Reuse of Treated Wastewater to Address Water Scarcity in Viticulture: A Comprehensive Review
Abstract
:1. Introduction
2. Water Scarcity in Agriculture
Water Scarcity in Viticulture
3. Wastewater in Viticulture
3.1. Short-Term Studies and Benefits
3.2. Long-Term Studies and Considerations
4. Environmental and Economic Advantages
5. Conclusions and Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Hashem, M.S.; Qi, X.B. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef] [PubMed]
- Layani, G.; Bakhshoodeh, M.; Zibaei, M.; Viaggi, D. Sustainable Water Resources Management under Population Growth and Agricultural Development in the Kheirabad River Basin, Iran. Bio-Based Appl. Econ. 2022, 10, 305–323. [Google Scholar] [CrossRef]
- Mehmeti, A.; Canaj, K. Environmental Assessment of Wastewater Treatment and Reuse for Irrigation: A Mini-Review of LCA Studies. Resources 2022, 11, 94. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; Food and Agriculture Organization: Rome, Italy, 2018; ISBN 978-92-5-130158-6. [Google Scholar]
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture 2021—Systems at Breaking Point; FAO: Rome, Italy, 2022; ISBN 978-92-5-136127-6. [Google Scholar]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Kumar, R.; Basu, A.; Bishayee, B.; Chatterjee, R.P.; Behera, M.; Ang, W.L.; Pal, P.; Shah, M.; Tripathy, S.K.; Ambika, S.; et al. Management of Tannery Waste Effluents towards the Reclamation of Clean Water Using an Integrated Membrane System: A State-of-the-Art Review. Environ. Res. 2023, 229, 115881. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.-S. Recycling Municipal, Agricultural and Industrial Waste into Energy, Fertilizers, Food and Construction Materials, and Economic Feasibility: A Review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Shehata, N.; Egirani, D.; Olabi, A.G.; Inayat, A.; Abdelkareem, M.A.; Chae, K.-J.; Sayed, E.T. Membrane-Based Water and Wastewater Treatment Technologies: Issues, Current Trends, Challenges, and Role in Achieving Sustainable Development Goals, and Circular Economy. Chemosphere 2023, 320, 137993. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global Agricultural Economic Water Scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef]
- Scholes, R.J. The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate 2020, 8, 43. [Google Scholar] [CrossRef]
- Salehi, M. Global Water Shortage and Potable Water Safety; Today’s Concern and Tomorrow’s Crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- Finco, A.; Bentivoglio, D.; Chiaraluce, G.; Alberi, M.; Chiarelli, E.; Maino, A.; Mantovani, F.; Montuschi, M.; Raptis, K.G.C.; Semenza, F.; et al. Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water 2022, 14, 1493. [Google Scholar] [CrossRef]
- Babin, N.; Klier, C.; Singh, A. Understanding and Promoting Adoption of Irrigation Efficiency Practices in Paso Robles, California Vineyards: The Importance of Farm Typology and Grower Sustainability Networks. Curr. Res. Environ. Sustain. 2022, 4, 100143. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Irrigation: Pros and Cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Yalin, D.; Craddock, H.A.; Assouline, S.; Ben Mordechay, E.; Ben-Gal, A.; Bernstein, N.; Chaudhry, R.M.; Chefetz, B.; Fatta-Kassinos, D.; Gawlik, B.M.; et al. Mitigating Risks and Maximizing Sustainability of Treated Wastewater Reuse for Irrigation. Water Res. X 2023, 21, 100203. [Google Scholar] [CrossRef]
- Monnet, M.; Vignola, R.; Aliotta, Y. Smallholders’ Water Management Decisions in the Face of Water Scarcity from a Socio-Cognitive Perspective, Case Study of Viticulture in Mendoza. Agronomy 2022, 12, 2868. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-133441-6. [Google Scholar]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Entezari, A.; Wang, R.Z.; Zhao, S.; Mahdinia, E.; Wang, J.Y.; Tu, Y.D.; Huang, D.F. Sustainable Agriculture for Water-Stressed Regions by Air-Water-Energy Management. Energy 2019, 181, 1121–1128. [Google Scholar] [CrossRef]
