Culture of Flower Buds and Ovaries in Miscanthus × giganteus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Material and Growth Conditions
2.3. Inflorescence Pretreatment
2.4. Ovary Culture
2.5. Flower Bud Culture
2.6. Reducing Explant Darkening
2.7. Plant Regeneration
2.8. Ploidy and Chromosome Number Determination
2.9. Statistical Analysis
3. Results and Discussion
3.1. Ovary Culture
3.2. Flower Bud Culture
3.3. Ploidy and Chromosome Number of Regenerants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben Fradj, N.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crops Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Lewandowski, I. Micropropagation of Miscanthus × giganteus. In High-Tech and Micropropagation V. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 39, pp. 239–255. [Google Scholar]
- Jensen, E.; Robson, P.; Farrar, K.; Thomas Jones, S.; Clifton-Brown, J.; Payne, R.; Donnison, I. Towards Miscanthus combustion quality improvement: The role of flowering and senescence. GCB Bioenergy 2017, 9, 891–908. [Google Scholar] [CrossRef] [PubMed]
- Bilandzija, N.; Jurisic, V.; Voca, N.; Leto, J.; Matin, A.; Sito, S.; Kricka, T. Combustion properties of Miscanthus x giganteus biomass—Optimization of harvest time. J. Energy Inst. 2017, 90, 528–533. [Google Scholar] [CrossRef]
- Ma, J.Y.; Sun, W.; Koteyeva, N.K.; Voznesenskaya, E.; Stutz, S.S.; Gandin, A.; Smith-Moritz, A.M.; Heazlewood, J.L.; Cousins, A.B. Influence of light and nitrogen on the photosynthetic efficiency in the C4 plant Miscanthus × giganteus. Photosynth. Res. 2017, 131, 1–13. [Google Scholar] [CrossRef]
- Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Manag. 2018, 9, 415–423. [Google Scholar] [CrossRef]
- Hanssen, S.V.; Daioglou, V.; Steinmann, Z.J.N.; Doelman, J.C.; Van Vuuren, D.P.; Huijbregts, M.A.J. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Chang. 2020, 10, 1023–1029. [Google Scholar] [CrossRef]
- Hodkinson, T.R.; Chase, M.W.; Takahashi, C.; Leitch, I.J.; Bennett, M.D.; Renvoize, S.A. The use of DNA sequencing (ITS and TRNL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am. J. Bot. 2002, 89, 279–286. [Google Scholar] [CrossRef]
- Nishiwaki, A.; Mizuguti, A.; Kuwabara, S.; Toma, Y.; Ishigaki, G.; Miyashita, T.; Yamada, T.; Matuura, H.; Yamaguchi, S.; Lane Rayburn, A.; et al. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am. J. Bot. 2011, 98, 154–159. [Google Scholar] [CrossRef]
- Sacks, E.J.; Juvik, J.A.; Lin, Q.; Ryan Stewart, J.; Yamada, T. The gene pool of Miscanthus species and its improvement. In Genomics of the Saccharinae; Springer: New York, NY, USA, 2013; pp. 73–101. [Google Scholar]
- Clifton-Brown, J.C.; Chiang, Y.C.; Hodkinson, T.R. Miscanthus: Genetic Resources and Breeding Potential to Enhance Bioenergy Production; Vermerris, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Danielewicz, D.; Surma-Ślusarska, B. Miscanthus × giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Ind. Crops Prod. 2019, 141, 111744. [Google Scholar] [CrossRef]
- Kopeć, P.; Płażek, A. An attempt to restore the fertility of Miscanthus × giganteus. Agronomy 2023, 13, 323. [Google Scholar] [CrossRef]
