Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments
Abstract
:1. Introduction
2. Materials and Methods
- Mineral soil (loamy sand): pH (H2O) 7.15; EC (mS cm−1) 0.193 and in mg dm−3 N-NH4 7; N-NO3 14; P 16, K 52; Ca 6255; Mg 98; Na 14; S-SO4 12; Cl 7; Fe 34.9; Mn 8.2; Cu 2.5; Zn 11.1 and Ni 1.32;
- Mineral soil (loamy sand) + high peat: pH (H2O) 7.03; EC (mS cm−1) 0.190 and in mg dm−3 N-NH4 11; N-NO3 4; P 34, K 82; Ca 6188; Mg 52; Na 10; S-SO4 8; Cl 14; Fe 50.7; Mn 11.5; Cu 3.4; Zn 6.7 and Ni 1.47;
- Mineral soil (loamy sand) + brown coal: pH (H2O) 7.20; EC (mS cm−1) 0.211 and in mg dm−3 N-NH4 traces; N-NO3 5; P 28, K 78; Ca 6311; Mg 178; Na 28; S-SO4 17; Cl 9; Fe 48.6; Mn 9.1; Cu 2.8 Zn 12.1 and Ni 1.37;
- Mineral soil (loamy sand) + wheat straw: pH (H2O) 7.09; EC (mS cm−1) 0.197 and in mg dm−3 N-NH4 2; N-NO3 9; P 33, K 89; Ca 6198; Mg 87; Na 16; S-SO4 15; Cl 8; Fe 38.7; Mn 8.8; Cu 2.6; Zn 10.1 and Ni 1.28.
2.1. Nitrate Content
2.2. Nitrate Reductase Activity
2.3. Photosynthetic Pigments
2.4. Organic Carbon Content
2.5. The Index of Toxic Effect of Increasing Doses of Nickel (Ti)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Organic Carbon Content of Substrates After Radish Cultivation
3.2. Nickel Content of Radish Storage Roots
3.3. Fresh Mass Yield of Storage Roots of Radish
3.4. Tolerance Index (Ti) of Radish to Increasing Doses of Nickel
3.5. Nitrate Content and Nitrate Reductase (NR) Activity in Storage Roots of Radish
3.6. Chloroplast Pigment Content in Radish Leaves
3.6.1. Chlorophyll ‘a’ Content in Radish Leaves After Cultivation
3.6.2. Chlorophyll ‘b’ Content in Radish Leaves After Cultivation
3.6.3. Total Chlorophyll Content in Radish Leaves After Cultivation
3.6.4. Carotenoid Content in Radish Leaves After Cultivation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gillette, B. Nickel named “Allergen of the Year”. ACDS adds to list of substances warranting more attention. Dermatol. Times 2008, 4, 15–16. [Google Scholar]
- Sharma, A.D. Low nickel diet in dermatology. Indian J. Dermatol. 2013, 58, 240. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Onianwa, P.C.; Lawal, J.A.; Ogunkeye, A.A.; Orejimi, B.M. Cadmium and nickel composition of Nigerian foods. J. Food Compos. Anal. 2000, 13, 961–969. [Google Scholar] [CrossRef]
- Singh, S.; Zacharias, M.; Kalpana, S.; Mishra, S. Heavy metals accumulation and distribution pattern in different vegetable crops. J. Environ. Chem. Ecotoxicol. 2012, 4, 170–177. [Google Scholar] [CrossRef]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Khan, T.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Blaszczyk, U. The impact of nickel on human health. J. Elem. 2008, 13, 685–693. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace elements in geo- and biosphere. IUNG-PIB Puławy 2012, 269. [Google Scholar]
- Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Łukowski, A.; Wiater, J. The influence of mineral fertilization on heavy metal fraction contents in soil. Part II: Copp. Nickel. Pol. J. Environ. Stud. 2009, 18, 645–650. [Google Scholar]
- Li, B.; Zhang, X.; Wang, X.; Ma, Y. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture. Ecotoxicol. Environ. Saf. 2009, 72, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Bosiacki, M.; Tyksiński, W. Effect of organic substance with diversified decomposition degree on cadmium and lead uptake by lettuce (Lactuva sativa L.). Rocz. Akad. Rol. W Pozn. CCCLVI Ogrod. 2004, 37, 19–28. [Google Scholar]
- Bosiacki, M.; Tyksiński, W. Dependence between the content of organic carbon and the content of cadmium and lead in horticultural substrates. Acta Agrophysica 2006, 7, 517–526. [Google Scholar]
- Murray, H.; Pinchin, T.A.; Macfie, S.M. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils Sediments 2011, 11, 815–829. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhu, S.G.; Zhu, L.N.; Liu, H.T.; Yang, J.K.; Hua, D.L. Effects of different amendments on fractions and uptake by winter wheat in slightly alkaline soil contaminated by cadmium and nickel. Huan Jing Ke Xue Huanjing Kexue 2020, 41, 460–468. [Google Scholar] [PubMed]
- Misiak, K.; Bosiacki, M. The Effect of Organic Materials with Different Degrees of Decomposition on the Content of Nickel in the Lettuce Leaves Cultivated in Mineral Soil. Agriculture 2024, 14, 1970. [Google Scholar] [CrossRef]
- Rupa, T.R.; Sinivas, R.C.; Subha, R.A.; Singh, M. Effect of farmyard manure and phosphorus on Zn transformation and phytoavailability in two altisol of India. Bioresour. Technol. 2003, 87, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Alashty, S.R.; Bahmanyar, M.A.; Sepanlou, M.G. Change of pH, organic carbon (OC), electrical conductivity (EC), nickel (Ni) and chrome (Cr) in soil and concentration of Ni and Cr in radish and lettuce plants as influenced by three year application of municipal compost. Afr. J. Agric. Res. 2011, 6, 3740–3746. [Google Scholar]
- Parwez, R.; Nabi, A.; Mukarram, M.; Aftab, T.; Khan, M.M.A.; Naeem, M. Role of nickel in regulation of nitrogen metabolism in legume–rhizobium symbiosis under critical conditions. In Frontiers in Plant-Soil Interaction; Academic Press: Cambridge, MA, USA, 2021; pp. 495–522. [Google Scholar]
