Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer
Abstract
:1. Introduction
2. Mechanisms of Soil Carbon Sequestration
3. Traditional Fertilization Methods Cause Loss of Soil Organic Carbon
4. Background and Application of Moderate Replacement of Nitrogen Fertilizer with Green Manure
4.1. Definition and Classification of Green Manure
4.2. Scientific Feasibility of Green Manure as a Partial Replacement for Chemical Nitrogen Fertilizer
5. Soil Carbon Sequestration and Mechanism Based on Moderate Substitution of Nitrogen Fertilizer with Green Manure
5.1. The Effect of Moderate Substitution of Nitrogen Fertilizer with Green Manure on Soil Carbon Sequestration
5.2. Mechanisms for Driving Soil Carbon Sequestration by Moderate Substitution of Nitrogen Fertilizer by Green Manure
5.2.1. Physical Fixation
5.2.2. Chemical Fixation
5.2.3. Microbiological Fixation
6. Challenges, Obstacles, and Limitations to Use of Green Manures
- (1)
- The variable effectiveness of green manures across different environments: Their performance depends heavily on local soil conditions, climate, and management practices, making it difficult to establish universal guidelines for their use. In some cases, green manures may compete with cash crops for water and nutrients, particularly in arid regions or during drought periods.
- (2)
- Management complexities: Farmers must carefully time planting and termination of green manure crops to avoid interfering with main crop production cycles. This requires additional planning and labor, which can be a barrier for resource-limited operations. The decomposition rate of green manure biomass is also inconsistent, sometimes leading to temporary nitrogen immobilization that could negatively affect subsequent crops.
- (3)
- Economic constraints: The costs associated with seeds, establishment, and incorporation of green manure crops often outweigh the immediate economic benefits, especially for small-scale farmers. There is also typically a delay between implementing green manures and observing measurable improvements in soil quality or crop yields, which discourages short-term adoption.
- (4)
- Knowledge gaps and technical barriers remain significant challenges: Many farmers lack access to clear, locally relevant information about optimal green manure species selection and management techniques. Additionally, some farming systems lack the necessary equipment or infrastructure to effectively incorporate green manures into their operations.
7. Future Research Directions and Suggestions
- (1)
- Improve soil carbon sequestration efficiency by optimizing green manure management strategies: Selecting unique green manure varieties for specific regions to adapt to the climate conditions and soil textures of different agricultural areas and clarifying the optimal planting window for different climate zones will help maximize the growth potential and ecological benefits of green manure. In addition, it is particularly crucial to utilize intercropping, multiple cropping, crop rotation, and other modes based on the characteristics of resources and crop biology in different regions, allocate space and time reasonably, and organically incorporate green manure into the planting system to achieve efficient resource utilization.
- (2)
- Evaluate the ecological benefits of green manure through long-term and multi-scale research: Conducting cross-year long-term positioning experiments will provide data support for understanding the long-term effects of the “green manure+nitrogen fertilizer” combined application strategy on soil carbon sequestration. In addition, remote sensing technology and geographic information systems (GISs) can be utilized to digitally monitor the carbon dynamics of intensive farmland, in order to provide broader spatial data for in-depth analysis of the role of green manure in diverse agricultural ecosystems. Meanwhile, utilizing machine learning and big data analysis techniques to establish precise carbon cycle prediction models can assist decision-makers or researchers in formulating more rational management strategies.
