.; Rowe, R.L.; Williams, M.; Toet, S. Greenhouse gas emissions from the energy crop oilseed rape (Brassica napus); the role of photosynthetically active radiation in diurnal N2O flux variation. GCB Bioenergy 2018, 10, 306–319. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Wang, J.; Xue, L.; Hou, P.; Xue, L.; Yang, L. Warming increases the N2O emissions from wheat fields but reduces the wheat yield in a rice-wheat rotation system. Agric. Ecosyst. Environ. 2022, 337, 108064. [Google Scholar] [CrossRef]
- Ran, M.; Ding, J.; Sun, D.; Gu, F. A review of the characteristics of soil respiration in response to temperature and moisture changes under global climate change. Chin. Agric. Meteorol. 2024, 45, 1–11. [Google Scholar]
Parameter | Definition | Lower Limit | Upper Limit | |
---|---|---|---|---|
1 | BasePhyllochron | Leaf appearance rate (°C·d) | 60 | 180 |
2 | HeadEmergencePpSensitivity | Photoperiodic sensitivity of tasseling | 1 | 3 |
3 | HeadEmergenceLongDayBase | Basal duration of tasseling under long sunlight exposure (d) | 100 | 300 |
4 | PhyllochronPpSensitivity | Leaf emergence interval photoperiodic sensitivity | 0.3 | 0.9 |
5 | EarlyFloweringTT | Thermal time from heading stage to flowering stage (°C·d) | 40 | 120 |
6 | GrainDevelopmentTT | Thermal time from flowering stage to start grain-fill stage (°C·d) | 60 | 180 |
7 | GrainFillingTT | Thermal time from start grain-fill stage to end grain-fill stage (°C·d) | 272.5 | 817.5 |
8 | MaturingTT | Thermal time from end grain-fill stage to maturity stage (°C·d) | 17.5 | 52.5 |
9 | GrainsPerGramOfStem | Number of grains per gram of stem (grains) | 13 | 39 |
10 | Watercontent | Grain water content (%) | 0.06 | 0.18 |
11 | MaximumPotentialGrainSize | Maximum potential grain size (g) | 0.025 | 0.075 |
12 | InitialGrainProportion | Grain filling initial ratio (%) | 0.025 | 0.075 |
13 | MaxNConcDailyGrowth | Maximum daily increase in grain N concentration | 0.015 | 0.045 |
14 | Grain-MinimumNConc | Minimum N concentration of grain | 0.0062 | 0.0185 |
15 | Grain-MaximumNConc | Maximum nitrogen concentration of the grain | 0.015 | 0.045 |
16 | Grain-CarbonConcentration | Seed carbon concentration (%) | 0.2 | 0.6 |
17 | MaxDailyNUptake | Maximum daily nitrogen uptake by the root system (g·m−2·day−1) | 10 | 30 |
18 | Root-MaximumNConc | Maximum nitrogen concentration in the root system | 0.005 | 0.015 |
19 | Root-MinimumNConc | Minimum nitrogen concentration in the root system | 0.005 | 0.015 |
20 | KNO3 | Root nitrate N uptake rate (%) | 0.01 | 0.03 |
21 | KNH4 | Root ammonium N uptake rate (%) | 0.005 | 0.015 |
22 | Root-CarbonConcentration | Root carbon concentration (%) | 0.2 | 0.6 |
23 | AreaLargestLeaves | Maximum leaf area (mm2) | 1300 | 3900 |
24 | Leaf-CarbonConcentration | Leaf carbon concentration (%) | 0.2 | 0.6 |
25 | Spike-MinimumNConc | Spike minimum nitrogen concentration | 0.002 | 0.006 |
26 | Spike-CarbonConcentration | Spike carbon concentration (%) | 0.2 | 0.6 |
27 | Stem-MinimumNConc | Minimum stem nitrogen concentration | 0.00125 | 0.00375 |
28 | Stem-CarbonConcentration | Stem carbon concentration (%) | 0.2 | 0.6 |
Parameter | Definition | Lower Limit | Upper Limit | |
---|---|---|---|---|
1 | BD | Soil bulk density (g⋅cm−3) | 1.090 | 1.204 |
2 | AirDry | Air-dry moisture content (mm·mm−1) | 0.012 | 0.014 |
3 | LL15 | Lower effective moisture limit (mm·mm−1) | 0.086 | 0.095 |
4 | DUL | Field water-holding capacity (mm·mm−1) | 0.260 | 0.288 |
5 | SAT | Saturated water content (mm·mm−1) | 0.440 | 0.486 |
6 | SW | Soil moisture content (mm·mm−1) | 0.128 | 0.142 |
7 | wheatLL | Wilting coefficient (mm·mm−1) | 0.086 | 0.095 |
8 | wheatKL | Water absorption coefficient (days) | 0.095 | 0.105 |
9 | SWCON | Soil hydraulic conductivity | 0.285 | 0.315 |
10 | Carbon | Soil’s total organic carbon content | 0.722 | 0.798 |
11 | SoilCNRatio | Soil carbon-to-nitrogen ratio (g·g−1) | 12.35 | 13.65 |
12 | FInert | Soil-inert organic carbon | 0.38 | 0.42 |
13 | NO3−-N | Nitrate Nitrogen (mg·kg−1) | 27.475 | 30.367 |
14 | NH4+-N | Ammonium Nitrogen (mg·kg−1) | 17.776 | 19.648 |
15 | pH | Soil acidity and alkalinity | 7.904 | 8.736 |
Parameter | Definition | Lower Limit | Upper Limit | |
---|---|---|---|---|
1 | Rainfall | Precipitation (mm) | −10% | +10% |
2 | Radiation | Solar Radiation (MJ·m−2) | −10% | +10% |
3 | Minimum temperature | Daily Minimum Temperature (°C) | −10% | +10% |
4 | Maximum temperature | Daily Maximum Temperature (°C) | −10% | +10% |
5 | Nitrogen application rate | Nitrogen application (kg·hm−2) | 198 | 242 |
6 | Sowing depth | Sowing depth (mm) | 63 | 77 |
7 | Row spacing | Sowing distance (Plants·hm−2) | 225 | 275 |
8 | Plant population | Planting density (Plants·hm−2) | 168.75 | 206.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yao, Y.; Du, M.; Dong, L.; Yuan, J.; Li, G. APSIM NG Model Simulation of Soil N2O Emission from the Dry-Crop Wheat Field and Its Parameter Sensitivity Analysis. Agronomy 2025, 15, 834. https://doi.org/10.3390/agronomy15040834
Li Y, Yao Y, Du M, Dong L, Yuan J, Li G. APSIM NG Model Simulation of Soil N2O Emission from the Dry-Crop Wheat Field and Its Parameter Sensitivity Analysis. Agronomy. 2025; 15(4):834. https://doi.org/10.3390/agronomy15040834
Chicago/Turabian StyleLi, Yanyan, Yao Yao, Mengyin Du, Lixia Dong, Jianyu Yuan, and Guang Li. 2025. "APSIM NG Model Simulation of Soil N2O Emission from the Dry-Crop Wheat Field and Its Parameter Sensitivity Analysis" Agronomy 15, no. 4: 834. https://doi.org/10.3390/agronomy15040834
APA StyleLi, Y., Yao, Y., Du, M., Dong, L., Yuan, J., & Li, G. (2025). APSIM NG Model Simulation of Soil N2O Emission from the Dry-Crop Wheat Field and Its Parameter Sensitivity Analysis. Agronomy, 15(4), 834. https://doi.org/10.3390/agronomy15040834