- Słomka, A.; Kuta, E.; Płazek, A.; Dubert, F.; Zur, I.; Dubas, E.; Kopeć, P.; Zurek, G. Sterility of Miscanthus × giganteus results from hybrid incompatibility. Acta Biol. Cracoviensia Ser. Bot. 2012, 54, 113–120. [Google Scholar] [CrossRef]
- Dwiyanti, M.S.; Rudolph, A.; Swaminathan, K.; Nishiwaki, A.; Shimono, Y.; Kuwabara, S.; Matuura, H.; Nadir, M.; Moose, S.; Stewart, J.R.; et al. Genetic analysis of putative triploid Miscanthus hybrids and tetraploid M. sacchariflorus collected from sympatric populations of Kushima, Japan. Bioenergy Res. 2013, 6, 486–493. [Google Scholar] [CrossRef]
- Płazek, A.; Dubert, F.; Kopeć, P.; Krepski, T.; Kacorzyk, P.; Micek, P.; Kurowska, M.; Szarejko, I.; Zurek, G. In vitro-propagated Miscanthus × giganteus plants can be a source of diversity in terms of their chemical composition. Biomass Bioenergy 2015, 75, 142–149. [Google Scholar] [CrossRef]
- Perera, D.; Barnes, D.J.; Baldwin, B.S.; Reichert, N.A. Direct and indirect in vitro regeneration of Miscanthus × giganteus cultivar Freedom: Effects of explant type and medium on regeneration efficiency. Vitr. Cell. Dev. Biol.—Plant 2015, 51, 294–302. [Google Scholar] [CrossRef]
- Holme, I.B.; Petersen, K.K. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda “Giganteus”. Plant Cell Tissue Organ Cult. 1996, 45, 43–52. [Google Scholar] [CrossRef]
- Holme, I.B.; Krogstrup, P.; Hansen, J. Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus x ogiformis Honda Giganteus’ as affected by proline. Plant Cell Tissue Organ Cult. 1997, 50, 203–210. [Google Scholar] [CrossRef]
- Głowacka, K.; Jeżowski, S.; Kaczmarek, Z. The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult. 2010, 102, 79–86. [Google Scholar] [CrossRef]
- Płażek, A.; Dubert, F. Improvement of medium for Miscanthus × giganteus callus induction and plant regeneration. Acta Biol. Cracoviensia Ser. Bot. 2010, 52, 105–110. [Google Scholar] [CrossRef]
- Rambaud, C.; Arnoult, S.; Bluteau, A.; Mansard, M.C.; Blassiau, C.; Brancourt-Hulmel, M. Shoot organogenesis in three Miscanthus species and evaluation for genetic uniformity using AFLP analysis. Plant Cell Tissue Organ Cult. 2013, 113, 437–448. [Google Scholar] [CrossRef]
- San Noem, L.H. In vitro induction of gynogenesis in higher plants. In Broadening the Genetic Base of Crops; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1979; pp. 327–329. [Google Scholar]
- Tulecke, W. A haploid tissue culture from the female gametophyte of Gingko biloba L. Nature 1964, 2003, 94–95. [Google Scholar] [CrossRef]
- Uchimiya, H.; Toshiaki, K.; Norindo, T. In vitro culture of unfertilized ovules in Solanum melongena and ovaries in Zea mays. Jpn. J. Breed. 1971, 21, 247–250. [Google Scholar] [CrossRef]
- San Noem, L.H. Haploides d’Hordeum vulgare L. par culture in vitro non fécondés. Ann. Amélior. Plantes 1976, 26, 751–754. [Google Scholar]
- Żur, I.; Dubas, E.; Słomka, A.; Dubert, F.; Kuta, E.; Płażek, A. Failure of androgenesis in Miscanthus × giganteus in vitro culture of cytologically unbalanced microspores. Plant Reprod. 2013, 26, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Zwierzykowski, Z.; Zwierzykowska, E.; Slusarkiewicz-Jarzina, A.; Ponitka, A. Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea x Lolium multiflorum. Euphytica 1999, 105, 191–195. [Google Scholar] [CrossRef]
