Optimizing Lavender (Lavandula angustifolia Mill.) Yield and Water Productivity with Deficit Irrigation in Semi-Arid Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Experimental Area
2.2. Experimental Setup and Management
2.2.1. Plant Material
2.2.2. Water Treatments
2.2.3. Irrigation Management
2.2.4. Agronomic Practices
2.3. Determination of Essential Oil Yield
2.4. Water–Yield Functions
2.5. Statistical Analysis
3. Results
3.1. Meteorological Conditions During the Experimental Periods
3.2. Irrigation Water Amount and Crop Water Consumption
3.3. Yield Components and Essential Oil Content
3.4. Water–Yield Functions
4. Discussion
4.1. Irrigation Water Amount and Crop Water Consumption
4.2. Yield Components and Essential Oil Content
4.3. Water–Yield Functions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WP | water productivity |
IWP | irrigation water productivity |
ky | yield response factor |
ET | crop water consumption |
References
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Coelho, E.F.; Lima, L.W.F.; Stringam, B.; de Matos, A.P.; Santos, D.L.; Reinhardt, D.H.; de Melo Velame, L.; dos Santos, C.E.M.; da Cunha, F.F. Water productivity in pineapple (Ananas comosus) cultivation using plastic film to reduce evaporation and percolation. Agric. Water Manag. 2024, 296, 108785. [Google Scholar] [CrossRef]
- Sogoni, A.; Jimoh, M.O.; Ngxabi, S.; Kambizi, L.; Laubscher, C.P. Evaluating the nutritional, therapeutic, and economic potential of Tetragonia decumbens Mill.: A promising wild leafy vegetable for bio-saline agriculture in South Africa. Open Agric. 2025, 10, 20220368. [Google Scholar] [CrossRef]
- Pirzad, A.; Mohammadzadeh, S. Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agric. Water Manag. 2018, 204, 1–10. [Google Scholar] [CrossRef]
- Yetik, A.K.; Candoğan, B.N. Optimisation of irrigation strategy in sugar beet farming based on yield, quality and water productivity. Plant Soil Environ. 2022, 68, 358–365. [Google Scholar] [CrossRef]
- El-Hefny, M.; Hussien, M.K. Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment. Sci. Rep. 2025, 15, 774. [Google Scholar] [CrossRef]
- Cáceres-Cevallos, G.J.; Quílez, M.; Ortiz de Elguea-Culebras, G.; Melero-Bravo, E.; Sánchez-Vioque, R.; Jordán, M.J. Agronomic Evaluation and Chemical Characterization of Lavandula latifolia Medik. under the Semiarid Conditions of the Spanish Southeast. Plants 2023, 12, 1986. [Google Scholar] [CrossRef]
- Akçay, S.; Dağdelen, N.; Tunalı, S.P.; Gürbüz, T. Farklı Sulama Programlarının Lavanta Bitkisinde (Lavandula angustifolia Mill.) Verim ve Verim Parametreleri Üzerine Etkisi. ÇOMÜ Ziraat Fakültesi Derg. 2021, 9, 219–227. [Google Scholar] [CrossRef]
- Noorollahi, M.; Hassanli, A.; Ghanbarian, G.; Taghvaei, M. Determination of crop coefficient (Kc) for Rosmarinus officinalis L., Lavandula angustifolia Mill. and Silybum marianum (L.) Gaertnas medicinal plants using water balance approach. Iran. J. Irrig. Drain. 2016, 10, 117–127. [Google Scholar]
- Akcay, S.; Tunali, S.; Gürbüz, T.; Dağdelen, N. Determination of optimal deficit irrigation strategies for yield and yield components of lavender (Lavandula angustifolia Mill.) In semi-arid conditions. Appl. Ecol. Environ. Res. 2023, 21, 6023–6039. [Google Scholar] [CrossRef]
- Saunier, A.; Ormeño, E.; Moja, S.; Fernandez, C.; Robert, E.; Dupouyet, S.; Despinasse, Y.; Baudino, S.; Nicolè, F.; Bousquet-Mélou, A. Lavender sensitivity to water stress: Comparison between eleven varieties across two phenological stages. Ind. Crops Prod. 2022, 177, 114531. [Google Scholar] [CrossRef]
