Preliminary Results on the Application of Phosphorus and Silicon to Improve the Post-Transplantation Growth of High-Density Nursery Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raising Seedlings
2.2. Pot Cultivation Test
2.3. Field Cultivation Test
2.4. Statistical Analyses
3. Results
3.1. Effect of P and Si on the Growth
3.2. Uptake of P and Si in Rice
3.3. Relationship Between Nutrient Uptake and Growth
4. Discussion
4.1. Effect of P and Si Application on Growth
4.2. Effect of P and Si Application on P Absorption
4.3. Effect of P and Si Application on Si Absorption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice Production Worldwide. In Rice Production Worldwide; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–563. [Google Scholar] [CrossRef]
- Statistics Bureau of Japan. Population and Housing Census. e-Stat. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00500215&tstat=000001013427&cycle=7&year=20220&month=0&tclass1=000001032288&tclass2=000001032753&tclass3=000001200060 (accessed on 4 April 2025).
- Ministry of Agriculture, Forestry and Fisheries of Japan. Report on Results of 2015 Census of Agriculture and Forestry in Japan. Available online: https://www.e-stat.go.jp/en/stat-search/files?page=1&layout=datalist&toukei=00500209&tstat=000001032920&cycle=0&tclass1=000001077437&tclass2=000001097415 (accessed on 4 April 2021).
- Namikawa, M.; Yabiku, T.; Matsunami, M.; Matsunami, T.; Hasegawa, T. Nitrogen Uptake Pattern of Dry Direct-Seeded Rice and Its Contribution to Yields in Northeastern Japan. Plant Prod Sci. 2023, 26, 101–115. [Google Scholar] [CrossRef]
- Sasaki, R. Characteristics and Seedling Establishment of Rice Nursling Seedlings. Jpn. Agric. Res. Q. 2004, 38, 7–13. [Google Scholar] [CrossRef]
- Mai, W.; Abliz, B.; Xue, X. Increased Number of Spikelets per Panicle Is the Main Factor in Higher Yield of Transplanted vs. Direct-Seeded Rice. Agronomy 2021, 11, 2479. [Google Scholar] [CrossRef]
- Yanmar. Yanmar’s Recommends “Mitsunae” Dense Seedling Technology. Available online: https://www.yanmar.com/global/agri/yanmar_mitsunae/ (accessed on 26 August 2023).
- Sasaki, R.; Gotoh, K. Characteristics of Rooting and Early Growth of Transplanted Rice Nursling Seedlings with Several Plant Ages in Leaf Number. Jpn. J. Crop Sci. 1999, 68, 198. [Google Scholar] [CrossRef]
- Ullah, S.; Ikram, M.; Xiao, J.; Khan, A.; Din, I.; Huang, J. Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings. Plants 2024, 13, 2949. [Google Scholar] [CrossRef] [PubMed]
- Horai, K.; Ishii, A.; Mae, T.; Shimono, H. Effects of Early Planting on Growth and Yield of Rice Cultivars under a Cool Climate. Field Crops Res. 2013, 144, 11–18. [Google Scholar] [CrossRef]
- Fukao, T.; Yeung, E.; Bailey-Serres, J. The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice. Plant Cell 2011, 23, 412–427. [Google Scholar] [CrossRef]
- Alpuerto, J.B.; Fukuda, M.; Li, S.; Hussain, R.M.F.; Sakane, K.; Fukao, T. The Submergence Tolerance Regulator SUB1A Differentially Coordinates Molecular Adaptation to Submergence in Mature and Growing Leaves of Rice (Oryza sativa L.). Plant J. 2022, 110, 71–87. [Google Scholar] [CrossRef]
