Straw Incorporation and Nitrogen Fertilization Enhance Soil Organic Carbon Sequestration by Promoting Aggregate Stability and Iron Oxide Transformation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Sampling and Soil Aggregate Sieving
2.4. Soil Chemical Analysis
2.5. Fourier Transform Infrared (FTIR) Spectroscopy
2.6. Calculation and Data Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. The Content of SOC in Soil Aggregates
3.3. OC Functional Groups
3.4. Fe Oxide Content in Aggregates
3.5. SOC Content and Stock in Bulk Soil
3.6. Relationship Between Soil Properties and Cementing Agents
4. Discussion
4.1. Straw Incorporation and N Application Facilitated the Soil Aggregates Formation and Stability
4.2. Response of OC Functional Groups to Straw Incorporation and N Application
4.3. Role of Straw Incorporation and N Application on SOC Stability and Sequestration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Zhang, S.; Fei, C.; Ding, X. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils. Appl. Soil Ecol. 2021, 168, 104115. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Wu, L.; Ding, X. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Dong, L.; Wang, H.; Shen, Y.; Wang, L.; Zhang, H.; Shi, L.; Lu, C.; Shen, M. Straw type and returning amount affects SOC fractions and Fe/Al oxides in a rice-wheat rotation system. Appl. Soil Ecol. 2023, 183, 104736. [Google Scholar] [CrossRef]
- Wang, E.; Lin, X.; Tian, L.; Wang, X.; Ji, L.; Jin, F.; Tian, C. Effects of Short-Term Rice Straw Return on the Soil Microbial Community. Agriculture 2021, 11, 561. [Google Scholar] [CrossRef]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.; Shi, J.; Zhang, X.; Tian, X. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Su, Y.; Kwong, R.W.M.; Tang, W.; Yang, Y.; Zhong, H. Straw return enhances the risks of metals in soil? Ecotoxicol. Environ. Saf. 2021, 207, 111201. [Google Scholar] [CrossRef]
- Zou, C.; Li, Y.; Huang, W.; Zhao, G.; Pu, G.; Su, J.; Coyne, M.S.; Chen, Y.; Wang, L.; Hu, X.; et al. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production. Geoderma 2018, 325, 49–58. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Zhao, X.; He, C.; Virk, A.L.; Jing, Z.-H.; Liu, Q.-Y.; Wang, X.; Kan, Z.-R.; Xiao, X.-P.; Zhang, H.-L. Effects of long-term tillage regimes on the vertical distribution of soil iron/aluminum oxides and carbon decomposition in rice paddies. Sci. Total Environ. 2021, 776, 145797. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Li, X.; Lu, J.; Gao, R.; Kamran, M.; Fahad, S. Effect of Clay Mineralogy and Soil Organic Carbon in Aggregates under Straw Incorporation. Agronomy 2022, 12, 534. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thiongo, M.; Okeyo, I.; Tenywa, M.; Neufeldt, H. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil Tillage Res. 2017, 165, 190–197. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Insights into soil and biochar variations and their contribution to soil aggregate status—A meta-analysis. Soil Tillage Res. 2024, 244, 106282. [Google Scholar] [CrossRef]
