Hidden Stigmas Enhance Heat Resilience: A Novel Breeding Trait for Sustaining Rice Spikelet Fertility Under Nocturnal Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment I: Nocturnal Heat Effects on Spikelet Fertility in Contrasting Rice Cultivars in Plant Growth Chambers
2.2. Experiment II: Exploration of Stigma Exsertion on Spikelet Fertility Under Nocturnal Heat Using Diverse Rice Cultivars in the Greenhouse
2.3. Experiment III: Verification of Roles of Stigma Exsertion on Spikelet Fertility Under Nocturnal Heat via Exogenous Substances Application
2.4. Determination of Stigma Exsertion and Spikelet Fertility
2.5. Data Analysis
3. Results
3.1. Variations in Spikelet Fertility Among Rice Cultivars with Different Stigma Exsertion
3.2. Correlation Between Spikelet Fertility and Stigma Exsertion
3.3. Manipulating Stigma Exsertion Alters Spikelet Fertility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, S.; Wang, K.; Mao, Y. Rapid local urbanization around most meteorological stations explain the observed daily asymmetric warming rates across China from 1985 to 2017. J. Clim. 2020, 33, 9045–9061. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Maclean, I.M.D.; Gardner, A.S.; Gaston, K.J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 2020, 26, 7099–7111. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Kim, H.; Hashizume, M.; Lee, W.; Honda, Y.; Kim, S.E.; Kinney, P.L.; Schneider, A.; Zhang, Y.; Zhu, Y.; et al. The effects of night-time warming on mortality burden under future climate change scenarios: A modelling study. Lancet Planet. Health 2022, 6, e648–e657. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Cheng, W.; Chen, C.P.; Hasegawa, T. Short-term high nighttime temperatures pose an emerging risk to rice grain failure. Agric. For. Meteorol. 2022, 314, 108779. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.; et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef]
- Xiong, Z.; Zheng, F.; Wu, C.; Tang, H.; Xiong, D.; Cui, K.; Peng, S.; Huang, J. Nitrogen supply mitigates temperature stress effects on rice photosynthetic nitrogen use efficiency and water relations. Plants 2025, 14, 961. [Google Scholar] [CrossRef]
- Sadok, W.; Jagadish, S.V.K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 2020, 25, 644–651. [Google Scholar] [CrossRef]
- Cabusora, C.C. Developing climate-resilient crops: Adaptation to abiotic stress-affected areas. Technol. Agron. 2024, 4, e005. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Su, Q.; Rohila, J.S.; Ranganathan, S.; Karthikeyan, R. Rice yield and quality in response to daytime and nighttime temperature increase–A meta-analysis perspective. Sci. Total Environ. 2023, 898, 165256. [Google Scholar] [CrossRef]
- Qi, B.; Wu, C. Potential roles of stigma exsertion on spikelet fertility in rice (Oryza sativa L.) under heat stress. Front. Plant Sci. 2022, 13, 983070. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Murty, M.V.R.; Quick, W.P. Rice responses to rising temperatures-challenges, perspectives and future directions. Plant Cell Environ. 2015, 38, 1686–1698. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cui, K.; Hu, Q.; Wu, C.; Li, G.; Huang, J.; Peng, S. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice. Crop J. 2021, 9, 1344–1356. [Google Scholar] [CrossRef]
- Yu, J.; Du, T.; Zhang, P.; Ma, Z.; Chen, X.; Cao, J.; Li, H.; Li, T.; Zhu, Y.; Xu, F.; et al. Impacts of high temperatures on the growth and development of rice and measures for heat tolerance regulation: A review. Agronomy 2024, 14, 2811. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, X.; Li, M.; Shi, C.; Jiang, M. Simulation model for assessing high-temperature stress on rice. Agronomy 2024, 14, 900. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Tang, S.; Li, G.; Wang, S.; Fahad, S.; Nie, L.; Huang, J.; Peng, S.; Ding, Y. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crops Res. 2020, 252, 107795. [Google Scholar] [CrossRef]