- (3)
- Explore the climate change adaptation capacity and carbon sequestration potential of green manure under different climate scenarios: Exploring the growth of green manure under extreme climate conditions such as drought, floods, and cold, and its impact on soil carbon sequestration, will help to understand its adaptability and resilience in the context of climate change. Encouraging interdisciplinary collaboration between climate science, soil science, and agricultural economics can provide a more comprehensive and authoritative perspective for a deeper understanding of the role of green manure in sustainable agriculture.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Zhang, Y.; Han, W.X.; Tang, A.; Shen, J.L.; Cui, Z.L.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Aouaichia, K.; Grara, N.; Bazri, K.E.; Barbieri, E.; Mamine, N.; Hemmami, H.; Capaldo, A.; Rosati, L.; Bellucci, S. Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life 2024, 14, 1209. [Google Scholar] [CrossRef]
- Cao, W.D.; Bao, X.G.; Xu, C.X.; Nie, J.; Gao, Y.J.; Geng, M.J. Reviews and prospects on science and technology of green manure in China. J. Plant Nutr. Fertil. 2017, 23, 1450–1461. (In Chinese) [Google Scholar]
- Wang, P.F.; Yu, A.Z.; Li, Y.; Wang, Y.L.; Lyu, H.Q.; Wang, F.; Shang, Y.P.; Yang, X.H.; Chai, Q. Reducing nitrogen application by 20% under the condition of multiple cropping using green manure after wheat harvesting can mitigate carbon emission without sacrificing maize yield in arid areas. Field Crop Res. 2024, 306, 109232. [Google Scholar] [CrossRef]
- Adekiya, A.O. Green manures and poultry feather effects on soil characteristics, growth, yield, and mineral contents of tomato. Sci. Hortic. 2019, 257, 108721. [Google Scholar] [CrossRef]
- Finney, D.M.; Kaye, J.P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 2017, 54, 509–517. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Guan, K.Y.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107701. [Google Scholar] [CrossRef]
- Zhou, G.P.; Gao, S.J.; Chang, D.N.; Shimizu, K.Y.; Cao, W.D. Succession of fungal community and enzyme activity during the co-decomposition process of rice (Oryza sativa L.) straw and milk vetch (Astragalus sinicus L.). Waste Manag. 2021, 134, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.L.; Maltais-Landry, G.; Liao, H.L. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 2021, 156, 108219. [Google Scholar] [CrossRef]
- Chen, S.; Xu, C.; Yan, J.; Zhang, X.; Wang, D. The influence of the type of crop residue on soil organic carbon fractions: An 11-year field study of rice-based cropping systems in southeast China. Agric. Ecosyst. Environ. 2016, 223, 261–269. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Li, J.; Ding, J.Z.; Yang, S.S.; Zhao, L.Q.; Li, J.; Huo, H.Y.; Wang, M.Y.; Tan, J.Y.; Cao, Y.F.; Ren, S.; et al. Depth-dependent driver of global soil carbon turnover times. Soil Biol. Biochem. 2023, 185, 109149. [Google Scholar] [CrossRef]
- Briar, S.S.; Fonte, S.J.; Park, I.; Six, J.; Scow, K.; Ferris, H. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 2011, 43, 905–914. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Fonte, S.J.; Six, J.; Schimel, J.P. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 2016, 272, 39–50. [Google Scholar] [CrossRef]
- Garland, G.; Bünemann, E.K.; Oberson, A.; Frossard, E.; Snapp, S.; Chikowo, R.; Six, J. Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model. Soil Biol. Biochem. 2018, 116, 91–98. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Banerjee, E.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- García-Hernández, J.L.; Murillo-amador, B.; Nieto-garibay, A.; Fortis-Hernández, M.; Márquez-Hernández, C.; Castellanos-Pérez, E.; Quiñones-Vera, J.D.J.; Avila-serrano, N.Y. Research advances and prospects on the use of green manures in agriculture. Terra Latinoam. 2010, 28, 391–399. [Google Scholar]