- Zare, A.G.; Humphreys, M.W.; Rogers, J.W.; Mortimer, A.M.; Collin, H.A. Androgenesis in a Lolium multiflorum x Festuca arundinacea hybrid to generate genotypic variation for drought resistance. Euphytica 2002, 125, 1–11. [Google Scholar] [CrossRef]
- Głowacka, K.; Jezowski, S.; Kaczmarek, Z. In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind. Crops Prod. 2010, 32, 88–96. [Google Scholar] [CrossRef]
- Yu, C.Y.; Kim, H.S.; Rayburn, A.L.; Widholm, J.M.; Juvik, J.A. Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. GCB Bioenergy 2009, 1, 404–412. [Google Scholar] [CrossRef]
- Chae, W.B.; Hong, S.J.; Gifford, J.M.; Lane Rayburn, A.; Widholm, J.M.; Juvik, J.A. Synthetic polyploid production of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus x giganteus. GCB Bioenergy 2013, 5, 338–350. [Google Scholar] [CrossRef]
- Petersen, K.K.; Hagberg, P.; Kristiansen, K. Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tissue Organ Cult. 2003, 73, 137–146. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef]
- Baduel, P.; Bray, S.; Vallejo-Marin, M.; Kolář, F.; Yant, L. The “Polyploid Hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018, 6, 1–19. [Google Scholar] [CrossRef]
- Hollister, J.D. Polyploidy: Adaptation to the genomic environment. New Phytol. 2015, 205, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. Preparing the nutrient solution. The Water-Culture Method for Growing Plants without Soil. In California Agricultural Experiment Station Circular; University of Michigan Library: Ann Arbor, MI, USA, 1950; Volume 347, pp. 29–31. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tabacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sibi, M.L.; Kobaissi, A.; Shekafandeh, A. Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica 2001, 122, 351–359. [Google Scholar] [CrossRef]
- Wremerth, E.; Levall, M.W. Doubled haploid production of sugar beet (Beta vulgaris L.). In Doubled Haploid Production in Crop Plants; Maluszysnki, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Springer Science+Business Media: New York, NY, USA, 2003; pp. 255–263. [Google Scholar]
- Martinez, L. In vitro gynogenesis induction and doubled haploid production in onion (Allium cepa L.). In Doubled Haploid Production in Crop Plants; Maluszynski, M., Krasha, K.J., Forster, B.P., Szarejko, I., Eds.; Springer Science+Business Media: New York, NY, USA, 2003; pp. 275–279. [Google Scholar]
- Chramiec-Głabik, A.; Grabowska-Joachimiak, A.; Sliwinska, E.; Legutko, J.; Kula, A. Cytogenetic analysis of Miscanthus × giganteus and its parent forms. Caryologia 2012, 65, 234–242. [Google Scholar] [CrossRef]
- Ślusarkiewicz-Jarzina, A.; Ponitka, A.; Cerazy-Waliszewska, J.; Wojciechowicz, M.K.; Sobańska, K.; Jeżowski, S.; Pniewski, T. Effective and simple in vitro regeneration system of Miscanthus sinensis, M. × giganteus and M. sacchariflorus for planting and biotechnology purposes. Biomass Bioenergy 2017, 107, 219–226. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Fundation for Statistical Computing: Vienna, Austria, 2023; Available online: www.r-project.org (accessed on 28 December 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D.; dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://github.com/tidyverse/dplyr (accessed on 28 December 2024).