- Even, R.J.; Francesca Cotrufo, M. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation. Geoderma 2024, 442, 116760. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Huang, Y.; Ali Kubar, K.; Li, X.; Lu, J. Straw management influences the stabilization of organic carbon by Fe (oxyhydr)oxides in soil aggregates. Geoderma 2020, 358, 113987. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Yang, L. Continuous straw returning enhances the carbon sequestration potential of soil aggregates by altering the quality and stability of organic carbon. J. Environ. Manag. 2024, 358, 120903. [Google Scholar] [CrossRef]
- Cheng, Z.; Guo, J.; Jin, W.; Liu, Z.; Wang, Q.; Zha, L.; Zhou, Z.; Meng, Y. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil. Soil Tillage Res. 2024, 239, 106051. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, L.; Liang, C.; Xi, F.; Pei, Z.; Du, L. Soil Aggregate Stability and Iron and Aluminium Oxide Contents Under Different Fertiliser Treatments in a Long-Term Solar Greenhouse Experiment. Pedosphere 2016, 26, 760–767. [Google Scholar] [CrossRef]
- Lang, D.; Zhou, R.; Hao, F.; Zhu, Z.; Zhang, P. Effect of Wheat Straw Addition on Organic Carbon Mineralisation and Bacterial Community in Orchard Soil. J. Soil Sci. Plant Nutr. 2023, 23, 4328–4341. [Google Scholar] [CrossRef]
- Slimani, I.; Barker, X.-Z.; Lazicki, P.; Horwath, W. Reviews and syntheses: Iron—A driver of nitrogen bioavailability in soils? Biogeosciences 2023, 20, 3873–3894. [Google Scholar] [CrossRef]
- Huang, X.; Tang, H.; Kang, W.; Yu, G.; Ran, W.; Hong, J.; Shen, Q. Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice-wheat cropping system. Soil Biol. Biochem. 2018, 120, 12–23. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Hu, N.; Lou, Y.; Wang, F.; Wang, Y. Biochemical composition of soil organic matter physical fractions under 32-year fertilization in Ferralic Cambisol. Carbon Res. 2023, 2, 1. [Google Scholar] [CrossRef]
- You, M.; Zhu-Barker, X.; Doane, T.A.; Horwath, W.R. Decomposition of carbon adsorbed on iron (III)-treated clays and their effect on the stability of soil organic carbon and external carbon inputs. Biogeochemistry 2021, 157, 259–271. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Ding, X. Influence of organic fertilization on clay mineral transformation and soil phosphorous retention: Evidence from an 8-year fertilization experiment. Soil Tillage Res. 2023, 230, 105702. [Google Scholar] [CrossRef]