- Kato, Y.; Collard, B.C.Y.; Septiningsih, E.M.; Ismail, A.M. Increasing Flooding Tolerance in Rice: Combining Tolerance of Submergence and of Stagnant Flooding. Ann. Bot. 2019, 124, 1199–1209. [Google Scholar] [CrossRef]
- Singh, S.; Mackill, D.J.; Ismail, A.M. Tolerance of Longer-Term Partial Stagnant Flooding Is Independent of the SUB1 Locus in Rice. Field Crops Res. 2011, 121, 311–323. [Google Scholar] [CrossRef]
- Pasuquin, E.; Lafarge, T.; Tubana, B. Transplanting Young Seedlings in Irrigated Rice Fields: Early and High Tiller Production Enhanced Grain Yield. Field Crops Res. 2008, 105, 141–155. [Google Scholar] [CrossRef]
- TeKrony, D.M.; Egli, D.B. Relationship of Seed Vigor to Crop Yield: A Review. Crop Sci. 1991, 31, 816–822. [Google Scholar] [CrossRef]
- Fageria, N.K.; Wright, R.J.; Baligar, V.C. Rice Cultivar Evaluation for Phosphorus Use Efficiency. Plant Soil 1988, 111, 105–109. [Google Scholar] [CrossRef]
- Luquet, D.; Zhang, B.G.; Dingkuhn, M.; Dexet, A.; Clément-Vidal, A. Phenotypic Plasticity of Rice Seedlings: Case of Phosphorus Deficiency. Plant Prod. Sci. 2005, 8, 145–151. [Google Scholar] [CrossRef]
- Yi, H.; Hu, S.; Zhang, Y.; Wang, X.; Xia, Z.; Lei, Y.; Duan, M. Proper Delay of Phosphorus Application Promotes Wheat Growth and Nutrient Uptake under Low Phosphorus Condition. Agriculture 2023, 13, 884. [Google Scholar] [CrossRef]
- Epstein, E. The Anomaly of Silicon in Plant Biology. Proc. Natl. Acad. Sci. USA 1994, 91, 11–17. [Google Scholar] [CrossRef]
- Savant, N.K.; Datnoff, L.E.; Snyder, G.H. Depletion of Plant-Available Silicon in Soils: A Possible Cause of Declining Rice Yields. Commun. Soil Sci. Plant Anal. 1997, 28, 1245–1252. [Google Scholar] [CrossRef]
- Ma, J.F.; Goto, S.; Tamai, K.; Ichii, M. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice. Plant Physiol. 2001, 127, 1773–1780. [Google Scholar] [CrossRef]
- Hayasaka, T.; Fujii, H.; Namai, T. Silicon Content in Rice Seedlings to Protect Rice Blast Fungus at the Nursery Stage. J. Gen. Plant Pathol. 2005, 71, 169–173. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Ichii, M.; Wu, G.F. A Rice Mutant Defective in Si Uptake. Plant Physiol. 2002, 130, 2111–2117. [Google Scholar] [CrossRef]
- Hu, A.Y.; Che, J.; Shao, J.F.; Yokosho, K.; Zhao, X.Q.; Shen, R.F.; Ma, J.F. Silicon Accumulated in the Shoots Results in Down-Regulation of Phosphorus Transporter Gene Expression and Decrease of Phosphorus Uptake in Rice. Plant Soil 2018, 423, 317–325. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Takahashi, K.; Nonaka, K. Method of measurement of available silicate in paddy fields. Jpn. J. Soil Sci. Plant Nutr. 1986, 57, 515–517. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 5 December 2023).
- Sarwar, N.; Ali, H.; Maqsood, M.; Ahmad, A.; Ullah, E.; Khaliq, T.; Hill, J.E. Influence of Nursery Management and Seedling Age on Growth and Economic Performance of Fine Rice. J. Plant Nutr. 2014, 37, 1287–1303. [Google Scholar] [CrossRef]
- Salam, M.U.; Jones, J.W.; Kobayashi, K. Predicting Nursery Growth and Transplanting Shock in Rice. Exp. Agric. 2001, 37, 65–81. [Google Scholar] [CrossRef]
- Khakwani, A.A.; Shiraishi, M.; Zubair, M.; Baloch, M.S.; Naveed, K.; Awan, I. Effect of Seedling Age and Water Depth on Morphological and Physiological Aspects of Transplanted Rice under High Temperature. J. Zhejiang Univ. Sci. 2005, 6, 389–395. [Google Scholar] [CrossRef]