- Wieckham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Permadi, N.; Akbari, S.I.; Prismantoro, D.; Indriyani, N.N.; Nurzaman, M.; Alhasnawi, A.N.; Doni, F.; Julaeha, E. Traditional and next-generation methods for browning control in plant tissue culture: Current insights and future directions. Curr. Plant Biol. 2024, 38, 100339. [Google Scholar] [CrossRef]
- Płażek, A.; Hura, K.; Hura, T.; Słomka, A.; Hornyák, M.; Sychta, K. Synthesis of heat-shock proteins HSP-70 and HSP-90 in flowers of common buckwheat (Fagopyrum esculentum) under thermal stress. Crop Pasture Sci. 2020, 71, 760. [Google Scholar] [CrossRef]
- Gubišová, M.; Gubiš, J.; Žofajová, A.; Mihálik, D.; Kraic, J. Enhanced in vitro propagation of Miscanthus × giganteus. Ind. Crops Prod. 2013, 41, 279–282. [Google Scholar] [CrossRef]
- Nomura, K.; Matsumoto, S.; Masuda, K.; Inoue, M. Reduced glutathione promotes callus growth and shoot development in a shoot tip culture of apple root stock M26. Plant Cell Rep. 1998, 17, 597–600. [Google Scholar] [CrossRef]
- Jakše, M.; Bohanec, B.; Ihan, A. Effect of media components on the gynogenic regeneration of onion (Allium cepa L.) cultivars and analysis of regenerants. Plant Cell Rep. 1996, 15, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.M.; Cistué, L. Production of gynogenic haploids of Hordeum vulgare L. Plant Cell Rep. 1993, 12, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Getahun, T.; Feyissa, T.; Gugsa, L. Regeneration of plantlets from unpollinated ovary cultures of Ethiopian wheat (Triticum turgidum and Triticum aestivum). Afr. J. Biotechnol. 2013, 12, 5754–5760. [Google Scholar]
- Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, K.; Noga, A.; Kapłoniak, K.; Pilipowicz, M.; Skrzypek, E. Factors inducing regeneration response in oat (Avena sativa L.) anther culture. Vitr. Cell. Dev. Biol.—Plant 2019, 55, 595–604. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhou, C. In vitro induction of haploid plants from unpollinated ovaries and ovules. Theor. Appl. Genet. 1982, 63, 97–104. [Google Scholar] [CrossRef]
- Gugsa, L.; Sarial, A.K.; Lörz, H.; Kumlehn, J. Gynogenic plant regeneration from unpollinated flower explants of Eragrostis tef (Zuccagni) Trotter. Plant Cell Rep. 2006, 25, 1287–1293. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Hu, C.Y.; Lu, Y.G.; Li, J.Q.; Liu, X.D. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice. J. Integr. Plant Biol. 2009, 51, 3–12. [Google Scholar] [CrossRef]
M A 1 | MS 2/Bv1 3 | M A 4 | |
---|---|---|---|
Macro elements [mg dm−3] | |||
KNO3 | 1900 | 1900 | 2530 |
NH4NO3 | 1650 | 1650 | 320 |
CaCl2 · 2H2O | 440 | 440 | 150 |
MgSO4 · 7H2O | 370 | 370 | 247 |
KH2PO4 | 170 | 170 | |
NH4H2PO4 | 230 | ||
NaH2PO4 · 2H2O | 152 | ||
(NH4)2SO4 | 134 | ||
Micro elements [mg dm−3] | |||
KI | 0.83 | 0.83 | 0.75 |
H3BO3 | 6.2 | 6.2 | 3 |
MnSO4 · 4H2O | 22.3 | 22.3 | 13.2 |
ZnSO4 · 2H2O | 8.6 | 8.6 | 2 |
Na2MoO4 · 2H2O | 0.25 | 0.25 | 0.25 |
CuSO4 · 5H2O | 0.025 | 0.025 | 0.025 |
CoCl2 · 6H2O | 0.025 | 0.025 | 0.025 |