- Kramer, M.G.; Chadwick, O.A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Chang. 2018, 8, 1104–1108. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, S.; Gao, B.; Wei, R.; Ding, X. Fe(II)-OM Complexes Formed by Straw Returning Combined with Optimized Nitrogen Fertilizer Could Be Beneficial to Nitrogen Storage in Saline-Alkaline Paddy Soils. Agronomy 2022, 12, 2295. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Xin, C.; Tang, W.; Eneji, A.E.; Dong, H. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Res. 2012, 138, 63–70. [Google Scholar] [CrossRef]
- Shaaban, M.; Wu, Y.; Nunez-Delgado, A.; Kuzyakov, Y.; Peng, Q.A.; Lin, S.; Hu, R. Enzyme activities and organic matter mineralization in response to application of gypsum, manure and rice straw in saline and sodic soils. Environ. Res. 2023, 224, 115393. [Google Scholar] [CrossRef]
- Gu, W.; Wang, Y.; Sun, Y.; Liu, Z.; Wang, W.; Wu, D.; Zhang, Y.; Sun, W.; Wang, X.; Feng, Z.; et al. Assessing the formation and stability of paddy soil aggregate driven by organic carbon and Fe/Al oxides in rice straw cyclic utilization strategies: Insight from a six-year field trial. Sci Total Environ. 2024, 951, 175607. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, S.; Ding, X. Exogenous Organic Carbon Strongly Affected the Coupling of Nitrate-dependent Fe(II) Oxidation in Coastal Saline-alkaline Paddy Soil. J. Soil Sci. Plant Nutr. 2023, 23, 1286–1296. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 2006, 14, 415–421. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, H.; Li, Y.; Ma, Y.; Tang, H.; Ran, W.; Shen, Q. The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice–wheat cropping system. Geoderma 2016, 279, 1–10. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, Z.; Tan, W. Plant litter quality regulates soil eco-enzymatic stoichiometry and microbial nutrient limitation in a citrus orchard. Plant Soil 2021, 466, 179–191. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Ding, X.; Liu, L.; Wu, L.; Zhang, S. Effects of organic fertilization on phosphorus availability and crop growth: Evidence from a 7-year fertilization experiment. Arch. Agron. Soil Sci. 2022, 69, 2092–2103. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Z.; Lv, F.; Wang, R.; Wang, Z.; Zhao, Z.; Li, Z.; Zhai, B. Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer. Soil Biol. Biochem. 2021, 156, 108222. [Google Scholar] [CrossRef]
- Ji, X.; Jiang, J.; Wang, Y.; Colinet, G.; Feng, W. Small straw addition enhances straw decomposition and carbon stabilized in soil aggregates over time. Soil Tillage Res. 2024, 238, 106022. [Google Scholar] [CrossRef]
- Peng, X.; Yan, X.; Zhou, H.; Zhang, Y.Z.; Sun, H. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil Tillage Res. 2015, 146, 89–98. [Google Scholar] [CrossRef]
