Optimized Agronomic Management in North China Plain to Maintain Wheat (Triticum aestivum L.) Yield While Reducing Water and Fertilizer Inputs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Field Management
2.3. Sampling and Laboratory Analysis
2.3.1. Root Physiological and Ecological Indicators
2.3.2. Aboveground Growth and Physiological Parameter Analysis
2.3.3. Flowering and Grain-Setting Characteristics
2.3.4. Soil Water Use
2.3.5. Nitrogen Fertilizer Partial Productivity (PFPN) and Economic Benefit Evaluation
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Agronomic Management Strategies on Wheat Root Traits
3.2. Population and Individual Growth and Physiology of Wheat Under Different Agronomic Management Strategies
3.3. Water Consumption Characteristics of Wheat Fields Under Different Agronomic Management Strategies
3.4. Yield Structure and Comprehensive Benefit Evaluation Under Different Agronomic Management Strategies
3.5. Interaction Between Canopy and Roots Under Different Agronomic Management Strategies
4. Discussion
4.1. Mechanisms of Water Saving and Yield Enhancement in Wheat Fields Under Different Agronomic Management Strategies
4.2. Comprehensive Benefit Evaluation of Wheat Fields Under Different Agronomic Management Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Y.; Lin, F.; Maucieri, C.; Zhang, Y. Efficient Irrigation Methods and Optimal Nitrogen Dose to Enhance Wheat Yield, Inputs Efficiency and Economic Benefits in the North China Plain. Agronomy 2022, 12, 273. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhu, X.; Yang, T.; Bai, J.; Sun, Z. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 2018, 564, 984–996. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C. Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain. Sustainability 2019, 1, 3028. [Google Scholar] [CrossRef]
- van Oort, P.A.J.; Wang, G.; Vos, J.; Meinke, H.; Li, B.G.; Huang, J.K.; van der Werf, W. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain. Agric. Water Manag. 2016, 165, 131–140. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Zhan, X.; Zhang, Q.; Li, S.; Lv, S.; Long, Y.; Zeng, H. Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize-Wheat Rotation System in North China Plain. Sustainability 2020, 12, 4400. [Google Scholar] [CrossRef]
- Liang, W.-L.; Carberry, P.; Wang, G.-Y.; Lü, R.-H.; Lü, H.-Z.; Xia, A.-P. Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China. Field Crops Res. 2011, 124, 180–185. [Google Scholar] [CrossRef]
- Zhang, M.-M.; Dong, B.-D.; Qiao, Y.-Z.; Shi, C.-H.; Yang, H.; Wang, Y.-K.; Liu, M.-Y. Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain. J. Integr. Agric. 2018, 17, 1194–1206. [Google Scholar] [CrossRef]
- Jin, L.; Hu, K.; Deelstra, J.; Li, B.; Wei, D.; Wang, H. Evaluation of nitrogen fate, water and nitrogen use efficiencies of winter wheat in North China Plain based on model approach. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2014, 63, 127–138. [Google Scholar] [CrossRef]
- Baboev, S.; Kulmamatova, D. Influence of Pre-Sowing Irrigation on Seed Generation in Winter Wheat. BIO Web Conf. 2023, 78, 3014. [Google Scholar] [CrossRef]
- Yin, B.; Hu, Z.; Wang, Y.; Zhao, J.; Pan, Z.; Zhen, W. Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain. Agric. Water Manage. 2021, 247, 106732. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, X.; Kong, L.; Zhang, Y.; Zhang, L.; Wang, L. Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China. Eur. J. Agron. 2023, 146, 126819. [Google Scholar] [CrossRef]
- Liu, B.-Y.; Zhao, X.; Li, S.-S.; Zhang, X.-Z.; Virk, A.L.; Qi, J.-Y.; Kan, Z.-R.; Wang, X.; Ma, S.-T.; Zhang, H.-L. Meta-analysis of management-induced changes in nitrogen use efficiency of winter wheat in the North China Plain. J. Clean. Prod. 2020, 251, 119632. [Google Scholar] [CrossRef]
- Yu, N.; Ren, B.; Zhao, B.; Liu, P.; Zhang, J. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. Eur. J. Agron. 2022, 137, 126517. [Google Scholar] [CrossRef]
