QTL Mapping of Tomato Fruit Weight-Related Traits Using Solanum pimpinellifolium Introgression Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Cultivation
2.2. Phenotypic Evaluation of Fruit Size and Weight-Related Traits
2.3. DNA Extraction
2.4. Genotypic Analysis of S. pimpinellifolium Introgression Lines
2.5. Preliminary QTL Mapping of Fruit Size and Weight-Related Traits
2.6. Fine Mapping of Single Fruit Weight qFw-3 Interval
2.7. Statistical Analysis
3. Results
3.1. Construction and Analysis of the Genetic Linkage Map for the S. pimpinellifolium Introgression Lines
3.2. QTL Mapping of Tomato Fruit Size and Weight-Related Traits
3.2.1. Phenotypic Analysis of Four Fruit-Related Traits in the S. pimpinellifolium Introgression Lines
3.2.2. Preliminary QTL Mapping of Four Fruit Size and Weight-Related Traits in the S. pimpinellifolium Introgression Lines
3.3. Phenotypic and Genotypic Analysis and Fine Mapping of the qFw-3 Locus for Single Fruit Weight
3.3.1. Screening of Polymorphic SSR Markers Within the qFw-3 Interval
3.3.2. Phenotypic and Genotypic Analysis of Plants in the qFw-3 Subpopulation
Number | Average Weight/(g) | Number | Average Weight/(g) | Number | Average Weight/(g) | Number | Average Weight/(g) | Number | Average Weight/(g) |
---|---|---|---|---|---|---|---|---|---|
5-4-6-8 | 23.42 a | 6-1-5-3 | 18.79 a | 6-8-1-8 | 12.36 a | 14-6-1-5 | 15.60 a | 14-7-6-8 | 14.96 a |
5-4-6-7 | 17.94 b | 6-1-5-1 | 18.32 a | 6-8-1-5 | 11.59 ab | 14-6-1-8 | 18.00 ab | 14-7-6-10 | 12.36 ab |
5-4-6-5 | 17.48 b | 6-1-5-7 | 15.18 b | 6-8-1-2 | 11.33 ab | 14-6-1-2 | 16.11 bc | 14-7-6-3 | 12.23 ab |
5-4-6-1 | 17.00 b | 6-1-5-8 | 12.09 bc | 6-8-1-7 | 10.87 ab | 14-6-1-4 | 14.69 cd | 14-7-6-9 | 10.59 b |
5-4-6-4 | 15.12 c | 6-1-5-5 | 13.89 bc | 6-8-1-4 | 10.20 ab | 14-6-1-7 | 13.23 d | 14-7-6-5 | 10.52 b |
5-4-6-6 | 13.97 cd | 6-1-5-4 | 12.49 cd | 6-8-1-6 | 9.59 ab | 14-6-1-6 | 9.21 e | 14-7-6-2 | 10.28 b |
5-4-6-3 | 12.95 de | 6-1-5-6 | 12.09 cd | 6-8-1-3 | 9.52 ab | 14-6-1-3 | 6.32 f | 14-7-6-4 | 10.22 b |
5-4-6-2 | 11.71 e | 6-1-5-2 | 11.28 d | 6-8-1-1 | 9.28 b | / | / | 14-7-6-7 | 9.50 b |
/ | / | / | / | / | / | / | / | 14-7-6-6 | 9.29 b |
/ | / | / | / | / | / | / | / | 14-7-6-1 | 9.25 b |
3.3.3. Fine Mapping of qFw-3 and Prediction of Candidate Genes for Single Fruit Weight in Tomato
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Farjadian, F.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef]
- Gatahi, D.M. Challenges and opportunities in tomato production chain and sustainable standards. Int. J. Hortic. Sci. Technol. 2020, 7, 235–262. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization. 2023. Available online: https://www.fao.org/faostat/en/data/QCL (accessed on 15 April 2025).