- Fei, C.; Zhang, S.; Zhang, L.; Ding, X. Straw is more effective than biochar in mobilizing soil organic phosphorus mineralization in saline-alkali paddy soil. Appl. Soil Ecol. 2023, 186, 104848. [Google Scholar] [CrossRef]
- Meng, F.; Dungait, J.A.J.; Xu, X.; Bol, R.; Zhang, X.; Wu, W. Coupled incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol. Geoderma 2017, 304, 19–27. [Google Scholar] [CrossRef]
- Ren, L.; Yang, H.; Li, J.; Zhang, N.; Han, Y.; Zou, H.; Zhang, Y. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon. J. Integr. Agric. 2024, 24, 306–321. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Liu, J.; Ding, X. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil 2022, 474, 233–249. [Google Scholar] [CrossRef]
- Li, R.; Gao, Y.; Chen, Q.; Li, Z.; Gao, F.; Meng, Q.; Li, T.; Liu, A.; Wang, Q.; Wu, L.; et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil Tillage Res. 2021, 212, 105045. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, T.; Zhu, Z.; Liu, S.; Luo, Y.; Li, Y.; Wang, P.; Gavrichkova, O.; Xu, X.; Wang, J.; et al. Carbon input and allocation by rice into paddy soils: A review. Soil Biol. Biochem. 2019, 133, 97–107. [Google Scholar] [CrossRef]
- Hansen, V.; Müller-Stöver, D.; Munkholm, L.J.; Peltre, C.; Hauggaard-Nielsen, H.; Jensen, L.S. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma 2016, 269, 99–107. [Google Scholar] [CrossRef]
- Ge, Z.; Li, S.; Bol, R.; Zhu, P.; Peng, C.; An, T.; Cheng, N.; Liu, X.; Li, T.; Xu, Z.; et al. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition. Soil Tillage Res. 2021, 213, 105120. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, X.; Cheng, W. Biochar combined with ferrous sulfate reduces nitrogen and carbon losses during agricultural waste composting and enhances microbial diversity. Process Saf. Environ. Prot. 2022, 162, 531–542. [Google Scholar] [CrossRef]
- Huang, X.; Kang, W.; Guo, J.; Wang, L.; Tang, H.; Li, T.; Yu, G.; Ran, W.; Hong, J.; Shen, Q. Highly reactive nanomineral assembly in soil colloids: Implications for paddy soil carbon storage. Sci. Total Environ. 2020, 703, 134728. [Google Scholar] [CrossRef]
- Yu, G.-H.; Kuzyakov, Y. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Sci. Rev. 2021, 214, 103525. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, X.; Li, Y.; Jiao, Y.; Fan, L.; Jiang, Y.; Qu, C.; Filimonenko, E.; Jiang, Y.; Tian, X.; et al. Nitrogen fertilizer builds soil organic carbon under straw return mainly via microbial necromass formation. Soil Biol. Biochem. 2024, 188, 109223. [Google Scholar] [CrossRef]
- Huang, X.; Jia, Z.; Guo, J.; Li, T.; Sun, D.; Meng, H.; Yu, G.; He, X.; Ran, W.; Zhang, S.; et al. Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol. Geoderma 2019, 355, 113880. [Google Scholar] [CrossRef]