- Zhen, S.; Burnett, S.E. Effects of substrate volumetric water content on English lavender morphology and photosynthesis. HortScience 2015, 50, 909–915. [Google Scholar] [CrossRef]
- Sałata, A. Supplementary irrigation and drying method affect the yield and essential oil content and composition of lavender (Lavandula angustifolia Mill.) flowers. Acta Sci. Pol. Hortorum Cultus 2020, 19, 139–151. [Google Scholar] [CrossRef]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Pejić, B.; Adamović, D.; Maksimović, L.; Mačkić, K. Effect of drip irrigation on yield, evapotranspiration and water use efficiency of sweet basil (Ocimum basilicum L.). Ratar. Povrt 2017, 54, 124–129. [Google Scholar] [CrossRef]
- Şenyiğit, U.; Toprak, M.; Coşkan, A. Farklı sulama suyu düzeyleri ve vermikompost dozlarının cam sera koşullarında yetiştirilen fesleğen (Ocimum basilicum L.) bitkisinin su tüketimi ve verimine etkileri. Türk Bilim Ve Mühendis. Derg. 2021, 3, 37–43. [Google Scholar]
- TSMS. Climate Data of Long Term Season; Turkish State Meteorological Service: Ankara, Turkey, 2025.
- Paraskevopoulou, A.T.; Tsarouchas, P.; Londra, P.A.; Kamoutsis, A.P. The effect of irrigation treatment on the growth of lavender species in an extensive green roof system. Water 2020, 12, 863. [Google Scholar] [CrossRef]
- Ghamarnia, H.; Sepehri, S. Different irrigation regimes affect water use, yield and other yield components of safflower (Carthamus tinctorius L.) crop in a semi-arid region of Iran. J. Food Agric. Environ. 2010, 8, 590–593. [Google Scholar]
- Yavuz, N. Can grafting affect yield and water use efficiency of melon under different irrigation depths in a semi-arid zone? Arab. J. Geosci. 2021, 14, 1118. [Google Scholar] [CrossRef]
- Cetin, O.; Bilgel, L. Effects of different irrigation methods on shedding and yield of cotton. Agric. Water Manag. 2002, 54, 1–15. [Google Scholar] [CrossRef]
- Yıldırım, M.; Durak, E. Yield and quality compounds of broccoli (Brassica oleracea L. cv. Beaumont) as affected by different irrigation levels. ÇOMÜ Ziraat Fak. Derg. 2017, 5, 13–20. [Google Scholar]
- Elmas, İ.; Yetik, A.K.; Kuşçu, H. Effects of different irrigation intervals and irrigation levels on yield and quality components of processing tomatoes and economical analysis. Bilec. Şeyh Edebali Üniv. Fen Bilim. Derg. 2023, 10, 129–139. [Google Scholar] [CrossRef]
- Garrity, D.P.; Watts, D.G.; Sullivan, C.Y.; Gilley, J.R. Moisture Deficits and Grain Sorghum Performance: Evapotranspiration-Yield Relationships. Agron. J. 1982, 74, 815–820. [Google Scholar] [CrossRef]
- Candoğan, B.N.; Yetik, A.K.; Sincik, M.; Demir, A.O.; Büyükcangaz, H. Water Productivity and Yield Response of Deficit-Irrigated Kenaf (Hibiscus cannabinus L.) under Subhumid Climate Conditions. J. Irrig. Drain. Eng. 2025, 151, 04025006. [Google Scholar] [CrossRef]
- Yetik, A.K.; Candoğan, B.N. Chlorophyll response to water stress and the potential of using crop water stress index in sugar beet farming. Sugar Tech 2023, 25, 57–68. [Google Scholar] [CrossRef]
- Stewart, J.I.; Hagan, R.M.; Pruitt, W. Water Production Functions and Predicted Irrigation Programs for Principal Crops as Required for Water Resources Planning and Increased Water Use Efficiency; PB-US National Technical Information Service (USA): Alexandria, VA, USA, 1976; pp. 421–439.