- An, S.S.; Huang, Y.M.; Zheng, F.L.; Yang, J.G. Aggregate Characteristics During Natural Revegetation on the Loess Plateau. Pedosphere 2008, 18, 809–816. [Google Scholar] [CrossRef]
- An, S.S.; Mentler, A.; Mayer, H.; Blum, W.E.H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Dou, Y.X.; Yang, Y.; An, S.S.; Zhu, Z.L. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena 2020, 185, 104294. [Google Scholar] [CrossRef]
- Martens, D.A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 2000, 32, 361–369. [Google Scholar] [CrossRef]
- Wang, H.; Han, S.; Tang, S.; Cheng, W.L.; Bu, R.Y.; Li, M.; Wu, J.; Wang, Y.Q.; Cao, W.D. Continuous multi-year application of Chinese Milk Vetch in paddy soil and Its effect on soil aggregates distribution and their carbon and nitrogen Content. Acta Pedol. Sin. 2023, 60, 868–880. (In Chinese) [Google Scholar]
- Qiu, X.; Zhao, J.N.; Li, W.Y.; Zhang, N.Q.; Zhu, Y.; Yang, D.L. Effects of different land use types on storage and structure of soil organic carbon in Stipa klemenaii steppe in Inner Mongolia. J. Agro-Environ. Sci. 2016, 11, 2137–2145. (In Chinese) [Google Scholar]
- Ussiri, D.A.N.; Johnson, C.E. Characterization of organic matter in a northern hardwood forest soil by 13C-NMR spectroscopy and chemical methods. Geoderma 2003, 111, 123–149. [Google Scholar] [CrossRef]
- Chen, J.S.; Chiu, C.Y. Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR. Geoderma 2003, 117, 129–141. [Google Scholar] [CrossRef]
- Sun, H.M.; Jiang, J.; Cui, L.N.; Zhang, Y.F.; Zhang, J.C. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary. Chin. J. Plant Ecol. 2018, 7, 774–784. (In Chinese) [Google Scholar]
- Singh, R.J.; Ghosh, B.N.; Sharma, N.K.; Patra, S.; Dadhwal, K.S.; Meena, V.S.; Deshwal, J.S.; Mishra, P.K. Effect of seven years of nutrient supplementation through organic and inorganic sources on productivity, soil and water conservation, and soil fertility changes of maize-wheat rotation in north-western Indian Himalayas. Agric. Ecosyst. Environ. 2017, 249, 177–186. [Google Scholar] [CrossRef]
- Wang, C.; Qu, L.R.; Yang, L.M.; Liu, D.W.; Morrissry, E.; Miao, R.H.; Liu, Z.P.; Wang, Q.K.; Fang, Y.T.; Bai, E. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob. Change Biol. 2021, 27, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Bearden, B.N.; Petersen, L. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 2000, 218, 173–183. [Google Scholar] [CrossRef]
- Liang, H.; Li, S.; Zhou, G.P.; Fu, L.B.; Hu, F.; Gao, S.J.; Cao, W.D. Targeted regulation of the microbiome by green manuring to promote tobacco growth. Biol. Fertil. Soils 2024, 60, 69–85. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Wang, P.; Li, J.L.; Chen, Y.R.; Ying, X.Z.; Liu, S.Y. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Hopkins, F.M.; Filley, T.R.; Gleixner, G.; Lange, M.; Top, S.M.; Trumbore, S.E. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biol. Biochem. 2014, 76, 57–69. [Google Scholar] [CrossRef]
- Sokol, N.W.; Bradford, M.A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 2019, 12, 46–53. [Google Scholar] [CrossRef]
- Xie, Z.J.; Tu, S.X.; Shah, F.; Xu, C.X.; Chen, J.R.; Han, D.; Liu, G.R.; Li, H.L.; Muhammad, I.; Cao, W.D. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crop Res. 2016, 188, 142–149. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.B.; Xue, S.; Wang, G.L. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Setia, R.; Gottschalk, P.; Smith, P.; Marschner, P.; Smith, J. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 2012, 465, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.B.; Li, G.D.; Pan, M.Y.; Zheng, X.F.; Wang, Z.H.; He, G. Effects of long-term straw return and nitrogen application rate on organic carbon storage, components and aggregates in cultivated laye. Sci. Agric. Sin. 2023, 56, 4035–4048. (In Chinese) [Google Scholar]