- Bosiacki, M.; Tyksiński, W. Copper, zinc, iron and manganese content in edible parts of some fresh vegetables sold on markets in Poznań. J. Elementol. 2009, 14, 13–22. [Google Scholar] [CrossRef]
- Bosiacki, M.; Bednorz, L.; Fedeńczak, K.; Górecki, T.; Mizgajski, A.; Poniży, L.; Spiżewski, T. Soil Quality as a Key Factor in Producing Vegetables for Home Consumption—A Case Study of Urban Allotments in Gorzów Wielkopolski (Poland). Agronomy 2021, 11, 1836. [Google Scholar] [CrossRef]
- Mocek, A.; Drzymała, S. The Genesis, Analysis, Classification of Soils; Poznań University of Life Sciences: Poznań, Poland, 2010. [Google Scholar]
- Kozik, E.; Golcz, A. Plant nutrient. In Research Methods in Plant Sciences Vol. 3. Soil Sickness; Narwal, S.S., Politycka, B., Wu, Z., Sampietro, D.A., Eds.; Studium Press LLC: Huston, TX, USA, 2011; pp. 21–41. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1987, 42, 421–428. [Google Scholar] [CrossRef]
- Bosiacki, M.; Roszyk, J. The compering methods of mineralization of plant material on the content of heavy metals. Apar. Badaw. I Dydakt. 2010, 4, 37–41. [Google Scholar]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Jaworski, E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971, 43, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Bosiacki, M.; Kleiber, T.; Markiewicz, B. Continuous and Induced Phytoextraction-Plant-Based Methods of Remove Heavy Metals from Contaminated Soil. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; InTech: Rijeka, Croatia, 2014; Volume 20, pp. 575–612. ISBN 978-953-51-1235-8. [Google Scholar]
- Kwiatkowska, J.; Dębska, B.; Maciejewska, A.; Gonet, S. Brown coal as the factor modifying the properties of soil organic matter. Rocz. Glebozn. 2005, 56, 31–41. [Google Scholar]
- Janssen, B.H.; Noij, G.A.M. Simple model for calculation of nitrogen or phosphorus mineralization from “young” soil organic matter. DRAFT AGN 1986, 108. [Google Scholar]
- Maciejewska, A. Courses of further researches on emploing brown coal in agriculture and environment protection. Zesz. Probl. Postępów Nauk. Rol. 1998, 455, 223–232. [Google Scholar]
- Gonet, S. Humus, humic substances, organic carbon—Definitions. Comments and methods of determination. In Humic Substances in Soils and Fertilizers; Dębska, B., Gonet, S., Eds.; PTSH: Wrocław, Poland, 2003; pp. 21–29. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1994; p. 496. [Google Scholar]
- Weng, L.; Van Riemsdijk, W.H.; Koopal, L.K.; Hiemstra, T. Adsorption of humic substances on goethite: Comparison between humic acids and fulvic acids. Environ. Sci. Technol. 2006, 40, 7494–7500. [Google Scholar] [CrossRef] [PubMed]
- Güngör, E.B.Ö.; Bekbölet, M. Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma 2010, 159, 131–138. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Holm, P.E.; Jensen, J.K.; Soleimani, M.; Strobel, B.W. Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 577–581. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pandey, S.D.; Misra, V. Stability constants of metal–humic acid complexes and its role in environmental detoxification. Ecotoxicol. Environ. Saf. 2000, 47, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.A. Geochemistry of Marine Humic Compounds; Springer: New York, NY, USA, 1985; p. 300. [Google Scholar]
- Kavamura, V.N.; Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 2010, 28, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gerzabek, M.H.; Ullah, S.M. Influence of fulvic and humic acids on Cd and Ni-toxicity to Zea mays (L.). Bodenkultur 1990, 41, 115–124. [Google Scholar]
- Tejada, M.; Moreno, J.L.; Hernández, M.T.; García, C. Soil amendments with organic wastes reduce the toxicity of nickel to soil enzyme activities. Eur. J. Soil Biol. 2008, 44, 129–140. [Google Scholar] [CrossRef]
- Lalas, S.; Athanasiadis, V.; Dourtoglou, V.G. Humic and fulvic acids as potentially toxic metal reducing agents in water. CLEAN–Soil Air Water 2018, 46, 1–13. [Google Scholar] [CrossRef]
- Naveed, M.; Ditta, A.; Ahmad, M.; Mustafa, A.; Ahmad, Z.; Conde-Cid, M.; Tahir, S.; Shah, S.A.A.; Abrar, M.M.; Fahad, S. Processed animal manure improves morpho-physiological and biochemical characteristics of Brassica napus L. under nickel and salinity stress. Environ. Sci. Pollut. Res. 2021, 28, 45629–45645. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Rizwan, M.; Ali, S.; Fatima, N.; Yousaf, B.; Naeem, A.; Sabir, M.; Ahmad, H.R.; Ok, Y.S. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 2016, 133, 218–225. [Google Scholar] [CrossRef]
- Bosiacki, M.; Roszyk, J. Nickel and chromium content in the edible parts of selected vegetables mineralised by two methods. Bromatol. I Chem. Toksykol. 2012, 45, 125–130. [Google Scholar]
- Grembecka, M.; Szefer, P.; Gurzyńska, A.; Dybek, K. Assessment of health quality of selected vegetables in view of their elemental composition. Bromatol. I Chem. Toksykol. 2008, 41, 328–332. (In Polish) [Google Scholar]
- Curyło, T. Content of heavy metals in vegetables from allotment gardens in Tarnów. Zesz. Probl. Postępów Nauk. Rol. 1997, 448, 35–42. [Google Scholar]
- Commıssıon Regulatıon (EU) 2024/1987of 30 July 2024 amending Regulation (EU) 2023/915 as regards maximum levels of nickel in certain foodstuffs. Off. J. Eur. Union 2024.
- Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food. Off. J. Eur. Union 2025.
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; p. 343.
- Latif, H.H. The influence of nickel sulphate on some physiological aspects of two cultivars of Raphanus sativus L. Arch. Biol. Sci. 2010, 62, 683–691. [Google Scholar] [CrossRef]
- Balaguer, J.; Almendro, M.B.; Gomez, I.; Navarro Pedreño, J.; Mataix, J. Tomato growth and yield affected by nickel presented in the nutrient solution. In International Symposium on Water Quality & Quantity-Greenhouse; ISHS: Tenerife, Spain, 1999; pp. 269–272. [Google Scholar]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation and mineral composition of tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Palacios, G.; Carbonell-Barrachina, A.; Gomez, I.; Mataix, J. The influence of organic amendment and nickel pollution on tomato fruit yield and quality. J. Environ. Sci. Health Part B 1999, 34, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Poulik, Z. Influence of nickel contaminated soils on lettuce and tomatoes. Sci. Hortic. 1999, 81, 243–250. [Google Scholar] [CrossRef]
- Walker, C.H.; Sibly, R.M.; Hopkin, S.P.; Peakall, D.B. Principles of Ecotoxicology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- European Commission. Commission regulation EU Regulation No. 1258/2011 of 2 December 2011. Off. J. Eur. Union 2023. [Google Scholar]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A survey of nitrate and oxalate content in retail fresh vegetables. J. Sci. Food Agr. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Weightman, R.M.; Dyer, C.; Buxton, J.; Farrington, D.S. Effects of light level, time of harvest and position within field on the variability of tissue nitrate concentration in commercial crops of lettuce (Lactuca sativa) and endive (Cichorium endiva). Food Addit. Contam. 2006, 23, 462–469. [Google Scholar] [CrossRef]
- Parks, S.E.; Irving, D.E.; Milhamc, P.J. A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Sci. Hortic. 2012, 134, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, X.; Cai, L. Effects of different straw incorporation amounts on soil organic carbon, microbial biomass, and enzyme activities in Dry-Crop Farmland. Sustainability 2024, 16, 10588. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Jiao, X.; Jiang, H.; Liu, Y.; Wang, X.; Ma, C. The fate and challenges of the main nutrients in returned straw: A basic review. Agronomy 2024, 14, 698. [Google Scholar] [CrossRef]
- Huang, H.E.; Xiong, Z.T. Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pestic. Biochem. Physiol. 2009, 94, 64–67. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Noor, M.A.; Tanveer, M.; Hussain, H.A.; Hussain, S.; Mehmood, T. Metal toxicity and nitrogen metabolism in plants: An overview. In Carbon and Nitrogen Cycling in Soil; Springer: Berlin/Heidelberg, Germany, 2020; pp. 221–248. [Google Scholar]
- Prasad, M.N.V.; Strzalka, K. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef]
- Xiong, Z.T.; Liu, C.; Geng, B. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol. Environ. Saf. 2006, 64, 273–280. [Google Scholar] [CrossRef]
- Man, H.M.; Abd-El Baki, G.K.; Stegmann, P.; Weiner, H.; Kaiser, W.M. The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves. Planta 1999, 209, 462–468. [Google Scholar] [CrossRef]
- Reda, M.; Kłobus, G.; Buczek, J. Structure and regulation of nitrate reductase. Postep. Biochem. 2000, 46, 99–106. [Google Scholar]