- Doorenbos, J.; Kassam, A.; Bentvelsen, C. Yield Response to Water, Irrigation and Drainage; FAO: Rome, Italy, 1979. [Google Scholar]
- Bos, M. Summary of ICID definitions on irrigation efficiency. ICID Bull. 1985, 34, 28–31. [Google Scholar]
- Ahmed, Z.; Gui, D.; Murtaza, G.; Yunfei, L.; Ali, S. An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy 2023, 13, 2113. [Google Scholar] [CrossRef]
- Abdelraouf, R.E.; Abdou, M.A.; Bakr, A.; Hamza, A.E.; Rashad, Y.M.; Abd-ElGawad, A.M.; Hafez, M.; Ragab, R. Enhancing tomato production by using non-conventional water resources within integrated sprinkler irrigation systems in arid regions. Atmosphere 2024, 15, 722. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Sun, Q.; Li, Y.; Xu, L.; Wang, Y. Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil. Water 2024, 16, 2509. [Google Scholar] [CrossRef]
- Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and fruit quality of strawberry cultivars under different irrigation regimes. Agronomy 2021, 11, 261. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Fan, Z.; Wang, X. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Jigău, A.R.; Imbrea, F.; Pașcalău, R. The importance and cultivation of lavender. Res. J. Agric. Sci. 2022, 54, 50–55. [Google Scholar]
- Ogbonnaya, C.; Nwalozie, M.; Roy-Macauley, H.; Annerose, D. Growth and water relations of Kenaf (Hibiscus cannabinus L.) under water deficit on a sandy soil. Ind. Crops Prod. 1998, 8, 65–76. [Google Scholar] [CrossRef]
- Daudet, F.-A.; Améglio, T.; Cochard, H.; Archilla, O.; Lacointe, A. Experimental analysis of the role of water and carbon in tree stem diameter variations. J. Exp. Bot. 2005, 56, 135–144. [Google Scholar] [CrossRef]
- Bielach, A.; Hrtyan, M.; Tognetti, V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017, 18, 1427. [Google Scholar] [CrossRef]
- Abdelsadek, O.; Elbohy, N.; Diab, R. Effect of nano-micronutrients rate on growth, flowering, and chemical constituents of lavender (Lavandula officinalis, Chaix.) plant grown under salinity stress. Middle East J. Agric. Res. 2022, 11, 1279–1290. [Google Scholar]
- de Assis, T.F.; Fett-Neto, A.G.; Alfenas, A.C. Current techniques and prospects for the clonal propagation of hardwoods with emphasis on Eucalyptus. In Plantation Forest Biotechnology for the 21st Century; Walter, C., Carson, M., Eds.; Research Signpost: Trivandrum, India, 2004; pp. 303–333. [Google Scholar]
- Gupta, A.; Kumari, M.; Sharan, H.; Kumar, A.; Vikrant; Chauhan, R.; Kumar, A.; Singh, S.; Singh, S. Multi-environment investigations using GGE biplot and regression model for higher spike yield and essential oil content in lavender (Lavandula angustifolia). J. Essent. Oil Bear. Plants 2023, 26, 1220–1235. [Google Scholar] [CrossRef]