FeSO4 · 7H2O | 27.8 | 27.8 | 27.8 |
Na2-EDTA | 37.3 | 37.3 | 37.3 |
Vitamins and amino acids [mg dm−3] | |||
myo-Inositol | 100 | 100 | 100 |
Nicotinic acid | 1 | 0.5 | 0.5 |
Pyroxidine HCl | 1 | 0.5 | 0.5 |
Thiamine HCl | 1 | 0.4 | 0.1 |
Glycine | 2.0 | 2.0 | |
Glutamine | 750 | ||
pH | 5.8 | 5.8 | 5.8 |
Medium Symbol | BM | Growth Regulators [mg dm−3] | Polyamines [mM] | Sugar [g dm−3] | Gelling Agent [g dm−3] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2,4-D | Dic | Kin | BA | Put | Spe | Suc | Mal | Agarose | Agar | ||
Ovary culture | |||||||||||
O1 | M A 1 | 2.0 | 0.5 | 60 | 7.0 | ||||||
O2 | M A 1 | 2.0 | 0.5 | 2.0 | 60 | 7.0 | |||||
O3 | M A 1 | 2.0 | 0.5 | 0.1 | 60 | 7.0 | |||||
O4 | Bv1 | 0.05 | 0.3 | 80 | 5.8 | ||||||
O5 | Bv1 | 0.05 | 0.3 | 2.0 | 80 | 5.8 | |||||
O6 | Bv1 | 0.05 | 0.3 | 0.1 | 80 | 5.8 | |||||
Flower bud culture | |||||||||||
F1 | MS | 5.0 | 0.2 | 30 | 8.0 | ||||||
F2 | MS | 5.0 | 0.2 | 30 | 8.0 | ||||||
F3 | MS | 2.0 | 0.2 | 30 | 8.0 | ||||||
F4 | MS | 2.0 | 0.2 | 30 | 8.0 | ||||||
F5 | MS | 5.0 | 0.2 | 30 | 8.0 | ||||||
F6 | MS | 5.0 | 0.2 | 30 | 8.0 | ||||||
F7 | MS | 2.0 | 0.2 | 30 | 8.0 | ||||||
F8 | MS | 2.0 | 0.2 | 30 | 8.0 | ||||||
F9 | MS | 5.0 | 0.2 | 50 | 8.0 | ||||||
F10 | MS | 5.0 | 0.2 | 50 | 8.0 | ||||||
F11 | MS | 5.0 | 0.2 | 2.0 | 30 | 8.0 | |||||
F12 | MS | 5.0 | 0.2 | 2.0 | 30 | 8.0 | |||||
F13 | MS | 5.0 | 0.2 | 0.1 | 30 | 8.0 | |||||
F14 | MS | 5.0 | 0.2 | 0.1 | 30 | 8.0 | |||||
F15 | M A 2 | 2.0 | 100 | 7.5 | |||||||
F16 | M A 2 | 0.1 | 100 | 7.5 | |||||||
Plant regeneration | |||||||||||
RM | MS | 0.05 | 0.2 | 30 | 8.0 |
Induction Medium | Light Conditions | No. of Calli | No. of Shoots | CIR | PRR | TRE |
---|---|---|---|---|---|---|
F1 | Dark | 10 | 20 | 2.5 | 2.0 | 5.0 |
Light | 7 | 14 | 1.8 | 2.0 | 3.5 | |
F2 | Dark | 14 | 28 | 3.5 | 2.0 | 7.0 |
Light | 7 | 16 | 1.8 | 2.3 | 4.0 | |
F5 | Dark | 74 | 167 | 18.5 | 2.3 | 41.8 |
Light | 48 | 112 | 12.0 | 2.3 | 28.0 | |
F6 | Dark | 85 | 183 | 21.3 | 2.2 | 45.8 |
Light | 30 | 53 | 7.5 | 1.8 | 13.3 | |
F9 | Dark | 15 | 30 | 3.8 | 2.0 | 7.5 |
Light | 13 | 28 | 3.3 | 2.2 | 7.0 | |
F10 | Dark | 39 | 75 | 9.8 | 1.9 | 18.8 |
Light | 12 | 25 | 3.0 | 2.1 | 6.3 |
Induction Medium | Light Conditions | No. of Calli | No. of Shoots | CIR | PRR | TRE |
---|---|---|---|---|---|---|
F1 | Light | 2 | 2 | 0.5 | 1.0 | 0.5 |
F2 | Light | 3 | 3 | 0.8 | 1.0 | 0.8 |
F5 | Light | 3 | 3 | 0.8 | 1.0 | 0.8 |
F10 | Light | 2 | 2 | 0.5 | 1.0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopeć, P.; Laskoś, K.; Płażek, A. Culture of Flower Buds and Ovaries in Miscanthus × giganteus. Agronomy 2025, 15, 962. https://doi.org/10.3390/agronomy15040962
Kopeć P, Laskoś K, Płażek A. Culture of Flower Buds and Ovaries in Miscanthus × giganteus. Agronomy. 2025; 15(4):962. https://doi.org/10.3390/agronomy15040962
Chicago/Turabian StyleKopeć, Przemysław, Kamila Laskoś, and Agnieszka Płażek. 2025. "Culture of Flower Buds and Ovaries in Miscanthus × giganteus" Agronomy 15, no. 4: 962. https://doi.org/10.3390/agronomy15040962
APA StyleKopeć, P., Laskoś, K., & Płażek, A. (2025). Culture of Flower Buds and Ovaries in Miscanthus × giganteus. Agronomy, 15(4), 962. https://doi.org/10.3390/agronomy15040962