- Crovella, T.; Paiano, A.; Falciglia, P.P.; Lagioia, G.; Ingrao, C. Wastewater Recovery for Sustainable Agricultural Systems in the Circular Economy—A Systematic Literature Review of Life Cycle Assessments. Sci. Total Environ. 2024, 912, 169310. [Google Scholar] [CrossRef]
- Garduño-Jiménez, A.L.; Durán-Álvarez, J.C.; Ortori, C.A.; Abdelrazig, S.; Barrett, D.A.; Gomes, R.L. Delivering on Sustainable Development Goals in Wastewater Reuse for Agriculture: Initial Prioritization of Emerging Pollutants in the Tula Valley, Mexico. Water Res. 2023, 238, 119903. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P.H.; Cooley, H. Freshwater Scarcity. Annu. Rev. Environ. Resour. 2021, 46, 319–348. [Google Scholar] [CrossRef]
- Guiot, J.; Bernigaud, N.; Bondeau, A.; Bouby, L.; Cramer, W. Viticulture Extension in Response to Global Climate Change Drivers—Lessons from the Past and Future Projections. Clim. Past. 2023, 19, 1219–1244. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Bernardo, S.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Mediterranean Viticulture in the Context of Climate Change. Ciênc. Téc. Vitiviníc. 2022, 37, 139–158. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Mota, N.; Martins, S.; Ribeiro, A.C.; Moutinho-Pereira, J.; Pereira, S. Foliar Silicon Application in the Era of Climate Change as a Part of Strategy to Reduce Water Requirements in Mediterranean Viticulture. Horticulturae 2024, 10, 1224. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of Climate Change on Grape Berry Ripening: An Assessment of Adaptation Strategies for the Australian Vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef]
- Naulleau, A.; Gary, C.; Prévot, L.; Berteloot, V.; Fabre, J.-C.; Crevoisier, D.; Gaudin, R.; Hossard, L. Participatory Modeling to Assess the Impacts of Climate Change in a Mediterranean Vineyard Watershed. Environ. Model. Softw. 2022, 150, 105342. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.; Han, J.; Ji, Y.; Zhang, L. Greenhouse Gas Emissions and Net Global Warming Potential of Vineyards under Different Fertilizer and Water Managements in North China. Agric. Water Manag. 2021, 243, 106521. [Google Scholar] [CrossRef]
- Bentivoglio, D.; Chiaraluce, G.; Finco, A. Water Stress as a Critical Issue for Mediterranean Viticulture: Economic Evidence from the Montepulciano d’Abruzzo PDO Grape Based on a Case Study in Central Italy. Wine Econ. Policy 2024, 13, 141–150. [Google Scholar] [CrossRef]
- Wang, W.; Straffelini, E.; Tarolli, P. Steep-Slope Viticulture: The Effectiveness of Micro-Water Storage in Improving the Resilience to Weather Extremes. Agric. Water Manag. 2023, 286, 108398. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Pérez-Álvarez, E.; López-Urrea, R.; Intrigliolo, D.; González-Centeno, M.R.; Teissedre, P.-L.; Gil-Muñoz, R. Is Deficit Irrigation with Saline Waters a Viable Alternative for Winegrowers in Semiarid Areas? OENO One 2022, 56, 101–116. [Google Scholar] [CrossRef]
- Pereyra, G.; Pellegrino, A.; Gaudin, R.; Ferrer, M. Evaluation of Site-Specific Management to Optimise Vitis vinifera L. (Cv. Tannat) Production in a Vineyard with High Heterogeneity. OENO One 2022, 56, 397–412. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.; Araujo, E. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water 2021, 13, 746. [Google Scholar] [CrossRef]
- Pou, A.; Balda, P.; Cifre, J.; Ochogavia, J.M.; Ayestaran, B.; Guadalupe, Z.; Llompart, M.; Bota, J.; Martínez, L. Influence of Non-Irrigation and Seasonality on Wine Colour, Phenolic Composition and Sensory Quality of a Grapevine (Vitis vinifera Cv. Callet) in a Mediterranean Climate. OENO One 2023, 57, 217–233. [Google Scholar] [CrossRef]
- Keller, M. Climate Change Impacts on Vineyards in Warm and Dry Areas: Challenges and Opportunities. Am. J. Enol. Vitic. 2023, 74, 0740033. [Google Scholar] [CrossRef]