- Kakaraparthi, P.S.; Srinivas, K.; Kumar, J.K.; Kumar, A.N.; Rajput, D.K.; Sarma, V.U.M. Variation in the essential oil content and composition of Citronella (Cymbopogon winterianus Jowitt.) in relation to time of harvest and weather conditions. Ind. Crops Prod. 2014, 61, 240–248. [Google Scholar] [CrossRef]
- Fernández-Sestelo, M.; Carrillo, J.M. Environmental effects on yield and composition of essential oil in wild populations of spike lavender (Lavandula latifolia Medik.). Agriculture 2020, 10, 626. [Google Scholar] [CrossRef]
- Herraiz-Peñalver, D.; Cases, M.Á.; Varela, F.; Navarrete, P.; Sánchez-Vioque, R.; Usano-Alemany, J. Chemical characterization of Lavandula latifolia Medik. essential oil from Spanish wild populations. Biochem. Syst. Ecol. 2013, 46, 59–68. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Laoutari, S.; Litskas, V.D.; Stavrinides, M.C.; Tzortzakis, N. Effects of water stress on lavender and sage biomass production, essential oil composition and biocidal properties against Tetranychus urticae (Koch). Sci. Hortic. 2016, 213, 96–103. [Google Scholar] [CrossRef]
- Zhu, L.; Song, L.; Gao, Y.; Qian, J.; Zhang, X.; Li, S. Effects of lanthanum on the growth and essential oil components of lavender under osmotic stress. J. Rare Earths 2018, 36, 891–897. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Corell, M.; Garcia, M.; Contreras, J.; Segura, M.; Cermeño, P. Effect of water stress on Salvia officinalis L. bioproductivity and its bioelement concentrations. Commun. Soil Sci. Plant Anal. 2012, 43, 419–425. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Hristov, A.N. Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind. Crops Prod. 2012, 36, 222–228. [Google Scholar] [CrossRef]
- Minev, N.; Matev, A.; Yordanova, N.; Milanov, I.; Sabeva, M.; Almaliev, M. Effect of foliar products on the inflorescence yield of lavender and essential oil. Agron. Res. 2022, 20, 660–671. [Google Scholar]
- Sönmez, Ç.; Okkaoğlu, H. The effect of diurnal variation on some yield and quality characteristics of lavender (Lavandula angustifolia Mill.) under Çukurova ecological conditions. Turk. J. Agric. 2019, 7, 531–535. [Google Scholar]
- Giray, F.H. An analysis of world lavender oil markets and lessons for Turkey. J. Essent. Oil Bear. Plants 2018, 21, 1612–1623. [Google Scholar] [CrossRef]
- Aqeel, U.; Aftab, T.; Khan, M.; Naeem, M. Regulation of essential oil in aromatic plants under changing environment. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100441. [Google Scholar] [CrossRef]
- Tabatabaei, S.; Rafiee, V.; Shakeri, E.; Salmani, M. Responses of sunflower (Helianthus annuus L.) to deficit irrigation at different growth stages. Int. J. Agric. Res. Rev. 2012, 2, 624–629. [Google Scholar]