- Chang, F.D.; Zhang, H.Y.; Zhao, N.; Zhao, P.Y.; Song, J.S.; Yu, R.; Kan, Z.R.; Wang, X.Q.; Wang, J.; Liu, H.J.; et al. Green manure removal with reduced nitrogen improves saline-alkali soil organic carbon storage in a wheat-green manure cropping system. Sci. Total Environ. 2024, 926, 171827. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, H.; Wang, Y.Q.; Mao, Q.G.; Zheng, M.H.; Su, Y.R.; Xiao, K.C.; Wang, K.L.; Li, D.J. Responses of soil microbial resource limitation to multiple fertilization strategies. Soil Tillage Res. 2020, 196, 104474. [Google Scholar] [CrossRef]
- Gao, S.J.; Li, S.; Zhou, G.P.; Cao, W.D. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China. J. Integr. Agric. 2023, 22, 2233–2247. [Google Scholar] [CrossRef]
- Wanic, M.; Uk-Goaszewska, K.; Orzech, K. Catch crops and the soil environment—A review of the literature. J. Elementol. 2018, 24, 31–45. [Google Scholar] [CrossRef]
- Danga, B.O.; Ouma, J.P.; Wakindiki, I.I.; Bar-Tal, A. Legume wheat rotation effects on residual soil moisture, nitrogen and wheat yield in tropical regions. Adv. Agron. 2009, 101, 315–349. [Google Scholar]
- Zhao, N.; Zhao, H.B.; Yu, C.W.; Duan, C.L.; Li, K.Y.; Cao, Q.H.; Cao, W.D.; Gao, Y.J. Effect of Green Manure in Summer Fallow Period and Nitrogen Rate on Winter Wheat Growth. Acta Agric. Boreali-Occident. Sin. 2010, 19, 41–47. [Google Scholar]
- Shang, Y.; Yu, A.; Wang, Y.; Wang, P.; Lyu, H.; Wang, F.; Yang, X.; Liu, Y.; Yin, B.; Zhang, D. No-Tillage Treatment with Total Green Manure Mulching Reduces Soil Respiration by Regulating Soil Water Content Affecting Heterotrophic Respiration. Agronomy 2024, 14, 2551. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Zhang, D.B.; Yao, P.W.; Zhao, N.; Li, Y.Y.; Zhang, S.Q.; Zhai, B.N.; Huang, D.L.; Ma, A.S.; Zuo, Y.J.; et al. Optimizing the synthetic nitrogen rate to balance residual nitrate and crop yield in a leguminous green-manured wheat cropping system. Sci. Total Environ. 2018, 631–632, 1234–1242. [Google Scholar] [CrossRef]
- Tao, J.M.; Liu, X.D.; Liang, Y.L.; Niu, J.J.; Xiao, Y.H.; Gu, Y.B.; Ma, L.Y.; Meng, D.L.; Zhang, Y.G.; Huang, W.K.; et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Appl. Microbiol. Biotechnol. 2017, 101, 1289–1299. [Google Scholar] [CrossRef]
- Michela, F.; Giacomo, T.; Andrea, O.; Paolo, B.; Marcello, G.; Euro, P.; Francesco, T. Effects of N sources and management strategies on crop growth, yield and potential N leaching in processing tomato. Eur. J. Agron. 2018, 98, 46–54. [Google Scholar]
- Wang, Y.L.; Lyu, H.Q.; Yu, A.Z.; Wang, F.; Li, Y.; Wang, P.F.; Shang, Y.P.; Yang, X.H.; Chai, Q. No-tillage mulch with green manure retention improves maize yield by increasing the net photosynthetic rate. Eur. J. Agron. 2024, 159, 127275. [Google Scholar] [CrossRef]
- Ma, B.J.; Gou, Z.W.; Yin, W.; Yu, A.Z.; Fan, Z.L.; Hu, F.L.; Zhao, C.; Chai, Q. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in Arid Irrigated Areas. Sci. Agric. Sin. 2022, 55, 3501–3515. [Google Scholar]
- Wang, F.; Wang, Y.L.; Lyu, H.Q.; Fan, Z.L.; Hu, F.L.; He, W.; Yin, W.; Zhao, C.; Chai, Q.; Yu, A.Z. No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize. Agric. Water Manag. 2023, 290, 108573. [Google Scholar] [CrossRef]
- Wang, P.F.; Yu, A.Z.; Wang, F.; Wang, Y.L.; Lyu, H.Q.; Shang, Y.P.; Yang, X.H.; Liu, Y.L.; Yin, B.; Zhang, D.L.; et al. Nitrogen reduction by 20% with green manure retention reduces soil evaporation, promotes maize transpiration and improves water productivity in arid areas. Field Crop Res. 2024, 315, 109488. [Google Scholar] [CrossRef]
- Gao, L.; Liu, G.D. Progress of Green Manure in Soil Improve Ment. Beijing Agric. 2007, 36, 29–33. (In Chinese) [Google Scholar]