- Funes Mesa, I.; Sánchez-Costa, E.; Aranda, X.; Altava-Ortiz, V.; Barrera-Escoda, A.; Prohom, M.; Poyatos, R.; Sánchez-Ortiz, A.; Savé, R.; De Herralde, F. Modelling Future Climate Change Impacts on Grapevine Water Requirements and Growing Cycle in Three Wine PDOs of NE Spain. OENO One 2024, 58, 147–154. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Saraiva, A.; Presumido, P.; Silvestre, J.; Feliciano, M.; Rodrigues, G.; Oliveira e Silva, P.; Damásio, M.; Ribeiro, A.; Ramôa, S.; Ferreira, L.; et al. Water Footprint Sustainability as a Tool to Address Climate Change in the Wine Sector: A Methodological Approach Applied to a Portuguese Case Study. Atmosphere 2020, 11, 934. [Google Scholar] [CrossRef]
- Milani, M.; Consoli, S.; Marzo, A.; Pino, A.; Randazzo, C.; Barbagallo, S.; Cirelli, G.L. Treatment of Winery Wastewater with a Multistage Constructed Wetland System for Irrigation Reuse. Water 2020, 12, 1260. [Google Scholar] [CrossRef]
- Ayache, C.; Poussade, Y.; Jaeger, Y.; Soyeux, E. Water Reuse for Vine Irrigation: From Research to Full-Scale Implementation. Water Reuse 2023, 13, 295–304. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A.; Morrone, D.; Toma, P.; Todorović, M. Life Cycle-Based Evaluation of Environmental Impacts and External Costs of Treated Wastewater Reuse for Irrigation: A Case Study in Southern Italy. J. Clean. Prod. 2021, 293, 126142. [Google Scholar] [CrossRef]
- Vera-Puerto, I.; Valdés, H.; Bueno, M.; Correa, C.; Olave, J.; Carrasco-Benavides, M.; Schiappacasse, F.; Arias, C.A. Reclamation of Treated Wastewater for Irrigation in Chile: Perspectives of the Current State and Challenges. Water 2022, 14, 627. [Google Scholar] [CrossRef]
- Petousi, I.; Daskalakis, G.; Fountoulakis, M.S.; Lydakis, D.; Fletcher, L.; Stentiford, E.I.; Manios, T. Effects of Treated Wastewater Irrigation on the Establishment of Young Grapevines. Sci. Total Environ. 2019, 658, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Abi Saab, M.T.; Zaghrini, J.; Makhlouf, H.; Fahed, S.; Romanos, D.; Khairallah, Y.; Hajjar, C.; Abi Saad, R.; Sellami, M.H.; Todorovic, M. Table Grapes Irrigation with Treated Municipal Wastewater in a Mediterranean Environment. Water Environ. J. 2021, 35, 617–627. [Google Scholar] [CrossRef]
- Howell, C.L.; Hoogendijk, K.; Myburgh, P.A.; Lategan, E.L. An Assessment of Treated Municipal Wastewater Used for Irrigation of Grapevines with Respect to Water Quality and Nutrient Load. S. Afr. J. Enol. Vitic. 2022, 43, 168–179. [Google Scholar] [CrossRef]
- Hoogendijk, K.; Myburgh, P.A.; Howell, C.L.; Lategan, V.; Hoffman, J.E. Effect of Irrigation with Treated Municipal Wastewater on Vitis Vinifera L. Cvs. Cabernet Sauvignon and Sauvignon Blanc in Commercial Vineyards in the Coastal Region of South Africa—Vegetative Growth, Yield and Juice Characteristics. S. Afr. J. Enol. Vitic. 2023, 44, 126–143. [Google Scholar] [CrossRef]
- Simhayov, R.; Ohana-Levi, N.; Shenker, M.; Netzer, Y. Effect of Long-Term Treated Wastewater Irrigation on Soil Sodium Levels and Table Grapevines’ Health. Agric. Water Manag. 2023, 275, 108002. [Google Scholar] [CrossRef]
- Wunderlich, R.F.; Lin, Y.-P.; Ansari, A. Regional Climate Change Effects on the Viticulture in Portugal. Environments 2022, 10, 5. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Vineyard Mulching as a Climate Change Adaptation Measure: Future Simulations for Alentejo, Portugal. Agric. Syst. 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Martins, J.; Fraga, H.; Fonseca, A.; Santos, J.A. Climate Projections for Precipitation and Temperature Indicators in the Douro Wine Region: The Importance of Bias Correction. Agronomy 2021, 11, 990. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a Sustainable Viticulture: The Combination of Deficit Irrigation Strategies and Agroecological Practices in Mediterranean Vineyards. A Review and Update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Torres, N.; Yu, R.; Martínez-Lüscher, J.; Kostaki, E.; Kurtural, S.K. Effects of Irrigation at Different Fractions of Crop Evapotranspiration on Water Productivity and Flavonoid Composition of Cabernet Sauvignon Grapevine. Front. Plant Sci. 2021, 12, 712622. [Google Scholar] [CrossRef]