- Kara, N.; Baydar, H. Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turk. J. Field Crops 2013, 18, 58–65. [Google Scholar]
- Sönmez, Ç.; Şimşek Soysal, A.; Okkaoğlu, H.; Karık, Ü.; Taghiloofar, A.H.; Bayram, E. Determination of some yield and quality characteristics among individual plants of lavender (Lavandula angustifolia Mill.) populations grown under mediterranean conditions in Turkey. Pak. J. Bot. 2018, 50, 2285–2290. [Google Scholar]
- You, Y.; Song, P.; Yang, X.; Zheng, Y.; Dong, L.; Chen, J. Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment. Agric. Water Manag. 2022, 273, 107901. [Google Scholar] [CrossRef]
- Curtis, P. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ. 1996, 19, 127–137. [Google Scholar] [CrossRef]
- Mu, W.; Duan, X.; Wang, Q.; Wei, X.; Wei, K.; Li, Y.; Guo, X. Effect of Drip Irrigation, N, K, and Zn Coupling on P n of Densely Cultivated Apple on Dwarf Rootstock in Xinjiang, China. Agronomy 2023, 13, 1082. [Google Scholar] [CrossRef]
- Chahal, G.; Sood, A.; Jalota, S.; Choudhury, B.; Sharma, P. Yield, evapotranspiration and water productivity of rice (Oryza sativa L.)–wheat (Triticum aestivum L.) system in Punjab (India) as influenced by transplanting date of rice and weather parameters. Agric. Water Manag. 2007, 88, 14–22. [Google Scholar] [CrossRef]
- Goldani, M.; Bannayan, M.; Yaghoubi, F. Crop water productivity and yield response of two greenhouse basil (Ocimum basilicum L.) cultivars to deficit irrigation. Water Supply 2021, 21, 3735–3751. [Google Scholar] [CrossRef]
- Gubišová, M.; Čičová, I. Multiplication of lavender (L. angustifolia) and lavandin (Lavandula × intermedia) in explant culture. Agriculture 2023, 69, 1–12. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Jia, Y.; Yuan, Z. Investigation into the mechanisms of photosynthetic regulation and adaptation under salt stress in lavender. Plant Physiol. Biochem. 2025, 219, 109376. [Google Scholar] [CrossRef]
- Crișan, I.; Ona, A.; Vârban, D.; Muntean, L.; Vârban, R.; Stoie, A.; Mihăiescu, T.; Morea, A. Current trends for lavender (Lavandula angustifolia Mill.) crops and products with emphasis on essential oil quality. Plants 2023, 12, 357. [Google Scholar] [CrossRef]
- Rahimi, A.; Jahansoz, M.; Hoseini, S.M.; Sajjadinia, A.; Roosta, H.; Fateh, E. Water use and water-use efficiency of Isabgol (Plantago ovata) and French psyllium (Plantago psyllium) in different irrigation regimes. Aust. J. Crop Sci. 2011, 5, 71–77. [Google Scholar]
Soil Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Texture | Bulk Density | Field Capacity | Permanent Wilting Point (%) |
---|---|---|---|---|---|---|---|
(g cm−3) | (%) | ||||||
0–30 | 22.5 | 31.4 | 46.1 | C | 1.31 | 30.17 | 17.07 |