- Zhang, C.; Tateishi, N.; Tanabe, K. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia. J. Exp. Bot. 2010, 61, 4291–4302. [Google Scholar] [CrossRef]
- Shi, W.; Li, X.; Schmidt, R.C.; Struik, P.C.; Yin, X.; Jagadish, S.V.K. Pollen germination and in vivo fertilization in response to high temperature during flowering in hybrid and inbred rice. Plant Cell Environ. 2018, 41, 1287–1297. [Google Scholar] [CrossRef]
- Wang, Y.; Impa, S.M.; Sunkar, R.; Jagadish, S.V.K. The neglected other half-role of the pistil in plant heat stress responses. Plant Cell Environ. 2021, 44, 2200–2210. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Hu, Q.; Wang, W.; Nie, L.; Huang, J.; Peng, S. Enclosed stigma contributes to higher spikelet fertility for rice (Oryza sativa L.) subjected to heat stress. Crop J. 2019, 7, 335–349. [Google Scholar] [CrossRef]
- Molano-Flores, B.; Faivre, A.E. Sexual differences in Lobelia spicata populations: Floral morphometrics, stigma pollen loads, and pollen tube growth. Plant Species Biol. 2014, 30, 202–211. [Google Scholar] [CrossRef]
- Cao, Z.Z.; Zhao, Q.; Huang, F.D.; Wei, K.S.; Zaidi, S.H.R.; Zhou, W.J.; Cheng, F.M. Effects of high temperature at anthesis on spikelet fertility and grain weight in relation to floral positions within a panicle of rice (Oryza sativa L.). Crop Pasture Sci. 2015, 66, 922–929. [Google Scholar] [CrossRef]
- Sarsu, F. Screening protocols for heat tolerance in rice at the seedling and reproductive stages. In Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice; Springer International Publishing: Cham, Switzerland, 2018; pp. 9–24. [Google Scholar]
- Xiao, B.; Nan, B.; Zhang, F. Identification of heat tolerance of rice test varieties in the middle and lower reaches of the Yangtze river. China Rice 2022, 28, 21–26. [Google Scholar] [CrossRef]
- Rezaul, I.M.; Feng, B.; Chen, T.; Fu, W.; Zhang, C.; Tao, L.; Fu, G. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiol. Plant. 2019, 165, 644–663. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Ramesh, T.; Rao, P.R.; Shankar, V.G.; Bhave, M.H.V. Study the effect of high temperature stress on pollen viability, stigma exertion, sterility in rice. J. Pharmacogn. Phytochem. 2017, 6, 2016–2024. [Google Scholar]
- Guo, H.; Liang, Y.; Lv, J.; Su, X.; Ren, G.; Gao, F. Research progress on the trait of stigma exsertion in rice. Plants 2024, 13, 3404. [Google Scholar] [CrossRef]
- Lohar, D.P.; Peat, W.E. Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Sci. Hortic. 1998, 73, 53–60. [Google Scholar] [CrossRef]
- Pan, C.; Yang, D.; Zhao, X.; Jiao, C.; Yan, Y.; Lamin-Samu, A.T.; Wang, Q.; Xu, X.; Fei, Z.; Lu, G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant Cell Environ. 2018, 42, 1205–1221. [Google Scholar] [CrossRef]
- Yan, W.; Changtian, P.; Jie, W.; Li, Q.; Tao, Z.; Gang, L. Effects of gibberellin on tomato stigma exsertion and hormone related gene expression under moderate heat stress. J. Zhejiang Univ. (Agric. Life Sci.) 2015, 41, 449–457. [Google Scholar] [CrossRef]
- Ndlovu, E.; Maphosa, M.; van Staden, J. Unlocking basal and acquired thermotolerance potential in tropical sorghum. Technol. Agron. 2024, 4, e026. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, A.; Wang, F.; Kong, D.; Li, M.; Bi, J.; Zhang, F.; Wang, J.; Luo, X.; Pan, Z.; et al. Fine mapping a quantitative trait locus, qSER-7, that controls stigma exsertion rate in rice (Oryza sativa L.). Rice 2019, 12, 46. [Google Scholar] [CrossRef] [PubMed]
Year | CK Treatment | HNT Treatment | ||
---|---|---|---|---|
07:00~19:00 | 19:00~07:00 | 07:00~19:00 | 19:00~07:00 | |
2023 | 32 °C | 22 °C | 32 °C | 30 °C |
2019 | 30 °C | 24 °C | 30 °C | 30 °C |
Rice Cultivars | Percentage of Stigma Exsertion | Rice Cultivars | Percentage of Stigma Exsertion |
---|---|---|---|
Zhongzheyou8 | 74.16% | Wankennuo1 | 7.26% |
Liangyoupeijiu | 72.31% | Nangeng9108 | 2.43% |
Yliangyou900 | 69.90% | Ninggeng7 | 2.36% |
Taoyouxiangzhan | 68.76% | Wuyungeng7 | 2.31% |