- Romero Azorín, P.; García García, J. The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions. Sustainability 2020, 12, 1930. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Alatzas, A.; Theocharis, S.; Miliordos, D.-E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The Effect of Water Deficit on Two Greek Vitis Vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef]
- Zheng, S.; Jiang, S.; Cui, N.; Zhao, L.; Gong, D.; Wang, Y.; Wu, Z.; Liu, Q. Deficit Drip Irrigation Improves Kiwifruit Quality and Water Productivity under Rain-Shelter Cultivation in the Humid Area of South China. Agric. Water Manag. 2023, 289, 108530. [Google Scholar] [CrossRef]
- Ali, M.A.; Mohamed, H.M.A.; Elsayed, S.A.; Sillanpää, M.; Al-Farraj, S.; El-sayed, M.E.A. Effect of Integrate Water Shortage and Soil Conditioners on Water Productivity, Growth, and Yield of Red Globe Grapevines Grown in Sandy Soil. Open Agric. 2023, 8, 20220240. [Google Scholar] [CrossRef]
- Martínez-Vidaurre, J.M.; Pérez-Álvarez, E.P.; García-Escudero, E.; Ramos, M.C.; Peregrina, F. Differences in Soil Water Holding Capacity and Available Soil Water along Growing Cycle Can Explain Differences in Vigour, Yield, and Quality of Must and Wine in the DOCa Rioja. Horticulturae 2024, 10, 320. [Google Scholar] [CrossRef]
- Ribalta-Pizarro, C.; Muñoz, P.; Munné-Bosch, S. The Wine Quality of Merlot Relies in Irrigation Supplementation and Spotlights Sustainable Production Constraints in Mediterranean-Type Ecosystems. Aust. J. Grape Wine Res. 2024, 2024, 5001343. [Google Scholar] [CrossRef]
- Zufferey, V.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Blackford, M.; Bourdin, G.; Gindro, K.; Spangenberg, J.E.; et al. The Influence of Vine Water Regime on the Leaf Gas Exchange, Berry Composition and Wine Quality of Arvine Grapes in Switzerland. OENO One 2020, 54, 553–568. [Google Scholar] [CrossRef]
- Ramírez, P.M.; Ibáñez, J.D.L.H. Nutrient Content of Vineyard Leaves after Prolonged Treated Wastewater Irrigation. Agronomy 2023, 13, 620. [Google Scholar] [CrossRef]
- Hoogendijk, K.; Myburgh, P.A.; Howell, C.L.; Lategan, E.L.; Hoffman, J.E. Long-Term Effects of Irrigation with Treated Municipal Wastewater on Soil Chemical and Physical Responses in Commercial Vineyards in the Coastal Region of South Africa. South. Afr. J. Enol. Vitic. 2024, 45, 8–21. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation Management under Water Scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Elmahdi, A. Addressing Water Scarcity in Agricultural Irrigation: By Exploring Alternative Water Resources for Sustainable Irrigated Agriculture. Irrig. Drain. 2024, 73, 1675–1683. [Google Scholar] [CrossRef]
- Thiloka Edirisooriya, E.M.N.; Wang, H.; Banerjee, S.; Longley, K.; Wright, W.; Mizuno, W.; Xu, P. Economic Feasibility of Developing Alternative Water Supplies for Agricultural Irrigation. Curr. Opin. Chem. Eng. 2024, 43, 100987. [Google Scholar] [CrossRef]
- Rusănescu, C.O.; Rusănescu, M.; Constantin, G.A. Wastewater Management in Agriculture. Water 2022, 14, 3351. [Google Scholar] [CrossRef]
- Odone, G.; Perulli, G.D.; Mancuso, G.; Lavrnić, S.; Toscano, A. A Novel Smart Fertigation System for Irrigation with Treated Wastewater: Effects on Nutrient Recovery, Crop and Soil. Agric. Water Manag. 2024, 297, 108832. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, R.; Kumar, M. Use of Treated Sewage or Wastewater as an Irrigation Water for Agricultural Purposes- Environmental, Health, and Economic Impacts. Total Environ. Res. Themes 2023, 6, 100051. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R.; Badawi, M.; Lima, E.C.; Mąkinia, J. Wastewater Reuse in Agriculture: Prospects and Challenges. Environ. Res. 2023, 236, 116711. [Google Scholar] [CrossRef]