30–60 | 20.9 | 30.1 | 49.0 | C | 1.36 | 34.01 | 19.03 |
60–90 | 22.1 | 33.6 | 44.3 | C | 1.34 | 33.56 | 18.75 |
Soil Depth (cm) | EC (dS m−1) | pH | Available (kg da−1) | Organic Matter (%) | |||
P | K | ||||||
0–30 | 0.008 | 7.88 | 2.9 | 14 | 1.72 | ||
30–60 | 0.011 | 7.94 | 1.7 | 16 | 1.43 | ||
60–90 | 0.012 | 7.91 | 3.1 | 11 | 1.57 |
Parameters | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|
Avg. min temperature (°C) | 9.20 | 8.02 | 9.36 | 8.25 | 9.20 |
Avg. max temperature (°C) | 34.48 | 34.12 | 34.08 | 33.32 | 33.62 |
Avg. relative humidity (%) | 44.26 | 45.70 | 46.62 | 45.62 | 45.70 |
Avg. wind speed 1 (m s−1) | 1.91 | 1.91 | 1.73 | 1.73 | 1.75 |
Total precipitation (mm) | 39.8 | 84.2 | 125.8 | 113.6 | 101.8 |
Years | Treatment | Total Irrigation (mm) | Rainfall (mm) | Seasonal ET (mm) |
---|---|---|---|---|
2020 | T1 | 1105.6 | 39.8 | 1152.7 |
T2 | 729.7 | 781.5 | ||
T3 | 364.8 | 444.9 | ||
T4 | 0.0 | 98.5 | ||
2021 | T1 | 1162.4 | 84.2 | 1262.5 |
T2 | 767.1 | 904.7 | ||
T3 | 383.6 | 523.1 | ||
T4 | 0.0 | 154.2 | ||
2022 | T1 | 1094.4 | 125.8 | 1270.0 |
T2 | 722.3 | 923.6 | ||
T3 | 361.2 | 551.3 | ||
T4 | 0.0 | 170.3 | ||
2023 | T1 | 986.5 | 113.6 | 1134.2 |
T2 | 651.1 | 817.9 | ||
T3 | 325.5 | 483.5 | ||
T4 | 0.0 | 147.6 | ||
2024 | T1 | 1096.9 | 101.8 | 1255.5 |
T2 | 723.9 | 865.7 | ||
T3 | 362.0 | 521.2 | ||
T4 | 0.0 | 121.3 |
Year | Trt. | Plant Diameter (cm) | Plant Height (cm) | No. of Primary Branches | Total Branch Count | Spike Diameter (mm) | Spike Length (cm) | Essential Oil (%) | Fresh Flower Yield (kg da−1) | Oil Yield (kg da−1) |
---|---|---|---|---|---|---|---|---|---|---|
2020 | T1 | 56.6 a | 52.3 a | 3.7 a | 20.4 a | 3.3 c | 30.8 | 1.95 | 151 a | 2.94 a |
T2 | 44.4 b | 48.0 a | 1.8 bc | 12.6 b | 4.1 b | 30.2 | 1.88 | 144 a | 2.71 b | |
T3 | 54.1 a | 47.1 a | 2.7 ab | 20.5 a | 5.0 a | 45.1 | 1.93 | 142 ab | 2.74 ab | |
T4 | 30.1 c | 40.2 b | 1.0 c | 7.9 b | 4.2 b | 41.6 | 1.94 | 131 b | 2.54 b | |
F-test | ** | ** | ** | ** | ** | n.s. | n.s. | * | * | |
2021 | T1 | 69.6 a | 78.4 | 10.6 a | 47.8 a | 3.5 b | 19.4 | 2.06 | 190 a | 3.91 a |
T2 | 55.1 b | 75.2 | 7.7 b | 39.4 b | 3.8 ab | 18.3 | 2.01 | 185 a | 3.72 a | |
T3 | 67.3 a | 73.0 | 9.7 a | 45.7 a | 4.2 a | 19.1 | 2.03 | 177 b | 3.59 a | |
T4 | 38.8 c | 78.1 | 5.4 c | 36.8 b | 3.7 b | 17.8 | 1.99 | 147 c | 2.93 b | |
F-test | ** | n.s. | ** | ** | * | n.s. | n.s. | ** | ** | |
2022 | T1 | 96.3 | 103.3 a | 9.7 b | 59.5 a | 5.0 | 18.3 | 2.35 a | 221 ab | 5.19 ab |
T2 | 95.7 | 108.3 a | 11.3 a | 54.9 ab | 5.1 | 20.3 | 2.41 a | 224 a | 5.40 a | |
T3 | 92.7 | 99.6 a | 8.7 b | 53.5 b | 5.1 | 19.3 | 2.43 a | 205 b | 4.98 b | |
T4 | 93.3 | 87.0 b | 8.3 c | 43.8 c | 5.0 | 20.0 | 2.21 b | 156 c | 3.45 c | |
F-test | n.s. | * | ** | ** | n.s. | n.s. | * | ** | ** | |