- Wang, K.; Ren, T.; Yan, J.; Zhu, D.; Liao, S.; Zhang, Y.; Lu, Z.; Cong, R.; Li, X.; Lu, J. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agric. Ecosyst. Environ. 2022, 335, 107991. [Google Scholar] [CrossRef]
- Bei, S.; Li, X.; Kuyper, T.W.; Chadwick, D.R.; Zhang, J. Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community. Sci. Total Environ. 2022, 815, 152882. [Google Scholar] [CrossRef]
Informations | |
---|---|
pH (soil:water = 1:5) | 8.79 |
SOC (g kg−1) | 8.98 |
EC (μS m−1) | 453.3 |
Total N (TN, g kg−1) | 0.97 |
Olsen-P (AP, mg kg−1) | 9.50 |
Available potassium (AK, mg kg−1) | 254.48 |
Treatments | pH | BD | EC | TN | AP | AK | |
---|---|---|---|---|---|---|---|
(g cm−3) | (μS m−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | |||
N1 | S0 | 8.20 ± 0.25 Aa | 1.46 ± 0.02 Aa | 457.30 ± 16.20 Aa | 0.95 ± 0.08 Ba | 9.46 ± 0.11 Ba | 240.68 ± 8.66 Aa |
S1 | 8.18 ± 0.09 Aa | 1.46 ± 0.01 Aa | 449.00 ± 6.60 Aa | 0.97 ± 0.04 Ba | 9.83 ± 0.15 Ba | 249.53 ± 5.46 Aa | |
S2 | 8.16 ± 0.23 Aa | 1.45 ± 0.01 Aa | 443.00 ± 22.60 Aa | 1.09 ± 0.05 Aa | 10.47 ± 0.46 Aa | 251.27 ± 12.02 Aa | |
N2 | S0 | 8.19 ± 0.16 Aa | 1.45 ± 0.03 Aa | 448.00 ± 8.20 Aa | 0.89 ± 0.02 Ca | 9.70 ± 1.18 Aa | 241.09 ± 13.05 Aa |
S1 | 8.11 ± 0.05 Aa | 1.43 ± 0.02 Aa | 422.30 ± 12.70 Bb | 1.00 ± 0.01 Ba | 10.53 ± 0.75 Aa | 253.24 ± 12.72 Aa | |
S2 | 8.16 ± 0.12 Aa | 1.44 ± 0.01 Aa | 425.30 ± 8.10 Ba | 1.05 ± 0.01 Aa | 10.66 ± 0.55 Aa | 253.35 ± 10.73 Aa | |
S | ns | ns | <0.05 | <0.001 | <0.05 | ns | |
N | ns | ns | <0.05 | ns | ns | ns | |
S × N | ns | ns | ns | ns | ns | ns |
Treatments | The Contents of SOC (g kg−1) | SOC Stock | |||||
---|---|---|---|---|---|---|---|
Bulk Soil | >2 mm | 2–0.25 mm | 0.25–0.053 mm | <0.053 mm | (Mg ha−1) | ||
N1 | S0 | 8.68 ± 0.31 Aa | 5.52 ± 0.66 Bb | 6.93 ± 0.21 Ba | 5.93 ± 0.38 Ba | 3.78 ± 0.27 Ba | 25.4 ± 0.9 Aa |
S1 | 9.03 ± 0.48 Aa | 6.62 ± 0.43 Bb | 7.97 ± 0.22 Ab | 6.51 ± 0.09 ABb | 5.22 ± 0.39 Aa | 26.4 ± 1.5 Aa | |
S2 | 9.24 ± 0.26 Aa | 7.97 ± 0.83 Aa | 8.34 ± 0.51 Aa | 6.78 ± 0.34 Aa | 4.03 ± 0.27 Ba | 26.8 ± 0.8 Aa | |
N2 | S0 | 8.67 ± 0.18 Ba | 7.47 ± 0.31 Ba | 6.93 ± 0.27 Ba | 6.25 ± 0.20 Ba | 3.14 ± 0.33 Ca | 25.2 ± 0.5 Aa |
S1 | 9.34 ± 0.08 Aa | 9.00 ± 0.87 Aa | 9.13 ± 0.48 Aa | 7.23 ± 0.29 Aa | 5.53 ± 0.38 Aa | 26.7 ± 0.2 Aa | |
S2 | 9.34 ± 0.49 Aa | 7.42 ± 0.27 Ba | 7.42 ± 0.27 Ba | 7.01 ± 0.23 Aa | 4.47 ± 0.33 Ba | 27.0 ± 1.4 Aa | |
S | <0.05 | <0.001 | <0.001 | <0.001 | <0.001 | ns | |
N | ns | <0.001 | <0.05 | 0.006 | ns | ns | |
S × N | ns | 0.003 | <0.001 | ns | <0.05 | ns |
Treatments | OC Functional Groups (%) | ||||
---|---|---|---|---|---|
OH-C | Aromatic-C | Carboxylic-C | Polysaccharides-C | ||
Bulk soil | |||||
N1 | S0 | 8.25 ± 0.26 Aa | 3.76 ± 0.15 Aa | 22.64 ± 1.81 Aa * | 65.34 ± 3.32 Bc |
S1 | 6.49 ± 0.43 Bb | 2.67 ± 0.21 Bbc | 17.75 ± 0.82 Ba | 73.09 ± 4.17 Aa | |