- Poustie, A.; Yang, Y.; Verburg, P.; Pagilla, K.; Hanigan, D. Reclaimed Wastewater as a Viable Water Source for Agricultural Irrigation: A Review of Food Crop Growth Inhibition and Promotion in the Context of Environmental Change. Sci. Total Environ. 2020, 739, 139756. [Google Scholar] [CrossRef] [PubMed]
- Guaya, D.; Mendoza, A.; Valderrama, C.; Farran, A.; Sauras-Yera, T.; Cortina, J.L. Use of Nutrient-Enriched Zeolite (NEZ) from Urban Wastewaters in Amended Soils: Evaluation of Plant Availability of Mineral Elements. Sci. Total Environ. 2020, 727, 138646. [Google Scholar] [CrossRef] [PubMed]
- Carpanez, T.G.; Silva, J.B.G.; Otenio, M.H.; Amaral, M.C.S.; Moreira, V.R. Potential for Nutrients Reuse, Carbon Sequestration, and CO2 Emissions Reduction in the Practice of Domestic and Industrial Wastewater Recycling into Agricultural Soils: A Review. J. Environ. Manag. 2024, 370, 122443. [Google Scholar] [CrossRef]
- Maciel, A.P.A.C.; Medeiros, G.; Machado, A.d.S.; Pilatti, M.C.; dos Reis, R.R.; Sampaio, S.C. The Impact of 9 Years of Swine Wastewater Application on the Mineral and Organic Quality of Soil in Various Agricultural Crops. Water 2024, 16, 1412. [Google Scholar] [CrossRef]
- Thebo, A.L.; Drechsel, P.; Lambin, E.F.; Nelson, K.L. A Global, Spatially-Explicit Assessment of Irrigated Croplands Influenced by Urban Wastewater Flows. Environ. Res. Lett. 2017, 12, 074008. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Yang, F.; Zhou, W. Determining Reclaimed Water Quality Thresholds and Farming Practices to Improve Food Crop Yield: A Meta-Analysis Combined with Random Forest Model. Sci. Total Environ. 2023, 862, 160774. [Google Scholar] [CrossRef]
- Alcalde-Sanz, L.; Gawlik, B.M. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge; European Commission: Luxembourg, 2017; ISBN 978-92-79-77175-0. [Google Scholar]
- Hanjra, M.A.; Blackwell, J.; Carr, G.; Zhang, F.; Jackson, T.M. Wastewater Irrigation and Environmental Health: Implications for Water Governance and Public Policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar] [CrossRef]
- Maaß, O.; Grundmann, P. Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany). Sustainability 2018, 10, 1125. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A Transition from Conventional Irrigation to Fertigation with Reclaimed Wastewater: Prospects and Challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Daneshgar, S.; Buttafava, A.; Callegari, A.; Capodaglio, A.G. Economic and Energetic Assessment of Different Phosphorus Recovery Options from Aerobic Sludge. J. Clean. Prod. 2019, 223, 729–738. [Google Scholar] [CrossRef]
- Rossi, G.; Mainardis, M.; Aneggi, E.; Weavers, L.K.; Goi, D. Combined Ultrasound-Ozone Treatment for Reutilization of Primary Effluent—A Preliminary Study. Environ. Sci. Pollut. Res. 2021, 28, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Lazarova, V.; Bahri, A. Water Reuse for Irrigation: Agriculture, Landscapes, and Turf Grass; Lazarova, V., Bahri, A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 1-56670-649-1. [Google Scholar]
- Etchebarne, F.; Aveni, P.; Escudier, J.-L.; Ojeda, H. Reuse of Treated Wastewater in Viticulture: Can It Be an Alternative Source of Nutrient-Rich Water? BIO Web Conf. 2019, 12, 01009. [Google Scholar] [CrossRef]
- Johnson, M.B.; Mehrvar, M. Quantifying Water Use, Conservation and Footprint in the Winery Industry. In Proceedings of the 5th International Conference of Recent Trends in Environmental Science and Engineering (RTESE’21), Virtual, 17–19 May 2021. [Google Scholar]
- Delli Compagni, R.; Gabrielli, M.; Polesel, F.; Turolla, A.; Trapp, S.; Vezzaro, L.; Antonelli, M. Risk Assessment of Contaminants of Emerging Concern in the Context of Wastewater Reuse for Irrigation: An Integrated Modelling Approach. Chemosphere 2020, 242, 125185. [Google Scholar] [CrossRef]
- De Las Heras, J.; Mañas, P. Reclaimed Wastewater to Irrigate Olive Groves and Vineyards: Effects on Soil Properties. Agronomy 2020, 10, 649. [Google Scholar] [CrossRef]