- Mengstu, D.; Sharew, T.A. Comprehensive review of tomato post-harvest losses: Understanding impacts & contributing factors in Ethiopia. Asian Sci. Bull. 2024, 2, 525–535. [Google Scholar] [CrossRef]
- Mauxion, J.P.; Chevalier, C.; Gonzalez, N. Complex cellular and molecular events determining fruit size. Trends Plant Sci. 2021, 26, 1023–1038. [Google Scholar] [CrossRef]
- Penchovsky, R.; Kaloudas, D. Molecular factors affecting tomato fruit size. Plant Gene 2023, 33, 100395. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Pan, F.; Hu, J.; Han, Y.; Bi, R.; Zhang, C.; Liu, Y.; Wang, Y.; Liang, Z.; et al. Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato. BMC Genom. 2024, 25, 1170. [Google Scholar] [CrossRef]
- Khojasteh, M.; Ramandi, H.D.; Taghavi, S.M.; Taheri, A.; Rahmanzadeh, A.; Chen, G.; Foolad, M.R.; Osdaghi, E. Unraveling the genetic basis of quantitative resistance to diseases in tomato: A meta-QTL analysis and mining of transcript profiles. Plant Cell Rep. 2024, 43, 184. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, J.M.; Alonso-Blanco, C.; Borja, A.; Anastasio, G.; Angosto, T.; Lozano, R.; Martínez-Zapater, J.M.; Danzmann, R. Quantitative genetic analysis of flowering time in tomato. Genome 2007, 50, 303–315. [Google Scholar] [CrossRef]
- Chitwood, D.H.; Kumar, R.; Headland, L.R.; Ranjan, A.; Covington, M.F.; Ichihashi, Y.; Fulop, D.; Jiménez-Gómez, J.M.; Peng, J.; Maloof, J.N.; et al. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 2013, 25, 2465–2481. [Google Scholar] [CrossRef] [PubMed]
- Tanksley, S.D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 2004, 16, S181–S189. [Google Scholar] [CrossRef] [PubMed]
- Grandillo, S.; Ku, H.M.; Tanksley, S.D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 1999, 99, 978–987. [Google Scholar] [CrossRef]
- Frary, A.; Nesbitt, T.C.; Frary, A.; Grandillo, S.; van der Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.B.; et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef]
- Beauchet, A.; Gévaudant, F.; Gonzalez, N.; Chevalier, C.; Murray, J. In search of the still unknown function of FW2. 2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. J. Exp. Bot. 2021, 72, 5300–5311. [Google Scholar] [CrossRef]
- Tran, T.M.; Billakurthi, K. Tomato FW2.2/CNR might regulate fruit size via plasmodesmata callose deposition. Plant Physiol. 2024, 196, 679–680. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Deng, L.; Chen, J.; Rodríguez, G.R.; Sun, C.; Chang, Z.; Yang, T.; Zhai, H.; Jiang, H.; Topcu, Y.; et al. Redesigning the tomato fruit shape for mechanized production. Nat. Plants 2023, 9, 1659–1674. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; van der Knaap, E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor. Appl. Genet. 2011, 123, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Jang, J.; Huang, Z.; van der Knaap, E. Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct 2019, 3, e00142. [Google Scholar] [CrossRef]
- Pan, Y. QTL Mapping of Salt Tolerance During Germination and Seeding Stage of Solanum pimpinellifolium Uising AB-QTL Analysis and Development of Salt-Tolerant Germplasm. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2009; pp. 64–72. [Google Scholar]
- Tong, V.G. Development of InDel Markers and Fine-Mapping of Locule Number 2.2 in Tomato. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2016; pp. 48–79. [Google Scholar]
- Liu, X.; Geng, X.; Zhang, H.; Shen, H.; Yang, W. Association and genetic identification of loci for four fruit traits in tomato using InDel markers. Front. Plant Sci. 2017, 8, 1269. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMaping: Integrated software for genetic linkage map construction and quantitative trait locus maping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Lander, E.; Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995, 11, 241–247. [Google Scholar] [CrossRef]
- Mukherjee, H.; Bhonge, P. Assessing Skew Normality in Marks Distribution, a Comparative Analysis of Shapiro Wilk Tests. arxiv 2025, arXiv:2501.14845. [Google Scholar] [CrossRef]
- Lalitha, S. Primer premier 5. Biotech Softw. Internet Rep. Comput. Softw. J. Sci. 2000, 1, 270–272. [Google Scholar] [CrossRef]
- Chaïb, J.; Lecomte, L.; Buret, M.; Causse, M. Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor. Appl. Genet. 2006, 112, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yu, Q.; Wang, B.; Yang, T.; Li, N.; Tang, Y.; Aisimutuola, P.; Wang, Q.; Xu, J.; Gao, J.; et al. Identification of QTLs for red fruit firmness using the wild tomato species Solanum pennellii ‘LA716’ introgression lines. Plant Breed. 2016, 135, 728–734. [Google Scholar] [CrossRef]