- Mader, P.; Berner, A. Development of reduced tillage systems in organic farming in Europe. Renew. Agric. Food Syst. 2012, 27, 7–11. [Google Scholar] [CrossRef]
- Larkin, R.P. Green manures and plant disease management. CABI Rev. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Zhou, G.P.; Fan, K.K.; Gao, S.J.; Chang, D.N.; Li, G.L.; Liang, T.; Liang, H.; Li, S.; Zhang, J.D.; Che, Z.X.; et al. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years. Sci. China Life Sci. 2024, 67, 596–610. [Google Scholar] [CrossRef]
- Zhou, G.P.; Fan, K.K.; Li, G.L.; Gao, S.J.; Chang, D.N.; Liang, T.; Li, S.; Liang, H.; Zhang, J.D.; Che, Z.X.; et al. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. iMeta 2023, 2, e81. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.; Li, D.Y.; Zhu, B.; Zhang, K.; Yang, Y.D.; Wang, C.; Jiang, Y.; Zeng, Z.H. CH4 and N2O emissions from double-rice cropping system as affected by Chinese milk vetch and straw incorporation in southern China. Front. Agric. Sci. Eng. 2017, 4, 59–68. [Google Scholar] [CrossRef]
- Zhang, D.B.; Yao, P.W.; Zhao, N.; Cao, W.D.; Zhang, S.Q.; Li, Y.Y.; Huang, D.L.; Zhai, B.N.; Wang, Z.H.; Gao, Y.J. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma 2019, 337, 425–433. [Google Scholar] [CrossRef]
- Elfstrand, S.; Hedlund, K.; M Rtensson, A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl. Soil Ecol. 2007, 35, 610–621. [Google Scholar] [CrossRef]
- Lyu, H.; Li, Y.; Yu, A.Z.; Hu, F.L.; Chai, Q.; Wang, F.; Wang, Y.; Wang, P.F.; Shang, Y.; Yang, X. How do green manure management practices affect ammonia emissions from maize fields? Agric. Ecosyst. Environ. 2024, 367, 108971. [Google Scholar] [CrossRef]
- Lyu, H.; Li, Y.; Wang, Y.; Wang, F.; Fan, Z.; Hu, F.; Yin, W.; Zhao, C.; Yu, A.; Chai, Q. No-tillage with total green manure mulching: A strategy to lower N2O emissions. Field Crops Res. 2024, 306, 109238. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Janzen, H.H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Chivenge, P.; Murwira, H.; Giller, K.; Mapfumo, P.; Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil Tillage Res. 2007, 94, 328–337. [Google Scholar] [CrossRef]
- Lai, R.; Follett, R.F.; Stewark, B.A.; Kimbie, J.M. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci. 2008, 172, 943–956. [Google Scholar]
- Duxbury, J.M. The significance of agricultural sources of greenhouse gases. Fertil. Res. 1994, 38, 151–163. [Google Scholar] [CrossRef]
- Chalise, K.S.; Singh, S.; Wegner, B.R.; Kumar, S.; Pérez-Gutiérrez, J.D.; Osborne, S.L.; Nleya, T.; Guzman, J.; Rohila, J.S. Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield. Agron. J. 2019, 111, 99–108. [Google Scholar] [CrossRef]
- Novara, A.; Minacapilli, M.; Santoro, A.; Rodrigo-Comino, J.; Carrubba, A.; Sarno, M.; Venezia, G.; Gristina, L. Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Sci. Total Environ. 2019, 652, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Salazar, O.; Balboa, L.; Peralta, K.; Rossi, M.; Casanova, M.; Tapia, Y.; Singh, R.; Quemada, M. Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile. Agric. Water Manag. 2019, 212, 399–406. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol. Biochem. 2020, 143, 107735. [Google Scholar] [CrossRef]
- Ding, G.W.; Liu, X.B.; Herbert, S.; Novak, J.; Amarasiriwardena, D.; Xing, B.S. Effect of cover crop management on soil organic matter. Geoderma 2006, 130, 229–239. [Google Scholar] [CrossRef]
- Yang, Z.P.; Zheng, S.X.; Nie, J.; Liao, Y.L.; Xie, J. Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system. J. Integr. Agric. 2014, 13, 1772–1781. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Maeder, P.; Stolze, M.; Smith, P.; Scialabba, E.H. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef]
- Khan, M.I.; Gwon, H.S.; Alam, M.A.; Song, H.J.; Kim, P.J. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Appl. Soil Ecol. 2019, 147, 103400. [Google Scholar] [CrossRef]