- Rizwan, M.; Usman, K.; Alsafran, M.; Jabri, H.A.; Samreen, T.; Saleem, M.H.; Tu, S. Nickel toxicity interferes with NO3−/NH4+ uptake and nitrogen metabolic enzyme activity in rice (Oryza sativa L.). Plants 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, E.; Skłodowska, M. Nickel-induced changes in nitrogen metabolism in wheat shoots. J. Plant Physiol. 2009, 166, 1034–1044. [Google Scholar] [CrossRef]
- Gill, S.S.; Khan, N.A.; Tuteja, N. Cadmium at High Dose Perturbs Growth, Photosynthesis and Nitrogen Metabolism While at Low Dose It up Regulates Sulfur Assimilation and Antioxidant Machinery in Garden Cress (Lepidium sativum L.). Plant Sci. 2012, 182, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, D.; Tian, J.; Wang, S.; Yan, Y.; He, X.; Zhong, F. Physiological and transcriptional response of carbohydrate and nitrogen metabolism in tomato plant leaves to nickel ion and nitrogen levels. Sci. Hortic. 2022, 292, 110620. [Google Scholar] [CrossRef]
- Rampazzo, M.V.; Cunha, M.L.O.; de Oliveira, L.C.A.; Silva, V.M.; Lanza, M.G.D.B.; de Melo, A.A.R.; dos Reis, A.R. Physiological roles of nickel on antioxidant and nitrogen metabolism increasing the yield of sugarcane plants. J. Soil Sci. Plant Nutr. 2022, 22, 4438–4448. [Google Scholar] [CrossRef]
- Ghazanfar, S.; Komal, A.; Waseem, A.; Hassan, W.; Iqbal, R.J.; Toor, S.; Nazar, S. Physiological effects of nickel contamination on plant growth. Nat. Volatiles Essent. Oils 2021, 8, 13457–13469. [Google Scholar]
- Dhir, B.; Sharmila, P.; Saradhi, P.P.; Nasim, S.A. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol. Environ. Saf. 2009, 72, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Gurpreet, S.; Rajneesh, K.A.; Rajendra, S.R.; Mushtaq, A. Effect of lead and nickel toxicity on chlorophyll and proline content of Urd (Vigna mungo L.) seedlings. Int. J. Plant Physiol. Biochem. 2012, 4, 136–141. [Google Scholar] [CrossRef]
- Dubey, D.; Pandey, A. Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. Int. J. Sci. Nat. 2011, 2, 395–401. [Google Scholar]
- Baccouch, S.; Chaoui, A.; Ferjani, E.E. Nickel toxicity: Effects on growth and metabolism of maize. J. Plant Nutr. 1998, 21, 577–588. [Google Scholar] [CrossRef]
- Bybordi, A.; Gheibi, M.N. Growth and chlorophyll content of canola plants supplied with urea and ammonium nitrate in response to various nickel levels. Not. Sci. Biol. 2009, 1, 53–58. [Google Scholar] [CrossRef]
Granulometric Composition of Mineral Soil (%) | |
---|---|
Send | 69 |
Dust | 23 |
Clay parts | 8 |
Corg content | 1.14 |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 0.96 *a–c | 1.02 a–f | 0.95 ab | 0.98 a | 0.98 a | |
50 | 0.95 ab | 0.99 a–d | 1.05 c–g | 1.00 a | |||
75 | 0.93 a | 0.99 a–d | 0.98 a–c | 0.97 a | |||
100 | 0.95 ab | 1.02 a–f | 1.01 a–e | 0.99 a | |||
Mean B·A | 0.95 a | 1.01 bc | 0.99 b | ||||
Loamy sand with high peat | 0 | 1.95 ij | 2.01 j–l | 2.01 j–l | 1.99 c | 1.99 c | |
50 | 1.95 ij | 1.95 ij | 2.01 j–l | 1.97 c | |||
75 | 1.95 ij | 2.01 j–l | 2.01 j–l | 1.99 c | |||
100 | 1.89 i | 2.04 j–m | 2.06 k–n | 2.00 c | |||
Mean B·A | 1.94 f | 2.00 g | 2.02 g | ||||
Loamy sand with brown coal | 0 | 2.15 no | 2.15 no | 2.04 j–m | 2.11 e | 2.10 d | |
50 | 2.25 p | 2.13 m–o | 1.95 ij | 2.11 e | |||
75 | 2.10 l–n | 2.12 mn | 1.95 ij | 2.06 d | |||
100 | 2.10 l–n | 2.22 op | 2.00 ij | 2.11 e | |||
Mean B·A | 2.15 h | 2.15 h | 1.98 g | ||||
Loamy sand with wheat straw | 0 | 1.05 c–g | 1.17 h | 1.04 b–f | 1.09 b | 1.08 b | |
50 | 1.08 d–h | 1.14 gh | 1.01 a–e | 1.08 b | |||
75 | 1.05 c–g | 1.11 f–h | 1.04 b–f | 1.07 b | |||
100 | 1.04 b–f | 1.14 gh | 1.10 e–h | 1.09 b | |||
Mean B·A | 1.05 d | 1.14 e | 1.04 cd | ||||
Mean A | 1.52 a | 1.58 b | 1.51 a | ||||