Xiangliangyou900 | 62.82% | Zhendao18 | 1.88% |
Zhaoyou5431 | 54.76% | Huaidao5 | 0.67% |
Jingliangyouhuazhan | 52.52% | Ninggeng5 | 0.00% |
Longliangyou534 | 35.99% | Nangeng5055 | 0.00% |
Nagina22 | 28.76% | Zhendao14 | 0.00% |
Shanyou63 | 15.20% | Huaidao13 | 0.00% |
Year | Source of Variation | Percentage of Spikelets with Dual Exserted Stigmas (%) | Percentage of Spikelets with Single Exserted Stigmas (%) | Percentage of Spikelets with Exserted Stigmas (%) | Percentage of Spikelets with Hidden Stigmas (%) | Fertility of Spikelets with Dual Exserted Stigmas (%) | Fertility of Spikelets with Single Exserted Stigmas (%) | Fertility of Spikelets with Hidden Stigmas (%) | Spikelet Fertility of the Whole Panicle |
---|---|---|---|---|---|---|---|---|---|
2023 | Cultivar (V) | 34.62 ** | 94.38 ** | 114.5 ** | 114.53 ** | 0.74 ns | 4.19 * | 2.69 ns | 4.00 * |
Treatment (T) | 1.60 ns | 4.33 * | 5.59 * | 5.59 * | 11.7 ** | 83.94 ** | 48.1 ** | 73.1 ** | |
V × T | 0.22 ns | 3.07 * | 2.75 ns | 2.75 ns | 1.42 ns | 3.84 * | 3.55 * | 4.96 ** | |
2019 | Cultivar (V) | 56.69 ** | 256.20 ** | 292.82 ** | 292.82 ** | 4.08 ** | 15.90 ** | 35.79 ** | 33.64 ** |
Treatment (T) | 0.18 ns | 7.96 ** | 5.69 * | 5.69 * | 2.97 ns | 21.57 ** | 12.84 ** | 20.39 ** | |
V × T | 1.18 ns | 2.11 ** | 0.71 ns | 0.71 ns | 0.68 ns | 1.74 ns | 3.02 ** | 4.57 ** |
Cultivar | Treat-ment | Percentage of Spikelets with Dual Exserted Stigmas (%) | Percentage of Spikelets with Single Exserted Stigmas (%) | Percentage of Spikelets with Exserted Stigmas (%) | Percentage of Spikelets with Hidden Stigmas (%) | Fertility of Spikelets with Dual Exserted Stigmas (%) | Fertility of Spikelets with Single Exserted Stigmas (%) | Fertility of Spikelets with Hidden Stigmas (%) | Spikelet Fertility of the Whole Panicle |
---|---|---|---|---|---|---|---|---|---|
GH1 | CK | 10.9 ± 4.10 a | 35.8 ± 4.19 a | 46.7 ± 1.03 a | 53.3 ± 1.03 c | 81.4 ± 5.46 a | 81.5 ± 4.09 ab | 82.2 ± 2.12 ab | 82.0 ± 1.22 ab |
HNT | 12.1 ± 2.18 a | 35.5 ± 3.66 a | 47.6 ± 3.74 a | 52.4 ± 3.74 c | 62.3 ± 2.04 b | 66.1 ± 3.05 c | 68.3 ± 2.17 d | 66.8 ± 1.99 de | |
HN2 | CK | 0.00 ± 0.00 c | 4.80 ± 1.70 c | 4.80 ± 1.70 c | 95.2 ± 1.70 a | — | 79.8 ± 5.58 ab | 79.6 ± 3.89 ab | 79.7 ± 3.62 ab |
HNT | 0.00 ± 0.00 c | 4.20 ± 1.87 c | 4.20 ± 1.87 c | 95.8 ± 1.87 a | — | 67.7 ± 5.24 c | 72.2 ± 7.59 cd | 72.0 ± 7.43 cd | |
HHZ | CK | 3.70 ± 2.73 b | 24.7 ± 4.44 b | 28.4 ± 6.78 b | 71.6 ± 6.78 b | 80.4 ± 14.2 a | 82.8 ± 2.15 a | 84.3 ± 3.87 ab | 83.8 ± 2.28 a |
HNT | 4.80 ± 1.57 b | 27.4 ± 2.18 b | 32.2 ± 2.49 b | 67.8 ± 2.49 b | 75.5 ± 6.87 ab | 76.8 ± 2.24 b | 78.4 ± 6.23 bc | 77.8 ± 4.68 bc | |
YZX | CK | 3.50 ± 2.03 b | 25.9 ± 6.70 b | 29.5 ± 7.58 b | 70.5 ± 7.58 b | 83.8 ± 19.7 a | 84.0 ± 3.53 a | 86.5 ± 3.31 a | 85.5 ± 3.84 a |
HNT | 5.40 ± 2.53 b | 36.0 ± 4.64 a | 41.4 ± 7.06 a | 58.6 ± 7.06 c | 61.0 ± 8.81 b | 64.7 ± 5.10 c | 66.8 ± 5.98 d | 66.1 ± 3.40 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, B.; Cheng, S.; Song, Y.; Wu, C.; Yang, M. Hidden Stigmas Enhance Heat Resilience: A Novel Breeding Trait for Sustaining Rice Spikelet Fertility Under Nocturnal Heat Stress. Agronomy 2025, 15, 982. https://doi.org/10.3390/agronomy15040982
Qi B, Cheng S, Song Y, Wu C, Yang M. Hidden Stigmas Enhance Heat Resilience: A Novel Breeding Trait for Sustaining Rice Spikelet Fertility Under Nocturnal Heat Stress. Agronomy. 2025; 15(4):982. https://doi.org/10.3390/agronomy15040982
Chicago/Turabian StyleQi, Beibei, Simin Cheng, Youjin Song, Chao Wu, and Meng Yang. 2025. "Hidden Stigmas Enhance Heat Resilience: A Novel Breeding Trait for Sustaining Rice Spikelet Fertility Under Nocturnal Heat Stress" Agronomy 15, no. 4: 982. https://doi.org/10.3390/agronomy15040982
APA StyleQi, B., Cheng, S., Song, Y., Wu, C., & Yang, M. (2025). Hidden Stigmas Enhance Heat Resilience: A Novel Breeding Trait for Sustaining Rice Spikelet Fertility Under Nocturnal Heat Stress. Agronomy, 15(4), 982. https://doi.org/10.3390/agronomy15040982