- Han, S.; Wang, C.; Zheng, Y.; Lu, Z.; Dang, Y.P.; Si, J.; Li, H.; Zhao, X.; and Zhang, H. The yield and nitrogen use efficiency of winter wheat in the North China Plain could be improved through enhanced tiller formation and biomass transport. Field Crops Res. 2024, 318, 109570. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Lou, F.; Ji, P.; Wang, J.; Dong, W.; Tao, P.; Zhang, Y. Subsoiling Combine with Layered Nitrogen Application Optimizes Root Distribution and Improve Grain Yield and N Efficiency of Summer Maize. Agronomy 2024, 14, 1228. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Z.; Zhai, Y.; Zhang, L.; Zheng, M.; Yao, H.; Lv, L.; Shen, H.; Zhang, J.; Yao, Y.; et al. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
- Liu, X.-J.; Yin, B.; Hu, Z.-H.; Bao, X.-Y.; Wang, Y.-D.; Zhen, W.-C. Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China. J. Integr. Agric. 2021, 20, 2343–2359. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, B.; Dai, M.; Liu, X.; Ren, J.; Gu, L.; Zhen, W. Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration. Agric. Water Manage. 2024, 301, 108922. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Dai, M.; Jing, C.; Ma, K.; Tang, B.; Li, K.; Dang, H.; Gu, L.; Zhen, W.; et al. Accurate irrigation decision-making of winter wheat at the filling stage based on UAV hyperspectral inversion of leaf water content. Agric. Water Manage. 2024, 306, 109171. [Google Scholar] [CrossRef]
- Knievel, D.P. Procedure for estimating ratio of live to dead root dry matter in root core samples. Crop Sci. 1973, 13, 124–126. [Google Scholar] [CrossRef]
- Han, Q.-F.; Meng, H.-T.; Jia, Z.-K.; Xu, L.-F.; Wu, F.-P.; and Ding, R.-X. Characteristics of Endogenous Hormone Variations in the Roots of Alfalfa (Medicago sativa L.) Cultivars of Different Fall Dormancies During Spring Regrowth Stage. Agric. Sci. China 2011, 10, 1032–1040. [Google Scholar] [CrossRef]
- Berges, J.A.; Harrison, P.J. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: A revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnol. Oceanogr. 1995, 40, 82–93. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef]
- Waddington, S.R.; Cartwright, P.M.; Wall, P.C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann. Bot. 1983, 51, 145–153. [Google Scholar] [CrossRef]
- Allen, S.J. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria. Agric. For. Meteorol. 1990, 49, 291–309. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xie, R.; Ming, B.; Xue, J.; Zhang, G.; Li, R.; Wang, K.; et al. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Secur. 2022, 11, e390. [Google Scholar] [CrossRef]
- Li, P.; Yin, W.; Zhao, L.; Wan, P.; Fan, Z.; Hu, F.; Nan, Y.; Sun, Y.; Fan, H.; He, W.; et al. No tillage with straw mulching enhanced radiation use efficiency of wheat via optimizing canopy radiation interception and photosynthetic properties. Field Crops Res. 2025, 326, 109854. [Google Scholar] [CrossRef]
- Wu, B.; Zuo, W.; Yang, P.; Zhang, W. Optimal water and nitrogen management increases cotton yield through improving leaf number and canopy light environment. Field Crops Res. 2023, 290, 108767. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Wang, C.; Wang, Z.; Li, M.; Tan, X.; Zhang, L.; Wang, T.; Zhou, Y.; Xie, X.; et al. Micro-ridge-furrow planting increases rapeseed yield and resource utilization efficiency through optimizing field microenvironment and light-nitrogen matching. Crop J. 2025, 13, 587–596. [Google Scholar] [CrossRef]
- Cai, H.; Ma, W.; Zhang, X.; Ping, J.; Yan, X.; Liu, J.; Yuan, J.; Wang, L.; Ren, J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. Crop J. 2014, 2, 297–307. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Chen, S.; Sun, H.; Shao, L. Subsoil compaction and irrigation regimes affect the root–shoot relation and grain yield of winter wheat. Agric. Water Manag. 2015, 154, 59–67. [Google Scholar] [CrossRef]