- Pascual, A.; Pena, R.; Gómez-Cuervo, S.; de la Varga, D.; Alvarez, J.A.; Soto, M.; Arias, C.A. Nature Based Solutions for Winery Wastewater Valorisation. Ecol. Eng. 2021, 169, 106311. [Google Scholar] [CrossRef]
- Sdiri, W.; AlSalem, H.S.; Al-Goul, S.T.; Binkadem, M.S.; Ben Mansour, H. Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties. Sustainability 2023, 15, 5793. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater Reuse in Irrigation: A Microbiological Perspective on Implications in Soil Fertility and Human and Environmental Health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Nightingale-McMahon, M.; Robinson, B.; Malcolm, B.; Clough, T.; Whitehead, D. Effects of Winery Wastewater to Soils on Mineral Properties and Soil Carbon. Land 2024, 13, 751. [Google Scholar] [CrossRef]
- Chauhan, A.; Jain, A.; Kolton, M.; Pathak, A. Impacts of Long-Term Irrigation of Municipally-Treated Wastewater to the Soil Microbial and Nutrient Properties. Sci. Total Environ. 2025, 959, 178143. [Google Scholar] [CrossRef]
- VanderWeide, J.; Gottschalk, C.; Schultze, S.R.; Nasrollahiazar, E.; Poni, S.; Sabbatini, P. Impacts of Pre-Bloom Leaf Removal on Wine Grape Production and Quality Parameters: A Systematic Review and Meta-Analysis. Front. Plant Sci. 2021, 11. [Google Scholar] [CrossRef]
- Visconti, F.; Intrigliolo, D.S.; Mirás-Avalos, J.M. Effects of the Annual Nitrogen Fertilization Rate on Vine Performance and Grape Quality for Winemaking: Insights from a Meta-Analysis. Aust. J. Grape Wine Res. 2023, 2023, 7989254. [Google Scholar] [CrossRef]
- Menegassi, L.C.; Rossi, F.; Dominical, L.D.; Tommaso, G.; Montes, C.R.; Gomide, C.A.; Gomes, T.M. Reuse in the Agro-Industrial: Irrigation with Treated Slaughterhouse Effluent in Grass. J. Clean. Prod. 2020, 251, 119698. [Google Scholar] [CrossRef]
- Shqerat, N.; Al-Tabbal, J. Potential Reuse of Greywater for Irrigation of Tomato (Solanum lycopersicum) Plants and Its Effect on Plants Growth and Soil. Int. J. Phytoremediation 2025, 27, 561–582. [Google Scholar] [CrossRef] [PubMed]
- Sušnik, J.; Jussah, O.; Orabi, M.O.M.; Abubakar, M.C.; Quansah, R.F.; Yahaya, W.; Adonadaga, J.A.; Cossa, C.; Ferrato, J.; Cossa, C.A.; et al. Comparative Assessment of Alternative Water Supply Contributions across Five Data-Scarce Cities. Int. J. Water Resour. Dev. 2022, 38, 985–1008. [Google Scholar] [CrossRef]
- Ahmed, N.; Sohail, M.; Ekwam, J. Investigating Alternative Water Supply in Settlements: Cases from Turkana County in Kenya and Orangi in Karachi, Pakistan. Sustainability 2024, 16, 8725. [Google Scholar] [CrossRef]
- Sampson, D.A.; Cook, E.M.; Davidson, M.J.; Grimm, N.B.; Iwaniec, D.M. Simulating Alternative Sustainable Water Futures. Sustain. Sci. 2020, 15, 1199–1210. [Google Scholar] [CrossRef]
- Shemer, H.; Wald, S.; Semiat, R. Challenges and Solutions for Global Water Scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef]
- Al-Karablieh, N.; Al-Elaumi, L.; Al-Karablieh, E.; Tabieh, M.; Al-Jaghbir, M.; Jamrah, A.; Bubba, M. Del The Impact of Short-Term Treated Wastewater Irrigation on Olive Development and Microbial and Chemical Contamination. Water 2025, 17, 463. [Google Scholar] [CrossRef]
- Regus, F.; Laffont-Schwob, I.; Prudent, P.; Foli, L.; Capowiez, Y.; Capelle, J.; Hamrouni, R.; Dupuy, N.; Folzer, H.; Farnet Da Silva, A.M. Challenges in Viticulture Practices in a Changing Environment: Can Green Waste Amendment Benefit Soil Properties of Vineyards in the Mediterranean? Geoderma Reg. 2024, 38, e00844. [Google Scholar] [CrossRef]
- Mancuso, G.; Parlato, M.C.M.; Lavrnić, S.; Toscano, A.; Valenti, F. GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy. Sustainability 2022, 14, 9364. [Google Scholar] [CrossRef]
- Procházková, M.; Touš, M.; Horňák, D.; Miklas, V.; Vondra, M.; Máša, V. Industrial Wastewater in the Context of European Union Water Reuse Legislation and Goals. J. Clean. Prod. 2023, 426, 139037. [Google Scholar] [CrossRef]