Mean C | dose 0 Ni (I–III) | dose 50 Ni (I–III) | dose 75 Ni (I–III) | dose 100 Ni (I–III) | |||
1.54 a | 1.54 a | 1.52 a | 1.55 a | ||||
Mean A·C | year | dose 0 Ni | dose 50 Ni | dose 75 Ni | dose 100 Ni | ||
I | 1.53 a–c | 1.56 cd | 1.51 ab | 1.49 a | |||
II | 1.59 de | 1.55 b–d | 1.56 cd | 1.61 e | |||
III | 1.51 ab | 1.50 a | 1.49 a | 1.54 a–c |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | ||||||
Loamy sand (mineral soil) | 0 | 7.55 *e | 7.68 e | 5.70 b–e | 6.97 b | 12.78 b | ||
50 | 9.81 f | 11.87 f–i | 13.42 h–l | 11.70 c | ||||
75 | 14.11 i–n | 15.72 m–p | 15.82 m–p | 15.22 e | ||||
100 | 18.38 qr | 14.88 k–o | 18.41 qr | 17.22 f | ||||
Mean B·A | 18.38 qr | 12.54 b | 13.33 bc | |||||
Loamy sand with high peat | 0 | 3.08 a | 7.51e | 4.86 a–c | 5.15 a | 11.61 a | ||
50 | 13.74 i–n | 11.24 f–h | 11.25 f–h | 12.07 c | ||||
75 | 16.00 n–p | 12.13 g–j | 12.97 g–k | 13.70 d | ||||
100 | 16.82 o–q | 14.03 i–n | 15.74 m–p | 15.53 e | ||||
Mean B·A | 12.41b | 11.23 a | 11.20 a | |||||
Loamy sand with brown coal | 0 | 7.05 de | 6.59 c–e | 4.53 a–c | 6.06 ab | 12.39 b | ||
50 | 13.32 g–l | 11.11 fg | 9.91 f | 11.44 c | ||||
75 | 14.77 k–o | 12.19 g–j | 14.23 j–n | 13.73 d | ||||
100 | 20.06 rs | 13.63 i–m | 21.32 st | 18.33 f | ||||
Mean B·A | 13.80 cd | 10.88 a | 12,50 b | |||||
Loamy sand with wheat straw | 0 | 4.00 ab | 7.53 e | 5,01 a–d | 5.51 a | 14.30 c | ||
50 | 14.84 k–o | 12.93 g–k | 15,71 m–p | 14.49 de | ||||
75 | 20.09 rs | 15.44 l–p | 17,41 pq | 17.64 f | ||||
100 | 18.70 qr | 16.95 o–q | 23,07 t | 19.57 g | ||||
Mean B·A | 14.41 de | 13.21 bc | 15.30 e | |||||
Mean A | 13.27 b | 11.96 a | 13.08 b | |||||
Mean C | dose 0 Ni (I–III) | dose 50 Ni (I–III) | dose 75 Ni (I–III) | dose 100 Ni (I–III) | ||||
5.92 a | 12.43 b | 15.07 c | 17.66 d | |||||
Mean A·C | year | dose 0 Ni | dose 50 Ni | dose 75 Ni | dose 100 Ni | |||
I | 5.42 a | 12.93 de | 16.24 g | 18.49 h | ||||
II | 7.33 b | 11.79 c | 13.87 e | 14.87 f | ||||
II | 5.02 a | 12.57 cd | 15.11 f | 19.63 i |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 38.2 *b–j | 18.2 a | 29.2 a–e | 28.5 a | 33.9 a | |
50 | 40.6 c–j | 29.4 a–e | 31.0 a–f | 33.7 ab | |||
75 | 34.6 b–i | 34.0 b–g | 34.0 b–g | 34.2 ab | |||
100 | 49.0 g–j | 28.2 a–d | 40.4 c–j | 39.2 bc | |||
Mean B·A | 40.6 de | 27.5 a | 33.7 abc | ||||
Loamy sand with high peat | 0 | 49.2 g–j | 27.0 a–c | 45.2 f–j | 40.5 bc | 41.7 c | |
50 | 44.0 e–j | 34.8 b–i | 49.4 h–j | 42.7 c | |||
75 | 47.2 g–j | 39.4 c–j | 43.6 e–j | 43.4 c | |||
100 | 38.4 b–j | 29.2 a–e | 53.0 j | 40.2 bc | |||
Mean B·A | 44.7 ef | 32.6 ab | 47.8 f | ||||
Loamy sand with brown coal | 0 | 39.0 b–j | 29.8 a–e | 40.8 c–j | 36.5 bc | 36.2 ab | |
50 | 34.2 b–h | 29.4 a–e | 48.0 g–j | 37.2 bc | |||
75 | 34.0 b–g | 24.0 ab | 48.0 g–j | 35.3 a–c | |||
100 | 37.6 b–i | 29.8 a–e | 39.2 b–j | 35.5 a–c | |||
Mean B·A | 36.2 bcd | 28.3 a | 44.0 ef | ||||
Loamy sand with wheat straw | 0 | 49.6 ij | 27.4 a–d | 42.4 d–j | 39.8 bc | 38.5 bc | |
50 | 48.6 g–j | 36.4 b–i | 35.6 b–i | 40.2 bc | |||
75 | 43.8 e–j | 30.6 a–f | 40.6 c–j | 38.3 bc | |||
100 | 41.2 c–j | 26.6 a–c | 38.6 b–j | 35.5 a–c | |||
Mean B·A | 45.8 ef | 30.3 ab | 39.3 c–e | ||||
Mean A | 41.8 b | 29.6 a | 41.2 b | ||||
Mean C | dose 0 Ni (I–III) | dose 50 Ni (I–III) | dose 75 Ni (I–III) | dose 100 Ni (I–III) | |||
36.3 a | 38.5 a | 37.8 a | 37.6 a | ||||
Mean A·C | year | dose 0 Ni | dose 50 Ni | dose 75 Ni | dose 100 Ni | ||
I | 44.0 c | 41.9 c | 39.9 c | 41.6 c | |||
II | 25.6 a | 32.5 b | 32.0 b | 28.5 ab | |||
III | 39.4 c | 41.0 c | 41.6 c | 42.8 c |
Substrate | Dose of Ni (mg dm−3) | Year of Research | ||