- Yu, C.; Mawodza, T.; Atkinson, B.S.; Atkinson, J.A.; Sturrock, C.J.; Whalley, R.; Hawkesford, M.J.; Cooper, H.; Zhang, X.; Zhou, H.; et al. The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status. Rhizosphere 2024, 29, 100838. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.G.; Ma, B.W.; Li, R.; Li, Y. Effects of post-sowing soil compaction and pre-winter irrigation on soil conditions and growth and development of winter wheat. J. Triticeae Crops 2014, 34, 787–794. [Google Scholar]
- Zhang, J.; Dell, B.; Ma, W.; Vergauwen, R.; Zhang, X.; Oteri, T.; Foreman, A.; Laird, D.; Van den Ende, W. Contributions of Root WSC during Grain Filling in Wheat under Drought. Front. Plant Sci. 2016, 7, 904. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yu, Z.; Shi, Y.; Liang, P. Differences in Water Consumption of Wheat Varieties Are Affected by Root Morphology Characteristics and Post-anthesis Root Senescence. Front. Plant Sci. 2022, 12, 814658. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Z.; Li, J.; Zhang, S.; Sun, W.; Xiao, X.; Sun, Z.; Xue, X.; Wang, Z.; Zhang, Y. Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat. Plant Cell Environ. 2024, 47, 1575–1591. [Google Scholar] [CrossRef]
- Liu, D.; Tian, B.; Zhang, M.; Jiang, L.; Li, C.; Qin, X.; Ma, J. Meta-analysis of the effects of different tillage methods on wheat yields under various conditions in China. Soil Till. Res. 2025, 248, 106449. [Google Scholar] [CrossRef]
- Li, N.; Li, J.; Tung, S.A.; Shi, X.; Hao, X.; Shi, F.; Wahid, M.A.; Ali, B.; Rashid, R.; Wang, J.; et al. Optimal irrigation amount can increase cotton lint yield by improving canopy structure and microenvironment under non-film deep drip irrigation. J. Clean. Prod. 2022, 360, 132156. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Yao, C.; Liu, Y.; Wang, Z.; Zhang, Y. Increasing seeding density under limited irrigation improves crop yield and water productivity of winter wheat by constructing a reasonable population architecture. Agric. Water Manag. 2021, 253, 106951. [Google Scholar] [CrossRef]
- Jahan Leghari, S.; Hu, K.; Wei, Y.; Wang, T.; Laghari, Y. Modelling the effects of cropping systems and irrigation methods on water consumption, N fates and crop yields in the North China Plain. Comput. Electron. Agric. 2024, 218, 108677. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Wang, J.; Huang, F.; Hao, W.; Li, B. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Z.; Li, L.; Gao, C.; Shao, L. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020, 242, 106410. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Annual Data Query. National Bureau of Statistics Database. 2024. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0D0E&sj=2024 (accessed on 1 April 2024).
Management Method | CK | HHL | |
---|---|---|---|
Tillage method | Dual-pass rotary tillage at 15 cm depth | Deep loosening tillage at 27 cm depth | |
Pre-sowing soil moisture creation | No | Pre-sowing soil moisture regulation achieved 75% soil water content in the 0–20 cm plow layer and 90% field capacity in the 20–100 cm soil profile | |
Irrigation method | Border irrigation | Drip irrigation | |
Fertilization method | Split fertilization | Drip fertigation with staged N application | |
Irrigation period and amount (mm) | Total | 180 | 120 |
WS | 60 | 0 | |
RGS | 0 | 30 | |
JS | 60 | 30 | |
FS | 60 | 30 | |
MKS | 0 | 30 | |
Nitrogen fertilizer application period and rate (kg ha−1) | Total | 300 | 240 |
BS | 120 | 120 | |
JS | 180 | 60 | |
FS | 0 | 36 | |
MKS | 0 | 24 |
Year | Treatment | SO–WS | WS–JS | JS–FS | FS–MTS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ei | PT | ΔS | Ei | PT | ΔS | Ei | PT | ΔS | Ei | PT | ΔS | ||
2022–2023 | CK | 45.6 a | 20.6 b | 66.2 b | 54.2 a | 30.4 a | 84.6 a | 28.4 a | 72.4 a | 100.8 a | 22.6 a | 163.7 a | 186.4 a |