2023 | T1 | 94.3 | 94.8 a | 14.3 | 54.9 a | 3.0 | 20.0 | 2.35 | 240 a | 5.64 a |
T2 | 98.3 | 96.4 a | 18.7 | 49.0 ab | 2.6 | 18.0 | 2.37 | 227 a | 5.38 a | |
T3 | 96.3 | 87.6 b | 15.3 | 51.8 a | 2.9 | 20.3 | 2.34 | 201 b | 4.70 b | |
T4 | 98.0 | 87.8 b | 15.7 | 45.5 b | 3.0 | 19.3 | 2.29 | 165 c | 3.76 c | |
F-test | n.s. | ** | n.s. | * | n.s. | n.s. | n.s. | ** | ** | |
2024 | T1 | 97.3 | 101.4 a | 15.1 b | 53.6 a | 3.2 | 22.1 | 2.48 | 227 a | 5.63 b |
T2 | 99.4 | 103.2 a | 17.3 a | 56.6 a | 2.9 | 20.3 | 3.04 | 227 a | 6.90 a | |
T3 | 98.8 | 91.2 b | 14.2 b | 52.1 ab | 3.0 | 21.7 | 2.34 | 206 b | 4.82 c | |
T4 | 98.2 | 82.4 c | 14.1 b | 45.7 b | 2.6 | 19.4 | 2.69 | 151 c | 4.06 d | |
F-test | n.s. | ** | ** | ** | n.s. | n.s. | n.s. | ** | ** |
Year | Treatment | Fresh Yield | Oil Yield | ||
---|---|---|---|---|---|
WPf (kg m−3) | IWPf (kg m−3) | WPo (g m−3) | IWPo (g m−3) | ||
2020 | T1 | 0.13 c | 0.02 | 2.55 c | 0.36 |
T2 | 0.18 c | 0.02 | 3.46 c | 0.23 | |
T3 | 0.32 b | 0.03 | 6.16 b | 0.55 | |
T4 | 1.33 a | - | 25.8 a | - | |
F-test | ** | ** | |||
2021 | T1 | 0.15 c | 0.04 | 3.10 c | 0.85 |
T2 | 0.20 c | 0.05 | 4.11 c | 1.03 | |
T3 | 0.34 b | 0.08 | 6.87 b | 1.74 | |
T4 | 0.95 a | - | 18.97 a | - | |
F-test | ** | ** | |||
2022 | T1 | 0.17 d | 0.06 | 4.09 d | 1.60 |
T2 | 0.24 c | 0.09 | 5.84 c | 2.70 | |
T3 | 0.37 b | 0.14 | 9.04 b | 4.25 | |
T4 | 0.92 a | - | 20.24 a | - | |
F-test | ** | ** | |||
2023 | T1 | 0.21 d | 0.08 | 4.97 d | 1.91 |
T2 | 0.28 c | 0.10 | 6.58 c | 2.49 | |
T3 | 0.42 b | 0.11 | 9.73 b | 2.91 | |
T4 | 1.11 a | - | 25.44 a | - | |
F-test | ** | ** | |||
2024 | T1 | 0.18 d | 0.07 | 4.48 d | 1.43 |
T2 | 0.26 c | 0.10 | 7.97 c | 3.92 | |
T3 | 0.40 b | 0.15 | 9.25 b | 2.10 | |
T4 | 1.24 a | - | 33.49 a | - | |
F-test | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yetik, A.K.; Şen, B. Optimizing Lavender (Lavandula angustifolia Mill.) Yield and Water Productivity with Deficit Irrigation in Semi-Arid Climates. Agronomy 2025, 15, 1009. https://doi.org/10.3390/agronomy15051009
Yetik AK, Şen B. Optimizing Lavender (Lavandula angustifolia Mill.) Yield and Water Productivity with Deficit Irrigation in Semi-Arid Climates. Agronomy. 2025; 15(5):1009. https://doi.org/10.3390/agronomy15051009
Chicago/Turabian StyleYetik, Ali Kaan, and Burak Şen. 2025. "Optimizing Lavender (Lavandula angustifolia Mill.) Yield and Water Productivity with Deficit Irrigation in Semi-Arid Climates" Agronomy 15, no. 5: 1009. https://doi.org/10.3390/agronomy15051009
APA StyleYetik, A. K., & Şen, B. (2025). Optimizing Lavender (Lavandula angustifolia Mill.) Yield and Water Productivity with Deficit Irrigation in Semi-Arid Climates. Agronomy, 15(5), 1009. https://doi.org/10.3390/agronomy15051009