---|---|---|---|---|
I | II | III | ||
Loamy sand (mineral soil) | 50 | 1.06 | 1.62 | 1.06 |
75 | 0.91 | 1.87 | 1.16 | |
100 | 1.28 | 1.55 | 1.38 | |
Loamy sand with high peat | 50 | 0.89 | 1.29 | 1.09 |
75 | 0.96 | 1.46 | 0.96 | |
100 | 0.78 | 1.08 | 1.17 | |
Loamy sand with brown coal | 50 | 0.88 | 0.99 | 1.18 |
75 | 0.87 | 0.81 | 1.18 | |
100 | 0.96 | 1.00 | 0.96 | |
Loamy sand with wheat straw | 50 | 0.98 | 1.33 | 0.84 |
75 | 0.88 | 1.12 | 0.96 | |
100 | 0.83 | 0.97 | 0.91 |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 3.01 pq | 0.68 c–g | 0.26 a–c | 1.31 cd | 1.36 c | |
50 | 2.06 k–m | 0.79 e–g | 0.83 fg | 1.22 bcd | |||
75 | 2.05 k–m | 1.47 ij | 0.33 a–d | 1.28 bcd | |||
100 | 3.18 q | 1.52 ij | 0.18 a | 1.63 ef | |||
Mean B·A | 2.57 h | 1.11 d | 0.40 b | ||||
Loamy sand with high peat | 0 | 3.17 q | 0.68 c–g | 0.48 a–f | 1.44 de | 1.55 d | |
50 | 2.62 no | 2.21 l–n | 0.26 a–c | 1.70 f | |||
75 | 2.72 op | 1.46 ij | 0.11 a | 1.43 de | |||
100 | 3.21 q | 1.04 gh | 0.62 b–g | 1.62 ef | |||
Mean B·A | 2.93 i | 1.35 e | 0.37 ab | ||||
Loamy sand with brown coal | 0 | 2.26 mn | 0.96 g | 0.24 ab | 1.15 bc | 1.19 b | |
50 | 2.44 m–o | 1.36 hi | 0.31 a–c | 1.37 cd | |||
75 | 2.33 m–o | 1.56 ij | 0.15 a | 1.35 cd | |||
100 | 1.84 j–l | 0.75 d–g | 0.06 a | 0.88 a | |||
Mean B·A | 2.22 g | 1.16 d | 0.19 a | ||||
Loamy sand with wheat straw | 0 | 1.71 i–k | 0.74 d–g | 0.26 a–c | 0.90 a | 1.04 a | |
50 | 2.37 m–o | 0.42 a–f | 0.37 a–e | 1.05 ab | |||
75 | 2.15 lm | 1.57 ij | 0.11 a | 1.28 b–d | |||
100 | 1.82 j–l | 0.80 e–g | 0.13 a | 0.91 a | |||
Mean B·A | 2.01 f | 0.88 c | 0.22 ab | ||||
Mean A | 2.43 c | 1.12 b | 0.29 a | ||||
Mean C | Dose 0 Ni (I–III) | Dose 50 Ni (I–III) | Dose 75 Ni (I–III) | Dose 100 Ni (I–III) | |||
1.20 a | 1.34 b | 1.33 b | 1.26 ab | ||||
Mean A·C | Year | Dose 0 Ni | Dose 50 Ni | Dose 75 Ni | Dose 100 Ni | ||
I | 2.54 g | 2.37 fg | 2.31 f | 2.51 g | |||
II | 0.77 c | 1.20 d | 1.51 e | 1.02 d | |||
III | 0.31 ab | 0.44 b | 0.18 a | 0.25 a |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 26.8 c–k | 10.5 ab | 14.1 a–f | 17.1 a | 20.3 a | |
50 | 30.0 f–k | 10.3 a | 18.8 a–h | 19.7 a–c | |||
75 | 28.2 d–k | 18.6 a–h | 15.7 a–g | 20.8 a–c | |||
100 | 23.7 a–j | 26.9 c–k | 19.4 a–h | 23.4 a–d | |||
Mean B·A | 27.2 b | 16.6 a | 17.0 a | ||||
Loamy sand with high peat | 0 | 28.1 d–k | 13.2 a–d | 14.1 a–e | 18.4 ab | 22.2 a | |
50 | 26.9 c–k | 13.6 a–d | 13.8 a–d | 18.1 ab | |||
75 | 37.3 j–l | 16.5 a–h | 19.0 a–h | 24.3 a–d | |||
100 | 52.5 m | 17.3 a–h | 14.3 a–f | 28.0 cd | |||
Mean B·A | 36.2 c | 15.1 a | 15.3 a | ||||
Loamy sand with brown coal | 0 | 28.3 d–k | 11.6 abc | 19.3 a–h | 19.7 abc | 22.8 a | |
50 | 26.3 b–k | 13.8 a–d | 35.5 i–l | 25.2 a–d | |||
75 | 22.1 a–j | 17.8 a–h | 24.2 a–j | 21.4 a–d | |||
100 | 32.1 h–l | 17.7 a–h | 24.1 a–j | 24.6 a–d | |||
Mean B·A | 27.2 b | 15.2 a | 25.8 b | ||||
Loamy sand with wheat straw | 0 | 29.8 e–k | 13.3 a–d | 45.7 lm | 29.6 d | 26.0 b | |
50 | 31.3 g–k | 20.7 a–i | 26.2 a–k | 26.1 b–d | |||
75 | 27.8 d–k | 10.7 ab | 24.9 a–j | 21.1 a–d | |||
100 | 40.3 k–m | 17.3 a–h | 23.9 a–j | 27.2 cd | |||
Mean B·A | 32.3 bc | 15.5 a | 30.2 bc | ||||
Mean A | 30.7 c | 15.6 a | 22.1 b | ||||
Mean C | Dose 0 Ni (I–III) | Dose 50 Ni (I–III) | Dose 75 Ni (I–III) | Dose 100 Ni (I–III) | |||
21.2 a | 22.3 ab | 21.9 a | 25.8 b | ||||
Mean A·C | Year | Dose 0 Ni | Dose 50 Ni | Dose 75 Ni | Dose 100 Ni | ||
I | 28.2 d | 28.6 d | 28.9 d | 37.2 e | |||
II | 12.1 a | 14.6 ab | 15.9 ab | 19.8 bc | |||