- Liu, X.T.; Song, X.J.; Li, S.P.; Liang, G.P.; Wu, X.P. Understanding how conservation tillage promotes soil carbon accumulation: Insights into extracellular enzyme activities and carbon flows between aggregate fractions. Sci. Total Environ. 2023, 897, 165408. [Google Scholar] [CrossRef]
- O’Dea, J.K.; Miller, P.R.; Jones, C.A. Greening summer fallow with legume green manures: On-farm assessment in north-central Montana. J. Soil Water Conserv. 2013, 68, 270–282. [Google Scholar] [CrossRef]
- Utomo, M.; Frye, W.W.; Blevins, R.L. Sustaining soil nitrogen for corn using hairy vetch cover crop. Agron. J. 1990, 82, 979. [Google Scholar] [CrossRef]
- Sainju, U.M.; Singh, B.P.; Whitehead, W.F.; Wang, S. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization. J. Environ. Qual. 2006, 35, 1507. [Google Scholar] [CrossRef] [PubMed]
- Idowu, O.J.; Van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Schindelbeck, R.R.; Moebius-Clune, B.N.; Gugino, B.K. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 2009, 24, 214–224. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Callesen, I.; Liski, J.; Raulund-Rasmussen, K.; Olsson, M.T.; Tau-Strand, L.; Vesterdal, L.; Westman, C.J. Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class. Glob. Change Biol. 2003, 9, 358–370. [Google Scholar] [CrossRef]
- Xie, W.J.; Chen, Q.F.; Wu, L.F.; Yang, H.J.; Xu, J.K.; Zhang, Y.P. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil Tillage Res. 2020, 198, 104535. [Google Scholar] [CrossRef]
- Xu, X.R.; Schaeffer, S.; Sun, Z.H.; Zhang, J.M.; An, T.T.; Wang, J.K. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil Tillage Res. 2020, 199, 104593. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils1. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Zhou, G.P.; Gao, S.J.; Lu, Y.H.; Liao, Y.L.; Nie, J.; Cao, W.D. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Tillage Res. 2020, 197, 104499. [Google Scholar] [CrossRef]
- He, C.M.; Zhong, S.J.; Li, Q.H.; Wang, F.; Lin, C.; Li, Y. Effects of Planting and Overturning Milk Vetch on Properties of Surface Soil Structure and Content of Organic Carbon. Acta Agric. Jiangxi 2014, 26, 32–34. (In Chinese) [Google Scholar]
- Nie, X.; Lu, Y.H.; Liao, Y.L.; Gao, Y.J.; Cheng, H.D.; Zhu, Q.D.; Cao, W.D.; Nie, J. Effects of the incorporation of various amounts of Chinese Milk Vetch and reducing chemical fertilizer on water-stable aggregates and yield in double cropping rice system. Acta Agric. Boreali-Sin. 2020, 35, 155–164. (In Chinese) [Google Scholar]
- Wang, F.L.; Liu, Y.; Liang, B.; Liu, J.; Zong, H.Y.; Guo, X.H.; Wang, X.X.; Song, N.N. Variations in soil aggregate distribution and associated organic carbon and nitrogen fractions in long-term continuous vegetable rotation soil by nitrogen fertilization and plastic film mulching. Sci. Total Environ. 2022, 835, 155420. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil Tillage Res. 2015, 154, 114–125. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Rothman, D.H.; Grant, K.E.; Rosengard, S.Z.; Galy, V.V. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 2019, 570, 228–231. [Google Scholar] [CrossRef]
- Saidy, A.R.; Smernik, R.J.; Baldock, J.A.; Kaiser, K.; Sanderman, J.; Macdonald, L.M. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 2012, 173–174, 104–110. [Google Scholar] [CrossRef]
- Gottshall, C.B.; Cooper, M.; Emery, S.M. Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity. Agron. Ecosyst. Environ. 2017, 241, 142–149. [Google Scholar] [CrossRef]
- Porras, R.C.; Pries, C.E.H.; Torn, M.S.; Nico, P.S. Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon. Sci. Total Environ. 2017, 613–614, 342–351. [Google Scholar] [CrossRef]