- Alam, M.M.; Nahar, K.; Hasanuzzaman, M.; Alam, M.M. Tiller Dynamics of Three Irrigated Rice Varieties under Varying Phosphorus Levels. J. Agron. 2009, 2, 89–94. [Google Scholar]
- Tamai, K.; Ma, J.F. Reexamination of Silicon Effects on Rice Growth and Production under Field Conditions Using a Low Silicon Mutant. Plant Soil 2008, 307, 21–27. [Google Scholar] [CrossRef]
- Ma, J.F.; Miyake, Y.; Takahashi, E. Chapter 2 Silicon as a Beneficial Element for Crop Plants. Stud. Plant Sci. 2001, 8, 17–39. [Google Scholar] [CrossRef]
- Julia, C.C.; Rose, T.J.; Pariasca-Tanaka, J.; Jeong, K.; Matsuda, T.; Wissuwa, M. Phosphorus Uptake Commences at the Earliest Stages of Seedling Development in Rice. J. Exp. Bot. 2018, 69, 5233–5240. [Google Scholar] [CrossRef]
- Asch, F.; Sow, A.; Dingkuhn, M. Reserve Mobilization, Dry Matter Partitioning and Specific Leaf Area in Seedlings of African Rice Cultivars Differing in Early Vigor. Field Crops Res. 1999, 62, 191–202. [Google Scholar] [CrossRef]
- Marxen, A.; Klotzbücher, T.; Jahn, R.; Kaiser, K.; Nguyen, V.S.; Schmidt, A.; Schädler, M.; Vetterlein, D. Interaction between Silicon Cycling and Straw Decomposition in a Silicon Deficient Rice Production System. Plant Soil 2016, 398, 153–163. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Wu, L.; Ding, X. Combined Organic Amendments and Mineral Fertilizer Application Increase Rice Yield by Improving Soil Structure, P Availability and Root Growth in Saline-Alkaline Soil. Soil Tillage Res. 2021, 212. [Google Scholar] [CrossRef]
- Shin, N.H.; Han, J.H.; Jang, S.; Song, K.; Koh, H.J.; Lee, J.H.; Yoo, S.; Chin, J.H. Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (Ag1) in Rice (O. Sativa l.). Agriculture 2020, 10, 453. [Google Scholar] [CrossRef]
- Badawy, S.A.; Zayed, B.A.; Bassiouni, S.M.A.; Mahdi, A.H.A.; Majrashi, A.; Ali, E.F.; Seleiman, M.F. Influence of Nano Silicon and Nano Selenium on Root Characters, Growth, Ion Selectivity, Yield, and Yield Components of Rice (Oryza Sativa l.) under Salinity Conditions. Plants 2021, 10, 1657. [Google Scholar] [CrossRef]
- Tripathi, P.; Subedi, S.; Khan, A.L.; Chung, Y.S.; Kim, Y. Silicon Effects on the Root System of Diverse Crop Species Using Root Phenotyping Technology. Plants 2021, 10, 885. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, J.; He, L.; Hafeez, A.; Ning, C.; Cai, K. Silicon Enhances Plant Resistance of Rice against Submergence Stress. Plants 2021, 10, 767. [Google Scholar] [CrossRef]
- Panten, K.; Godlinski, F.; Schroetter, S.; Hofmeier, M. Variability of P Uptake by Plants. In Phosphorus in Agriculture: 100% Zero; Schnug, E., de Kok, L.J., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 155–178. ISBN 978-94-017-7612-7. [Google Scholar]
- Leggewie, G.; Willmitzer, L.; Riesmeier, J.W. Two CDNAs from Potato Are Able to Complement a Phosphate Uptake-Deficient Yeast Mutant: Identification of Phosphate Transporters from Higher Plants. Plant Cell 1997, 9, 381–392. [Google Scholar] [CrossRef]
- Smith, F.W. Sulphur and Phosphorus Transport Systems in Plants. Plant Soil 2001, 232, 109–118. [Google Scholar] [CrossRef]
- Mimura, T.; Sakano, K.; Shimmen, T. Studies on the Distribution, Re-Translocation and Homeostasis of Inorganic Phosphate in Barley Leaves. Plant Cell Environ. 1996, 19, 311–320. [Google Scholar] [CrossRef]