S2 | 2.89 ± 0.22 Ca | 3.79 ± 0.22 Aa * | 18.82 ± 0.67 Bab * | 74.42 ± 3.80 Ab | |
N2 | S0 | 8.01 ± 0.45 Aa | 3.70 ± 0.25 Ab | 19.69 ± 1.41 Aa | 68.6 ± 4.01 Aa |
S1 | 7.04 ± 0.43 Ba | 3.80 ± 0.28 Aa * | 18.38 ± 0.74 Aab | 70.78 ± 3.63 Aa | |
S2 | 5.73 ± 0.28 Cab * | 2.48 ± 0.13 Bab | 14.99 ± 0.95 Bb | 76.81 ± 4.92 Aa | |
Large macro-aggregates | |||||
N1 | S0 | 7.98 ± 0.61 Aa * | 3.23 ± 0.22 Ab * | 20.71 ± 1.93 Aa * | 68.08 ± 4.38 Bbc |
S1 | 6.50 ± 0.39 Bb * | 2.68 ± 0.18 Bbc * | 17.59 ± 0.29 Ba * | 73.23 ± 3.05 ABa | |
S2 | 1.99 ± 0.20 Cbc | 1.78 ± 0.10 Cd | 16.88 ± 1.12 Bb * | 79.35 ± 4.08 Aab | |
N2 | S0 | 5.53 ± 0.64 Ac | 2.05 ± 0.10 Bd | 17.17 ± 0.93 Aa | 74.80 ± 3.07 Aa |
S1 | 5.44 ± 0.35 Ab | 2.24 ± 0.16 Ad | 16.06 ± 0.49 Ac | 76.76 ± 3.15 Aa | |
S2 | 3.42 ± 0.14 Bc * | 2.23 ± 0.17 Ab * | 13.99 ± 0.94 Bb | 80.35 ± 3.55 Aa | |
Small macro-aggregates | |||||
N1 | S0 | 4.67 ± 0.15 Bc | 0.89 ± 0.08 Ce | 17.21 ± 0.93 Ab | 77.27 ± 4.45 Aa |
S1 | 6.49 ± 0.27 Ab | 2.55 ± 0.21 Bc | 17.53 ± 1.35 Aa | 73.43 ± 2.60 Aa | |
S2 | 3.18 ± 0.23 Ca | 3.07 ± 0.30 Ab * | 19.59 ± 1.43 Aa * | 74.16 ± 1.28 Ab | |
N2 | S0 | 6.77 ± 0.41 Ab * | 3.07 ± 0.20 Ac * | 19.14 ± 1.63 Aa | 71.02 ± 3.35 Ba |
S1 | 7.51 ± 0.60 Aa | 3.02 ± 0.17 Ab * | 18.81 ± 0.88 Aa | 70.66 ± 5.85 Ba | |
S2 | 3.53 ± 0.21 Bc | 1.77 ± 0.16 Bc | 14.04 ± 0.94 Bb | 80.66 ± 3.87 Aa | |
Micro-aggregates | |||||
N1 | S0 | 5.74 ± 0.34 Bb | 2.62 ± 0.25 Ac | 17.82 ± 1.67 Ab | 73.82 ± 2.95 Aab |
S1 | 6.52 ± 0.23 Ab | 3.10 ± 0.23 Ab * | 16.75 ± 1.35 Aa | 73.63 ± 3.13 Aa | |
S2 | 2.17 ± 0.17 Cb | 2.64 ± 0.28 Ac | 17.37 ± 0.11 Ab | 77.83 ± 3.81 Aab | |
N2 | S0 | 7.30 ± 0.55 Aab | 3.41 ± 0.13 Ac * | 18.63 ± 1.81 Aa | 70.66 ± 4.21 Aa |
S1 | 6.05 ± 0.36 Bb * | 2.60 ± 0.08 Bc | 16.84 ± 1.11 Abc | 74.51 ± 5.01 Aa | |
S2 | 6.08 ± 0.34 Ba * | 2.70 ± 0.14 Ba | 17.65 ± 1.17 Aa | 73.57 ± 5.06 Aa | |
Silt and clay particles | |||||
N1 | S0 | 4.85 ± 0.34 Bc | 1.55 ± 0.15 Bd | 16.60 ± 1.07 Ab | 77.00 ± 2.63 ABa * |
S1 | 7.27 ± 0.43 Aa * | 3.92 ± 0.39 Aa * | 18.02 ± 1.39 Aa * | 70.79 ± 5.62 Ba | |
S2 | 1.77 ± 0.17 Cc | 1.88 ± 0.18 Bd | 13.98 ± 1.24 Bc | 82.37 ± 3.54 Aa | |
N2 | S0 | 6.69 ± 0.37 Ab * | 4.42 ± 0.31 Aa * | 17.88 ± 1.41 Aa | 71.03 ± 2.42 Ba |
S1 | 5.67 ± 0.59 Bb | 1.84 ± 0.17 Bd | 13.43 ± 1.14 Bd | 79.07 ± 4.16 Aa | |
S2 | 5.51 ± 0.25 Bb * | 1.85 ± 0.15 Bc | 13.46 ± 0.97 Bb | 79.18 ± 4.01 Aa |
pH | EC | R > 0.25 | BD | MWD | SOC | SOC Stock | Feo | Fed | Fep | Feo/Fed | Aromatic-C | Carboxylic-C | Polysaccharides-C | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.021 | −0.152 | −0.156 | −0.342 | 0.012 | 0.049 | −0.143 | −0.519 * | 0.060 | 0.167 | 0.128 | 0.097 | −0.341 |
EC | 1 | −0.341 | 0.391 | −0.240 | −0.286 | −0.188 | −0.504 * | −0.583 * | −0.453 | −0.268 | 0.187 | 0.579 * | −0.204 | |