III | 23.3 cd | 23.6 cd | 20.9 bc | 20.4 bc |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 1.55 *j | 1.05 c–i | 1.22 e–j | 1.27 de | 1.22 b | |
50 | 1.07 c–i | 1.09 c–i | 1.17 c–i | 1.11 a–d | |||
75 | 1.37 ij | 1.17 c–i | 1.16 c–i | 1.23 b–e | |||
100 | 1.29 f–j | 1.34 h–j | 1.12 c–i | 1.25 cde | |||
Mean B·A | 1.32 cd | 1.16 bc | 1.17 bc | ||||
Loamy sand with high peat | 0 | 1.26 e–j | 1.27 f–j | 1.12 c–i | 1.22 b–e | 1.15 b | |
50 | 1.18 d–i | 1.34 h–j | 0.98 b–h | 1.17 b–e | |||
75 | 1.18 c–i | 1.09 c–i | 1.16 c–i | 1.14 b–e | |||
100 | 1.18 c–i | 0.93 a–f | 1.12 c–i | 1.08 a–d | |||
Mean B·A | 1.20 bcd | 1.16 bc | 1.10 b | ||||
Loamy sand with brown coal | 0 | 1.55 j | 1.14 c–i | 1.34 h–j | 1.34 e | 1.15 b | |
50 | 1.20 e–j | 1.09 c–i | 0.97 b–h | 1.09 a–d | |||
75 | 1.32 g–j | 0.99 b–h | 0.80 a–c | 1.03 ab | |||
100 | 1.29 f–j | 1.16 c–i | 1.00 b–i | 1.15 b–e | |||
Mean B·A | 1.34 d | 1.09 b | 1.03 ab | ||||
Loamy sand with wheat straw | 0 | 0.62 a | 1.18 c–i | 0.95 a–g | 0.91 a | 0.98 a | |
50 | 0.80 a–d | 1.14 c–i | 1.17 c–i | 1.04 ab | |||
75 | 1.19 d–i | 1.09 c–i | 0.88 a–e | 1.05 abc | |||
100 | 0.94 a–g | 1.15 c–i | 0.68 ab | 0.92 a | |||
Mean B·A | 0.89 a | 1.14 b | 0.92 a | ||||
Mean A | 1.19 b | 1.14 b | 1.05 a | ||||
Mean C | Dose 0 Ni (I–III) | Dose 50 Ni (I–III) | Dose 75 Ni (I–III) | Dose 100 Ni (I–III) | |||
1.19 a | 1.10 a | 1.12 a | 1.10 a | ||||
Mean A·C | Year | Dose 0 Ni | Dose 50 Ni | Dose 75 Ni | Dose 100 Ni | ||
I | 1.24 cd | 1.06 ab | 1.26 d | 1.18 b–d | |||
II | 1.16 b–d | 1.16 b–d | 1.09 a–c | 1.14 a–d | |||
III | 1.16 b–d | 1.07 a–c | 1.00 ab | 0.98 a |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 0.49 jk | 0.29 a–g | 0.40 g–k | 0.39 ef | 0.37 b | |
50 | 0.35 d–i | 0.29 a–g | 0.40 f–k | 0.35 a–e | |||
75 | 0.42 h–k | 0.28 a–g | 0.39 d–j | 0.36 a–f | |||
100 | 0.39 e–j | 0.37 a–i | 0.38 d–j | 0.38 d–f | |||
Mean B·A | 0.41 e | 0.31 bc | 0.39 de | ||||
Loamy sand with high peat | 0 | 0.38 d–j | 0.33 b–h | 0.38 d–j | 0.37 c–f | 0.35 b | |
50 | 0.39 f–k | 0.36 d–i | 0.35 c–h | 0.37 c–f | |||
75 | 0.35 d–i | 0.27 a–e | 0.39 f–k | 0.34 a–e | |||
100 | 0.37 d–i | 0.24 a–c | 0.37 d–i | 0.33 a–d | |||
Mean B·A | 0.37 de | 0.30 bc | 0.37 de | ||||
Loamy sand with brown coal | 0 | 0.50 k | 0.27 a–d | 0.47 i–k | 0.41 f | 0.34 b | |
50 | 0.37 d–i | 0.18 a | 0.36 d–i | 0.30 a–c | |||
75 | 0.39 f–k | 0.23 ab | 0.29 a–g | 0.31 a–c | |||
100 | 0.38 d–j | 0.29 b–g | 0.36 d–i | 0.35 b–e | |||
Mean B·A | 0.41 e | 0.24 a | 0.37 de | ||||
Loamy sand with wheat straw | 0 | 0.17 a | 0.30 b–g | 0.37 d–i | 0.28 a | 0.30 a | |
50 | 0.23 ab | 0.28 a–f | 0.43 h–k | 0.31 a–c | |||
75 | 0.37 d–i | 0.28 a–f | 0.32 b–h | 0.32 a–d | |||
100 | 0.29 a–g | 0.33 b–h | 0.28 a–e | 0.30 ab | |||
Mean B·A | 0.27 ab | 0.30 b | 0.35 cd | ||||
Mean A | 0.37 b | 0.29 a | 0.37 b | ||||
Mean C | Dose 0 Ni (I–III) | Dose 50 Ni (I–III) | Dose 75 Ni (I–III) | Dose 100 Ni (I–III) | |||
0.36 b | 0.33 a | 0.33 a | 0.34 ab | ||||
Mean A·C | Year | Dose 0 Ni | Dose 50 Ni | Dose 75 Ni | Dose 100 Ni | ||
I | 0.39 de | 0.34 b–d | 0.38 de | 0.36 c–e | |||
II | 0.30 ab | 0.28 a | 0.27 a | 0.31 a–c | |||
III | 0.41 e | 0.38 de | 0.35 b–d | 0.35 b–d |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 2.04 jk | 1.34 b–i | 1.62 e–k | 1.67 ef | 1.59 b | |
50 | 1.43 b–i | 1.37 b–i | 1.57 d–i | 1.46 b–e | |||
75 | 1.79 i–k | 1.45 c–i | 1.55 d–i | 1.60 a–f | |||
100 | 1.68 f–k | 1.71 g–k | 1.50 c–i | 1.63 d–f | |||
Mean B·A | 1.73 d | 1.47 bc | 1.56 cd | ||||
Loamy sand with high peat | 0 | 1.64 e–k | 1.61e–k | 1.51 c–i | 1.59 c–f | 1.50 b | |
50 | 1.58 d–j | 1.69 f–k | 1.33 b–i | 1.53 c–f | |||