- Berbel, J.; Mesa-Pérez, E.; Simón, P. Challenges for Circular Economy under the EU 2020/741 Wastewater Reuse Regulation. Glob. Chall. 2023, 7, 2200232. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments 2023, 10, 17. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y. Wastewater Irrigation: Past, Present, and Future. Wiley Interdiscip. Rev. Water 2019, 6, e1234. [Google Scholar] [CrossRef]
- Wdowikowska, A.; Reda, M.; Kabała, K.; Chohura, P.; Jurga, A.; Janiak, K.; Janicka, M. Water and Nutrient Recovery for Cucumber Hydroponic Cultivation in Simultaneous Biological Treatment of Urine and Grey Water. Plants 2023, 12, 1286. [Google Scholar] [CrossRef]
- Boularbah, S.; El Khoumsi, W.; Bourziza, R.; Bourioug, M.; Abouabdillah, A. Treated Waste Water Reuse in Agriculture: An Overview. E3S Web Conf. 2024, 492, 05002. [Google Scholar] [CrossRef]
- Revitt, D.M.; Lundy, L.; Fatta-Kassinos, D. Development of a Qualitative Approach to Assessing Risks Associated with the Use of Treated Wastewater in Agricultural Irrigation. J. Hazard. Mater. 2021, 406, 124286. [Google Scholar] [CrossRef]
- Drechsel, P.; Qadir, M.; Galibourg, D. The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. Water 2022, 14, 864. [Google Scholar] [CrossRef]
- Breitenmoser, L.; Cuadrado Quesada, G.; Bassi, N.; Dkhar, N.B.; Phukan, M.; Kumar, S.; Naga Babu, A.; Kierstein, A.; Campling, P. Perceived Drivers and Barriers in the Governance of Wastewater Treatment and Reuse in India: Insights from a Two-Round Delphi Study. Resour. Conserv. Recycl. 2022, 182, 106285. [Google Scholar] [CrossRef]
- Akpan, V.E.; Omole, D.O.; Bassey, D.E. Assessing the Public Perceptions of Treated Wastewater Reuse: Opportunities and Implications for Urban Communities in Developing Countries. Heliyon 2020, 6, e05246. [Google Scholar] [CrossRef]
- Kumpel, E.; MacLeod, C.; Stuart, K.; Cock-Esteb, A.; Khush, R.; Peletz, R. From Data to Decisions: Understanding Information Flows within Regulatory Water Quality Monitoring Programs. NPJ Clean. Water 2020, 3, 38. [Google Scholar] [CrossRef]
- Vergine, P.; Salerno, C.; Libutti, A.; Beneduce, L.; Gatta, G.; Berardi, G.; Pollice, A. Closing the Water Cycle in the Agro-Industrial Sector by Reusing Treated Wastewater for Irrigation. J. Clean. Prod. 2017, 164, 587–596. [Google Scholar] [CrossRef]
- Santillán, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate Change Risks and Adaptation: New Indicators for Mediterranean Viticulture. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 881–899. [Google Scholar] [CrossRef]
- Miccichè, D.; Puccio, S.; Di Lorenzo, R.; Turano, L.; Di Carlo, F.; Pisciotta, A. Adapting Viticulture to Climate Change: Impact of Shading in Sicily. Horticulturae 2025, 11, 163. [Google Scholar] [CrossRef]
- Mendoza-Espinosa, L.G.; Cabello-Pasini, A.; Macias-Carranza, V.; Daessle-Heuser, W.; Orozco-Borbón, M.V.; Quintanilla-Montoya, A.L. The Effect of Reclaimed Wastewater on the Quality and Growth of Grapevines. Water Sci. Technol. 2008, 57, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Hirzel, D.R.; Steenwerth, K.; Parikh, S.J.; Oberholster, A. Impact of Winery Wastewater Irrigation on Soil, Grape and Wine Composition. Agric. Water Manag. 2017, 180, 178–189. [Google Scholar] [CrossRef]
- Paranychianakis, N.V.; Nikolantonakis, M.; Spanakis, Y.; Angelakis, A.N. The Effect of Recycled Water on the Nutrient Status of Soultanina Grapevines Grafted on Different Rootstocks. Agric. Water Manag. 2006, 81, 185–198. [Google Scholar] [CrossRef]
- Cherfouh, R.; Lucas, Y.; Derridj, A.; Merdy, P. Long-Term, Low Technicality Sewage Sludge Amendment and Irrigation with Treated Wastewater under Mediterranean Climate: Impact on Agronomical Soil Quality. Environ. Sci. Pollut. Res. 2018, 25, 35571–35581. [Google Scholar] [CrossRef]
- Netzer, Y.; Shenker, M.; Schwartz, A. Effects of Irrigation Using Treated Wastewater on Table Grape Vineyards: Dynamics of Sodium Accumulation in Soil and Plant. Irrig. Sci. 2014, 32, 283–294. [Google Scholar] [CrossRef]