- Huang, X.L.; Tang, H.Y.; Kang, W.J.; Yu, G.H.; Ran, W.; Hong, J.P.; Shen, Q. Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice-wheat cropping system. Soil Biol. Biochem. 2018, 120, 12–23. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Nie, J.; Liang, H.; Wei, C.L.; Wang, Y.; Liao, Y.L.; Lu, Y.H.; Zhou, G.P.; Gao, S.J.; Cao, W.D. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China. J. Integr. Agric. 2023, 22, 1529–1545. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, L.; Nie, J.; Geng, M.; Lu, Y.; Liao, Y.; Xue, B. Effects of substitution of chemical fertilizer by Chinese milk vetch on distribution and composition of aggregates-associated organic carbon fractions in paddy soils. Plant Soil 2022, 481, 641–659. [Google Scholar] [CrossRef]
- Huang, Y.N.; Huang, L.; Gao, J.S.; Geng, M.J.; Xue, B.; Zhang, H.M.; Huang, J. Effects of long-term green manure application on organic carbon fractions and clay minerals and their interactions in paddy soil aggregates. Plant Soil 2023, 507, 109–126. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xin, X.L.; Zhu, A.N.; Yang, W.L.; Zhang, J.B.; Ding, S.J.; Mu, L.; Shao, L.L. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Tillage Res. 2018, 178, 99–107. [Google Scholar] [CrossRef]
- He, Y.B.; Dong, J.Q.; Zeng, H.; Liu, S.Y.; Wang, F.; Yang, M.; Guo, Z.H. Simulation of Lucerne and Vetiver Hydroponic Root Exudates to Alleviate Clayey Red Soil Penetration Resistance. Acta Pedol. Sin. 2024, 61, 1224–1235. (In Chinese) [Google Scholar]
- Wu, T.x.; Wu, W.C.; Zhou, Q.H.; Xu, Q.F. Improvement of Soil Microbial Function in Newly Cultivated Land Based on Root Exudates of Green Manure. Chin. J. Soil Sci. 2024, 55, 769–779. (In Chinese) [Google Scholar]
- Nannipieri, P.; Angst, G.; Mueller, C. The role of death and lysis of microbial and plant cells in the formation of soil organic matter. Soil Biol. Biochem. 2025, 204, 109750. [Google Scholar] [CrossRef]
- Angers, D.A. Changes in Soil Aggregation and Organic Carbon under Corn and Alfalfa. Soil Sci. Soc. Am. J. 1992, 56, 1244–1249. [Google Scholar] [CrossRef]
- Canqui, H.B.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Bai, X.; Zhai, G.; Yan, Z.; An, S.; Liu, J.; Huo, L.J.; Dippold, M.A.; Kuzyakov, Y. Effects of microbial groups on soil organic carbon accrual and mineralization during high-and low-quality litter decomposition. Catena 2024, 241, 108051. [Google Scholar] [CrossRef]
Type | Example Species | C:N | Key Functions | Suitable Conditions |
---|---|---|---|---|
Legumes | Chinese milk vetch, hairy vetch, clover | 15–25:1 | Biological N fixation, labile C source | pH 7–8, low–moderate-fertility soils [7] |
Gramineae | Ryegrass, oat, rye | 30–50:1 | Long-term C storage, erosion control | Requires N supplementation [6] |
Brassicas | Rapeseed, daikon radish, mustard | 25–35:1 | Activated phosphorus and potassium, biofumigation | Avoid continuous cropping [11] |
Asteraceae | Jerusalem artichoke, sunflower, crown daisy | 20–30:1 | Deep C sequestration, drought resistance | Arid/semi-arid regions [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Yu, A.; Wang, F.; Shang, Y.; Wang, Y.; Yin, B.; Liu, Y.; Zhang, D. Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer. Agronomy 2025, 15, 1042. https://doi.org/10.3390/agronomy15051042
Wang P, Yu A, Wang F, Shang Y, Wang Y, Yin B, Liu Y, Zhang D. Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer. Agronomy. 2025; 15(5):1042. https://doi.org/10.3390/agronomy15051042
Chicago/Turabian StyleWang, Pengfei, Aizhong Yu, Feng Wang, Yongpan Shang, Yulong Wang, Bo Yin, Yalong Liu, and Dongling Zhang. 2025. "Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer" Agronomy 15, no. 5: 1042. https://doi.org/10.3390/agronomy15051042
APA StyleWang, P., Yu, A., Wang, F., Shang, Y., Wang, Y., Yin, B., Liu, Y., & Zhang, D. (2025). Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer. Agronomy, 15(5), 1042. https://doi.org/10.3390/agronomy15051042