75 | 1.53 d–i | 1.37 b–i | 1.55 d–i | 1.48 c–e | |||
100 | 1.55 d–i | 1.17 a–e | 1.49 c–i | 1.40 a–d | |||
Mean B·A | 1.57 cd | 1.46 bc | 1.47 bc | ||||
Loamy sand with brown coal | 0 | 2.05 k | 1.41 b–i | 1.80 i–k | 1.75 f | 1.50 b | |
50 | 1.57 d–i | 1.27 b–h | 1.33 b–i | 1.39 a–d | |||
75 | 1.71 h–k | 1.22 a–g | 1.09 a–d | 1.34 a–c | |||
100 | 1.67 f–k | 1.45 c–i | 1.36 b–i | 1.49 c–e | |||
Mean B·A | 1.75 d | 1.34 ab | 1.40 bc | ||||
Loamy sand with wheat straw | 0 | 0.79 a | 1.48 c–i | 1.32 b–i | 1.20 a | 1.29 a | |
50 | 1.03 a–c | 1.43 b–i | 1.60 e–k | 1.35 a–c | |||
75 | 1.55 d–i | 1.37 b–i | 1.21 a–f | 1.38 a–d | |||
100 | 1.23 a–h | 1.48 c–i | 0.96 ab | 1.22 ab | |||
Mean B·A | 1.15 a | 1.44 bc | 1.27 ab | ||||
Mean A | 1.55 b | 1.43 a | 1.42 a | ||||
Mean C | Dose 0 Ni (I–III) | Dose 50 Ni (I–III) | Dose 75 Ni (I–III) | Dose 100 Ni (I–III) | |||
1.55 a | 1.43 a | 1.45 a | 1.44 a | ||||
Mean A·C | Year | Dose 0 Ni | Dose 50 Ni | Dose 75 Ni | Dose 100 Ni | ||
I | 1.63 c | 1.40 ab | 1.65 c | 1.53 a–c | |||
II | 1.46 a–c | 1.44 a–c | 1.35 ab | 1.45 a–c | |||
III | 1.56 bc | 1.46 a–c | 1.35 ab | 1.33 a |
Substrate | Dose of Ni (mg dm−3) | Year of Research | Mean B·C | Mean B | |||
---|---|---|---|---|---|---|---|
I | II | III | |||||
Loamy sand (mineral soil) | 0 | 0.45 ij | 0.34 b–i | 0.37 e–j | 0.38 ef | 0.35 b | |
50 | 0.31 b–h | 0.33 b–h | 0.26 a–e | 0.30 a–c | |||
75 | 0.39 g–j | 0.34 c–i | 0.34 c–i | 0.36 a–f | |||
100 | 0.36 d–j | 0.40 h–j | 0.33 b–h | 0.36 d–f | |||
Mean B·A | 0.38 de | 0.35 cde | 0.33 bc | ||||
Loamy sand with high peat | 0 | 0.35 d–j | 0.38 f–j | 0.34 b–i | 0.36 c–f | 0.34 b | |
50 | 0.35 d–j | 0.39 g–j | 0.31 b–h | 0.35 c–f | |||
75 | 0.33 b–h | 0.33 b–h | 0.35 d–j | 0.34 b–e | |||
100 | 0.35 d–j | 0.28 b–g | 0.34 c–i | 0.33 a–e | |||
Mean B·A | 0.35 cde | 0.35 cde | 0.34 cd | ||||
Loamy sand with brown coal | 0 | 0.46 j | 0.33 b–h | 0.41 h–j | 0.40 f | 0.34 b | |
50 | 0.34 c–i | 0.32 b–h | 0.30 b–h | 0.32 a–d | |||
75 | 0.37 f–j | 0.30 b–h | 0.25 a–d | 0.31 a–d | |||
100 | 0.37 f–j | 0.35 d–i | 0.31 b–h | 0.34 b–f | |||
Mean B·A | 0.39 e | 0.33 bc | 0.32 bc | ||||
Loamy sand with wheat straw | 0 | 0.18 a | 0.35 d–j | 0.30 b–h | 0.28 a | 0.30 a | |
50 | 0.23 ab | 0.33 b–h | 0.34 d–i | 0.30 a–c | |||
75 | 0.35 d–i | 0.33 b–h | 0.27 a–f | 0.32 a–d | |||
100 | 0.29 b–g | 0.35 d–i | 0.23 a–c | 0.29 ab | |||
Mean B·A | 0.26 a | 0.34 c–e | 0.29 ab | ||||
Mean A | 0.34 b | 0.34 b | 0.32 a | ||||
Mean C | Dose 0 Ni (I–III) | Dose 50 Ni (I–III) | Dose 75 Ni (I–III) | Dose 100 Ni (I–III) | |||
0.35 b | 0.32 a | 0.33 ab | 0.33 ab | ||||
Mean A·C | Year | Dose 0 Ni | Dose 50 Ni | Dose 75 Ni | Dose 100 Ni | ||
I | 0.36 c | 0.31 a–c | 0.36 c | 0.34 a–c | |||
II | 0.35 a–c | 0.34 a–c | 0.33 a–c | 0.35 a–c | |||
III | 0.35 bc | 0.30 a | 0.31 ab | 0.31 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misiak, K.; Bosiacki, M.; Formela-Luboińska, M. Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments. Agronomy 2025, 15, 1018. https://doi.org/10.3390/agronomy15051018
Misiak K, Bosiacki M, Formela-Luboińska M. Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments. Agronomy. 2025; 15(5):1018. https://doi.org/10.3390/agronomy15051018
Chicago/Turabian StyleMisiak, Kamil, Maciej Bosiacki, and Magda Formela-Luboińska. 2025. "Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments" Agronomy 15, no. 5: 1018. https://doi.org/10.3390/agronomy15051018
APA StyleMisiak, K., Bosiacki, M., & Formela-Luboińska, M. (2025). Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments. Agronomy, 15(5), 1018. https://doi.org/10.3390/agronomy15051018