- Guo, W.; Hou, Y.L.; Wang, S.G.; Zhu, Y.G. Effect of Silicate on the Growth and Arsenate Uptake by Rice (Oryza sativa L.) Seedlings in Solution Culture. Plant Soil 2005, 272, 173–181. [Google Scholar] [CrossRef]
- Ma, J.; Takahashi, E. Effect of Silicic Acid on Phosphorus Uptake by Rice Plant. Soil Sci. Plant Nutr. 1989, 35, 227–234. [Google Scholar] [CrossRef]
- Pati, S.; Pal, B.; Badole, S.; Hazra, G.C.; Mandal, B. Effect of Silicon Fertilization on Growth, Yield, and Nutrient Uptake of Rice. Commun. Soil Sci. Plant Anal. 2016, 47, 284–290. [Google Scholar] [CrossRef]
- Ma, J.; Takahashi, E. Effect of Silicon on the Growth and Phosphorus Uptake of Rice. Plant Soil 1990, 126, 115–119. [Google Scholar] [CrossRef]
- Takahashi, E.; Ma, J.F.; Miyake, Y. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 1990, 2, 99–102. [Google Scholar]
- Wang, L.; Ashraf, U.; Chang, C.; Abrar, M.; Cheng, X. Effects of Silicon and Phosphatic Fertilization on Rice Yield and Soil Fertility. J. Soil Sci. Plant Nutr. 2020, 20, 557–565. [Google Scholar] [CrossRef]
- Gholami, Y.; Falah, A. Effects of Two Different Sources of Silicon on Dry Matter Production, Yield and Yield Components of Rice, Tarom Hashemi Variety and 843 Lines. Int. J. Agric. Crop Sci. 2013, 5, 227–231. [Google Scholar]
- Klotzbücher, A.; Klotzbücher, T.; Jahn, R.; Xuan, L.D.; Cuong, L.Q.; Van Chien, H.; Hinrichs, M.; Sann, C.; Vetterlein, D. Effects of Si Fertilization on Si in Soil Solution, Si Uptake by Rice, and Resistance of Rice to Biotic Stresses in Southern Vietnam. Paddy Water Environ. 2018, 16, 243–252. [Google Scholar] [CrossRef]
- Dobermann, A.; Fairhurst, T.H. Rice Straw Management. Better Crops Int. 2002, 16, 7–11. [Google Scholar]
Year | Plant Height | Plant Age | Leaf Color | Dry Weight | Seedling Index |
---|---|---|---|---|---|
(cm) | (SPAD) | (mg) | |||
2021 | 11.62 | 3.12 | 29.78 | 9.96 | 2.68 |
2022 | 11.28 | 2.95 | 29.67 | 8.22 | 2.15 |
pH | EC | Available N | Available P | CEC | Exchangeable Cation | Humus | ||
---|---|---|---|---|---|---|---|---|
Ca | Mg | K | ||||||
(mS cm−1) | (mg kg−1) | (mg kg−1) | (cmolc kg−1) | (cmolc kg−1) | (cmolc kg−1) | (cmolc kg−1) | (%) | |
5.1 | 0.06 | 63.9 | 250.12 | 12.89 | 4.37 | 1.18 | 0.25 | 2.9 |
Year | Treatment | Plant Height | Tiller | Shoot Dry Weight | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm) | (pot−1) | (g pot−1) | |||||||||||
2021 | P0 | 74.3 | ± | 1.2 | a | 29.0 | ± | 2.3 | a | 31.1 | ± | 1.1 | b |
P60 | 74.5 | ± | 3.5 | a | 33.3 | ± | 2.6 | a | 36.3 | ± | 1.1 | ab | |
P90 | 73.0 | ± | 2.1 | a | 31.3 | ± | 2.2 | a | 35.7 | ± | 1.9 | ab | |
P0+Si2 | 77.2 | ± | 1.7 | a | 32.7 | ± | 2.2 | a | 39.2 | ± | 1.5 | a | |
P60+Si2 | 75.3 | ± | 1.5 | a | 33.7 | ± | 1.5 | a | 38.4 | ± | 1.4 | a | |
P60+Si4 | 79.7 | ± | 2.2 | a | 30.7 | ± | 0.3 | a | 41.8 | ± | 0.4 | a | |
2022 | P0 | 72.3 | ± | 0.6 | a | 43.0 | ± | 5.5 | a | 45.8 | ± | 0.4 | b |
P60 | 72.5 | ± | 0.9 | a | 40.0 | ± | 1.2 | a | 52.1 | ± | 2.4 | ab | |
P90 | 71.5 | ± | 1.3 | a | 40.3 | ± | 1.5 | a | 56.1 | ± | 1.4 | a | |
P0+Si2 | 71.0 | ± | 1.5 | a | 43.0 | ± | 2.5 | a | 55.1 | ± | 2.1 | ab | |
P60+Si2 | 72.2 | ± | 1.1 | a | 43.7 | ± | 2.6 | a | 55.2 | ± | 2.1 | ab | |