R > 0.25 | 1 | −0.256 | 0.866 ** | 0.542 * | 0.516 * | 0.544 * | 0.464 | 0.567 * | 0.390 | −0.137 | −0.459 | 0.622 ** | ||
BD | 1 | −0.071 | −0.509 * | −0.456 | −0.352 | −0.123 | −0.168 | −0.359 | 0.007 | 0.236 | −0.212 | |||
MWD | 1 | 0.391 | 0.374 | 0.383 | 0.476 * | 0.535 * | 0.173 | −0.241 | −0.495 * | 0.618 ** | ||||
SOC | 1 | 0.990 ** | 0.393 | 0.160 | 0.629 ** | 0.400 | −0.266 | −0.421 | 0.688 ** | |||||
SOC stock | 1 | 0.336 | 0.079 | 0.583 * | 0.380 | −0.290 | −0.370 | 0.691 ** | ||||||
Feo | 1 | 0.659 ** | 0.474 * | 0.856 ** | −0.480 * | −0.666 ** | 0.510 * | |||||||
Fed | 1 | 0.284 | 0.177 | −0.335 | −0.566 * | 0.467 | ||||||||
Fep | 1 | 0.435 | −0.383 | −0.581 * | 0.496 * | |||||||||
Feo/Fed | 1 | −0.406 | −0.496 * | 0.348 | ||||||||||
Aromatic-C | 1 | 0.614 ** | −0.577 * | |||||||||||
Carboxylic-C | 1 | −0.596 ** | ||||||||||||
Polysaccharides-C | 1 |
Source | Nitrogen Fertilizer (N) | Straw (S) | Aggregate Size Class (A) | N × S | N × A | S × A | N × S × A |
---|---|---|---|---|---|---|---|
SOC (g kg−1) | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | 0.009 ** | <0.001 ** |
Feo (g kg−1) | <0.001 ** | <0.001 ** | <0.001 ** | 0.369 | 0.619 | <0.001 ** | 0.055 |
Fed (g kg−1) | <0.001 ** | <0.001 ** | <0.001 ** | 0.31 | 0.778 | 0.008 ** | 0.822 |
Fep (g kg−1) | 0.015 * | <0.001 ** | <0.001 ** | 0.874 | 0.614 | 0.276 | 0.983 |
Aromatic-C (%) | 0.034 * | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
Carboxylic-C (%) | <0.001 ** | <0.001 ** | <0.001 ** | 0.009 ** | 0.005 ** | 0.018 * | <0.001 ** |
Polysaccharides-C (%) | 0.906 | <0.001 ** | 0.219 | 0.125 | 0.131 | 0.405 | 0.011 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Z.; Zhang, S.; Sun, Z.; Liu, Z.; Liu, S.; Ding, X. Straw Incorporation and Nitrogen Fertilization Enhance Soil Organic Carbon Sequestration by Promoting Aggregate Stability and Iron Oxide Transformation. Agronomy 2025, 15, 871. https://doi.org/10.3390/agronomy15040871
Jing Z, Zhang S, Sun Z, Liu Z, Liu S, Ding X. Straw Incorporation and Nitrogen Fertilization Enhance Soil Organic Carbon Sequestration by Promoting Aggregate Stability and Iron Oxide Transformation. Agronomy. 2025; 15(4):871. https://doi.org/10.3390/agronomy15040871
Chicago/Turabian StyleJing, Zhichang, Shirong Zhang, Zeqiang Sun, Zhaohui Liu, Shenglin Liu, and Xiaodong Ding. 2025. "Straw Incorporation and Nitrogen Fertilization Enhance Soil Organic Carbon Sequestration by Promoting Aggregate Stability and Iron Oxide Transformation" Agronomy 15, no. 4: 871. https://doi.org/10.3390/agronomy15040871
APA StyleJing, Z., Zhang, S., Sun, Z., Liu, Z., Liu, S., & Ding, X. (2025). Straw Incorporation and Nitrogen Fertilization Enhance Soil Organic Carbon Sequestration by Promoting Aggregate Stability and Iron Oxide Transformation. Agronomy, 15(4), 871. https://doi.org/10.3390/agronomy15040871