HHL | 41.4 a | 29.7 a | 71.1 a | 33.8 b | 33.0 a | 66.8 b | 24.3 a | 74.4 a | 98.8 a | 18.0 b | 132.7 b | 150.7 b | |
2023–2024 | CK | 45.3 a | 21.1 b | 66.4 a | 51.4 a | 29.7 b | 81.0 a | 28.6 a | 75.1 a | 103.7 a | 24.2 a | 164.9 a | 189.1 a |
HHL | 41.2 a | 28.9 a | 70.1 a | 32.5 b | 33.2 a | 65.7 b | 24.5 a | 76.2 a | 100.7 a | 18.1 b | 134.9 b | 153.0 b |
Year | Treatment | Total Water Consumption (mm) | Sources and Ratios of Water Consumption | |||||
---|---|---|---|---|---|---|---|---|
Precipitation | Irrigation | Soil Water Storage | ||||||
Amount (mm) | Percentage (%) | Amount (mm) | Percentage (%) | Amount (mm) | Percentage (%) | |||
2022–2023 | CK | 438.0 a | 173.9 | 39.7 | 180.0 | 41.1 | 84.1 b | 19.2 b |
HHL | 387.3 b | 173.9 | 44.9 | 120.0 | 31.0 | 99.5 a | 25.7 a | |
2023–2024 | CK | 440.2 a | 160.8 | 36.5 | 180.0 | 40.9 | 99.4 b | 22.6 b |
HHL | 389.5 b | 160.8 | 41.3 | 120.0 | 30.8 | 108.7 a | 27.9 a |
Year | Treatment | Number of Spikelets per Spike | Number of Sterile Spikelets | Number of Fertile Spikelets | Spikelet Fertility Rate (%) | Number of Differentiated Florets | Number of Fertile Florets | Floret Degeneration Rate (%) | Number of Grains per Spike |
---|---|---|---|---|---|---|---|---|---|
2022–2023 | CK | 20.1 b | 3.1 a | 17.0 b | 84.6 ab | 143.0 c | 41.5 b | 29.0 a | 35.1 b |
HHL | 21.4 a | 2.2 b | 19.2 a | 89.7 a | 167.0 a | 49.2 a | 29.5 a | 37.5 a | |
2023–2024 | CK | 19.5 b | 3.3 a | 16.2 b | 83.1 ab | 125.0 c | 39.4 b | 31.5 a | 34.4 b |
HHL | 21.1 a | 2.2 b | 18.9 a | 89.6 a | 161.0 a | 45.2 a | 28.1 a | 36.3 a |
Year | Treatment | Spike Number (×104 hm−2) | Grain Number per Spike | 1000-Grain Weight (g) | Grain Yield (kg hm−2) | Water Consumption (mm) | Water Use Efficiency (kg hm−2 mm−1) | PFPN (kg kg−1) |
---|---|---|---|---|---|---|---|---|
2022–2023 | CK | 782.7 a | 35.1 b | 34.3 b | 9423.2 b | 438.0 a | 21.5 b | 31.4 b |
HHL | 766.5 a | 37.5 a | 36.2 a | 10,405.2 a | 387.3 b | 26.9 a | 43.4 a | |
2023–2024 | CK | 779.1 a | 34.4 b | 33.1 b | 8871.1 b | 440.2 a | 20.2 b | 29.6 b |
HHL | 762.1 b | 36.3 a | 35.7 a | 9876.1 a | 389.5 b | 25.4 a | 41.2 a |
Year | Treatment | Input Project | Total Investment (CNY) | Gross Output (CNY ha−1) | Input–Output Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fertilizer (CNY) | Cultivated Land (CNY) | Pesticides (CNY) | Sowing and Harvesting (CNY) | Watering | Labour | |||||||
Number (m3) | Amount (CNY) | Number | Amount (CNY) | |||||||||
2022–2023 | CK | 4600.8 | 600 | 50 | 1200 | 1800 | 900 | 20 | 2000 | 9350.8 | 15,831.0 a | 1.69 b |
HHL | 4240.8 | 1000 | 50 | 1200 | 1200 | 600 | 18 | 1800 | 8890.8 | 17,480.7 a | 1.97 a | |
2023–2024 | CK | 4600.8 | 600 | 50 | 1200 | 1800 | 900 | 20 | 2000 | 9350.8 | 18,274.5 a | 1.95 b |
HHL | 4240.8 | 1000 | 50 | 1200 | 1200 | 600 | 18 | 1800 | 8890.8 | 20,344.8 a | 2.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Shang, C.; Zhang, X.; Yin, B.; Zhen, W. Optimized Agronomic Management in North China Plain to Maintain Wheat (Triticum aestivum L.) Yield While Reducing Water and Fertilizer Inputs. Agronomy 2025, 15, 1053. https://doi.org/10.3390/agronomy15051053
Ma J, Shang C, Zhang X, Yin B, Zhen W. Optimized Agronomic Management in North China Plain to Maintain Wheat (Triticum aestivum L.) Yield While Reducing Water and Fertilizer Inputs. Agronomy. 2025; 15(5):1053. https://doi.org/10.3390/agronomy15051053
Chicago/Turabian StyleMa, Jiayu, Chong Shang, Xuecheng Zhang, Baozhong Yin, and Wenchao Zhen. 2025. "Optimized Agronomic Management in North China Plain to Maintain Wheat (Triticum aestivum L.) Yield While Reducing Water and Fertilizer Inputs" Agronomy 15, no. 5: 1053. https://doi.org/10.3390/agronomy15051053
APA StyleMa, J., Shang, C., Zhang, X., Yin, B., & Zhen, W. (2025). Optimized Agronomic Management in North China Plain to Maintain Wheat (Triticum aestivum L.) Yield While Reducing Water and Fertilizer Inputs. Agronomy, 15(5), 1053. https://doi.org/10.3390/agronomy15051053