P90+Si2 | 73.0 | ± | 0.9 | a | 39.7 | ± | 1.7 | a | 56.1 | ± | 3.4 | a | |
P60+Si4 | 72.8 | ± | 1.9 | a | 42.0 | ± | 1.5 | a | 57.0 | ± | 1.0 | a | |
ANOVA | Year | *** | *** | *** | |||||||||
Treatment | n.s. | n.s. | *** | ||||||||||
Year × Treatment | n.s. | n.s. | n.s. |
Grain Yield | Panicles | Spikelets | Filled Spikelets | 1000-Grain Weight | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Mg ha−1) | (m−2) | (panicle−1) | (%) | (g) | ||||||||||||||||
P0 | 5.73 | ± | 0.30 | a | 470.4 | ± | 41.2 | a | 59.1 | ± | 2.6 | a | 90.3 | ± | 0.4 | a | 23.0 | ± | 0.1 | a |
P60 | 6.74 | ± | 0.11 | a | 590.7 | ± | 12.3 | a | 55.9 | ± | 0.9 | a | 88.5 | ± | 0.6 | a | 23.1 | ± | 0.1 | a |
P90 | 6.40 | ± | 0.21 | a | 598.1 | ± | 19.5 | a | 54.0 | ± | 2.3 | a | 86.1 | ± | 1.7 | a | 23.1 | ± | 0.2 | a |
P0+Si2 | 6.69 | ± | 0.08 | a | 600.0 | ± | 21.1 | a | 54.8 | ± | 1.0 | a | 88.8 | ± | 1.9 | a | 23.0 | ± | 0.3 | a |
P60+Si2 | 6.39 | ± | 0.12 | a | 533.3 | ± | 33.9 | a | 60.8 | ± | 1.4 | a | 86.5 | ± | 1.2 | a | 22.9 | ± | 0.2 | a |
P90+Si2 | 6.22 | ± | 0.68 | a | 518.5 | ± | 35.3 | a | 57.4 | ± | 2.0 | a | 90.1 | ± | 0.1 | a | 23.0 | ± | 0.2 | a |
P60+Si4 | 6.51 | ± | 0.32 | a | 607.4 | ± | 19.6 | a | 53.8 | ± | 1.4 | a | 86.6 | ± | 3.5 | a | 23.0 | ± | 0.1 | a |
Year | Treatment | P | Si | ||||||
---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (mg kg−1) | ||||||||
2021 | P0 | 286.9 | ± | 4.32 | b | 51.2 | ± | 2.52 | a |
P60 | 301.7 | ± | 4.78 | ab | 51.9 | ± | 0.53 | a | |
P90 | 318.1 | ± | 2.74 | a | 50.2 | ± | 1.16 | a | |
P0+Si2 | 289.2 | ± | 5.03 | ab | 52.4 | ± | 0.51 | a | |
P60+Si2 | 298.6 | ± | 4.03 | b | 54.5 | ± | 0.39 | a | |
P60+Si4 | 302.5 | ± | 3.41 | ab | 57.2 | ± | 2.72 | a | |
2022 | P0 | 194.6 | ± | 4.11 | d | 41.6 | ± | 0.49 | a |
P60 | 208.7 | ± | 1.44 | b | 43.3 | ± | 1.35 | a | |
P90 | 222.1 | ± | 2.17 | a | 42.0 | ± | 1.50 | a | |
P0+Si2 | 198.2 | ± | 1.89 | cd | 48.1 | ± | 2.26 | a | |
P60+Si2 | 206.5 | ± | 2.41 | bcd | 45.1 | ± | 0.75 | a | |
P90+Si2 | 214.6 | ± | 3.33 | ab | 46.8 | ± | 3.90 | a | |
P60+Si4 | 209.8 | ± | 0.52 | bc | 50.5 | ± | 1.50 | a | |
ANOVA | Year | *** | *** | ||||||
Treatment | *** | ** | |||||||
Year × Treatment | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasukawa, H.; Tajima, R. Preliminary Results on the Application of Phosphorus and Silicon to Improve the Post-Transplantation Growth of High-Density Nursery Seedlings. Agronomy 2025, 15, 937. https://doi.org/10.3390/agronomy15040937
Nasukawa H, Tajima R. Preliminary Results on the Application of Phosphorus and Silicon to Improve the Post-Transplantation Growth of High-Density Nursery Seedlings. Agronomy. 2025; 15(4):937. https://doi.org/10.3390/agronomy15040937
Chicago/Turabian StyleNasukawa, Hisashi, and Ryosuke Tajima. 2025. "Preliminary Results on the Application of Phosphorus and Silicon to Improve the Post-Transplantation Growth of High-Density Nursery Seedlings" Agronomy 15, no. 4: 937. https://doi.org/10.3390/agronomy15040937
APA StyleNasukawa, H., & Tajima, R. (2025). Preliminary Results on the Application of Phosphorus and Silicon to Improve the Post-Transplantation Growth of High-Density Nursery Seedlings. Agronomy, 15(4), 937. https://doi.org/10.3390/agronomy15040937