- Weber, E.; Grattan, S.R.; Hanson, B.R.; Vivaldi, G.A.; Meyer, R.D.; Prichard, T.L.; Schwankl, L.J. Recycled Water Causes No Salinity or Toxicity Issues in Napa Vineyards. Calif. Agric. 2014, 68, 59–67. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Tezza, L.; Vendrame, N.; Pitacco, A. Disentangling the Carbon Budget of a Vineyard: The Role of Soil Management. Agric. Ecosyst. Environ. 2019, 272, 52–62. [Google Scholar] [CrossRef]
- Paramesh, V.; Mohan Kumar, R.; Rajanna, G.A.; Gowda, S.; Nath, A.J.; Madival, Y.; Jinger, D.; Bhat, S.; Toraskar, S. Integrated Nutrient Management for Improving Crop Yields, Soil Properties, and Reducing Greenhouse Gas Emissions. Front. Sustain. Food Syst. 2023, 7, 1173258. [Google Scholar] [CrossRef]
- Filipović, L.; Krevh, V.; Chen, R.; Defterdarović, J.; Kovač, Z.; Mustać, I.; Bogunović, I.; He, H.; Baumgartl, T.; Gerke, H.H.; et al. Quantification of Intra- vs. Inter-Row Leaching of Major Plant Nutrients in Sloping Vineyard Soils. Water 2023, 15, 759. [Google Scholar] [CrossRef]
- Abbasmiri, S.S.; Mortazavi, S.A.; Alamdarlo, H.N.; Vakilpoor, M.H. Quantitative and Qualitative Management of Water Resources with the Use of Treated Wastewater in Agriculture. Water Environ. Res. 2024, 96, e11064. [Google Scholar] [CrossRef]
- Arena, C.; Genco, M.; Mazzola, M.R. Environmental Benefits and Economical Sustainability of Urban Wastewater Reuse for Irrigation—A Cost-Benefit Analysis of an Existing Reuse Project in Puglia, Italy. Water 2020, 12, 2926. [Google Scholar] [CrossRef]
- Cakmakci, T.; Sahin, U. Productivity and Heavy Metal Pollution Management in a Silage Maize Field with Reduced Recycled Wastewater Applications with Different Irrigation Methods. J. Environ. Manag. 2021, 291, 112602. [Google Scholar] [CrossRef]
- Denora, M.; Candido, V.; Brunetti, G.; De Mastro, F.; Murgolo, S.; De Ceglie, C.; Salerno, C.; Gatta, G.; Giuliani, M.M.; Mehmeti, A.; et al. Uptake and Accumulation of Emerging Contaminants in Processing Tomato Irrigated with Tertiary Treated Wastewater Effluent: A Pilot-Scale Study. Front. Plant Sci. 2023, 14, 1238163. [Google Scholar] [CrossRef]
- Lyu, S.; Wu, L.; Wen, X.; Wang, J.; Chen, W. Effects of Reclaimed Wastewater Irrigation on Soil-Crop Systems in China: A Review. Sci. Total Environ. 2022, 813, 152531. [Google Scholar] [CrossRef]
- Gatta, G.; Carucci, F.; Gagliardi, A.; Perniola, M.; Denora, M.; De Mastro, F.; Brunetti, G.; Murgolo, S.; De Ceglie, C.; Pollice, A.; et al. Possible Accumulation of Emerging Contaminants of Concern in Treated Wastewater on the Soil Plant System of a Processing Tomato-Wheat Succession. Agric. Water Manag. 2025, 308, 109305. [Google Scholar] [CrossRef]
- Fito, J.; Van Hulle, S.W.H. Wastewater Reclamation and Reuse Potentials in Agriculture: Towards Environmental Sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater Fertigation in Agriculture: Issues and Opportunities for Improved Water Management and Circular Economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef] [PubMed]
- Leonel, L.P.; Tonetti, A.L. Wastewater Reuse for Crop Irrigation: Crop Yield, Soil and Human Health Implications Based on Giardiasis Epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.S.; Carlos, C.; Oliveira, A.A.; Barros, A.N. Reuse of Treated Wastewater to Address Water Scarcity in Viticulture: A Comprehensive Review. Agronomy 2025, 15, 941. https://doi.org/10.3390/agronomy15040941
Costa CS, Carlos C, Oliveira AA, Barros AN. Reuse of Treated Wastewater to Address Water Scarcity in Viticulture: A Comprehensive Review. Agronomy. 2025; 15(4):941. https://doi.org/10.3390/agronomy15040941
Chicago/Turabian StyleCosta, Cátia Sofia, Cristina Carlos, Ana Alexandra Oliveira, and Ana Novo Barros. 2025. "Reuse of Treated Wastewater to Address Water Scarcity in Viticulture: A Comprehensive Review" Agronomy 15, no. 4: 941. https://doi.org/10.3390/agronomy15040941
APA StyleCosta, C. S., Carlos, C., Oliveira, A. A., & Barros, A. N. (2025). Reuse of Treated Wastewater to Address Water Scarcity in Viticulture: A Comprehensive Review. Agronomy, 15(4), 941. https://doi.org/10.3390/agronomy15040941