- Pang, H.; Ai, J.; Wang, W.; Hu, T.; Hu, H.; Wang, J.; Yan, Y.; Wu, X.; Bao, C.; Wei, Q. Fine map of QTL-fl3.1 reveal SmeFL as the candidate gene regulating fruit length in eggplant (Solanum melongena L.). Veg. Res. 2024, 4, e028. [Google Scholar] [CrossRef]
- Qin, R.; Ma, T.; Cai, Y.; Shi, X.; Cheng, J.; Dong, J.; Wang, C.; Li, S.; Pan, G.; Guan, Y.; et al. Characterization and fine mapping analysis of a major stable QTL qKnps-4A for kernel number per spike in wheat. Theor. Appl. Genet. 2023, 136, 211. [Google Scholar] [CrossRef]
- Yang, Y.; Su, Q.; Li, Y.; Cheng, Z.; Song, Y.; Jin, X.; Wang, J. Fine mapping of a major QTL qHYF_B06 for peanut yield. Crop J. 2023, 11, 1533–1540. [Google Scholar] [CrossRef]
- Wang, S.; Lu, G.; Hou, Z.; Luo, Z.; Wang, T.; Li, H.; Zhang, J.; Ye, Z. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. J. Exp. Bot. 2014, 65, 3005–3014. [Google Scholar] [CrossRef]
- Song, J.; Shang, L.; Li, C.; Wang, W.; Wang, X.; Zhang, C.; Ai, G.; Ye, J.; Yang, C.; Li, H.; et al. Variation in the fruit development gene POINTED TIP regulates protuberance of tomato fruit tip. Nat. Commun. 2022, 13, 5940. [Google Scholar] [CrossRef]
- Topcu, Y.; Sapkota, M.; Illa-Berenguer, E.; Nambeesan, S.U.; van der Knaap, E. Identification of blossom-end rot loci using joint QTL-seq and linkage-based QTL map in tomato. Theor. Appl. Genet. 2021, 134, 2931–2945. [Google Scholar] [CrossRef]
- Zhang, N.; Brewer, M.T.; van der Knaap, E. Fine mapping of fw3.2 controlling fruit weight in tomato. Theor. Appl. Genet. 2012, 125, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, L.; Luo, S.; Song, L.; Shen, S.; Zhao, J.; Li, Q.; Chen, X. Comprehensive analysis of CYP78A family genes reveals the involvement of CYP78A5 and CYP78A10 in fruit development in eggplant. Veg. Res. 2023, 3, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.; Song, H.; Deng, X.; Yang, M. Genome-wide identification of CYP90 family and functional analysis of NnCYP90B1 on rhizome enlargement in lotus. Veg. Res. 2024, 4, e035. [Google Scholar] [CrossRef]
- Li, Q.; Chakrabarti, M.; Taitano, N.K.; Okazaki, Y.; Saito, K.; Al-Abdallat, A.M.; van der Knaap, E. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes. J. Exp. Bot. 2021, 72, 1225–1244. [Google Scholar] [CrossRef]
- Phan, N.T.; Trinh, L.T.; Rho, M.-Y.; Park, T.-S.; Kim, O.-R.; Zhao, J.; Kim, H.-M.; Sim, S.-C. Identification of loci associated with fruit traits using genome-wide single nucleotide polymorphisms in a core collection of tomato (Solanum lycopersicum L.). Sci. Hortic. 2019, 243, 567–574. [Google Scholar] [CrossRef]
- Veronico, P.; Rosso, L.C.; Melillo, M.T.; Fanelli, E.; De Luca, F.; Ciancio, A.; Colagiero, M.; Pentimone, I. Water stress differentially modulates the expression of tomato cell wall metabolism-related genes in meloidogyne incognita feeding sites. Front. Plant Sci. 2022, 13, 817185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, M.; Qiu, Z.; Wang, K.; Du, Y.; Gu, L.; Cui, X. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Sci. Rep. 2016, 6, 23173. [Google Scholar] [CrossRef]
- Samsulrizal, N.H.; Yusof, N.Y. In silico prediction of cell wall remodeling genes in tomato, Banana, melon and grape. Int. J. Life Sci. Biotechnol. 2019, 2, 108–121. [Google Scholar] [CrossRef]
- Ricardi, M.M.; González, R.M.; Zhong, S.; Domínguez, P.G.; Duffy, T.; Turjanski, P.G.; Salter, J.D.S.; Alleva, K.; Carrari, F.; Giovannoni, J.J.; et al. Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor. BMC Plant Biol. 2014, 14, 29. [Google Scholar] [CrossRef]
Chromosome | Number of Markers | Length (cM) | Average Distance Between Two Markers (cM) |
---|---|---|---|
1 | 12 | 80.45 | 6.70 |
2 | 10 | 29.64 | 2.96 |
3 | 13 | 61.25 | 4.71 |
4 | 10 | 43.58 | 4.36 |
5 | 8 | 13.97 | 1.75 |
6 | 11 | 44.99 | 4.09 |
7 | 6 | 22.88 | 3.81 |
8 | 10 | 21.31 | 2.13 |
9 | 11 | 61.64 | 5.60 |
10 | 9 | 52.31 | 5.81 |
11 | 10 | 46.99 | 4.67 |
12 | 13 | 55.21 | 4.25 |
Total | 123 | 534.22 | 4.34 |
Trait | Female Mean | Male Mean | Parent t-Test | BC3F4 Population | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV | Skewness | Kurtosis | Range | ||||
Fruit weight/g | 20.20 | 2.24 | ** | 15.27 | 3.79 | 0.25 | −0.17 | −0.30 | 5.12–25.10 |
Fruit diameter/cm | 40.30 | 15.50 | ** | 33.75 | 4.86 | 0.14 | −0.53 | 0.64 | 15.50–47.80 |
Fruit length/cm | 33.33 | 17.00 | ** | 27.23 | 2.50 | 0.09 | −0.39 | 0.47 | 19.40–34.0 |
Fruit shape index | 1.29 | 0.91 | ** | 1.23 | 0.16 | 0.13 | −0.06 | 0.06 | 0.87–1.72 |
Trait Category | QTL Loci | Chr | Maker Interval | Lod Score | Additive Effect | Variance Explained |
---|---|---|---|---|---|---|
Fruit weight | qFw-3 | 3 | SSR111~C03M65101 | 4.40 | 2.28 | 15.74 |
Fruit transverse diameter | qFtd-3-1 | 3 | C03M00629~C03M12381 | 3.91 | −1.50 | 4.08 |
qFtd-3-2 | 3 | SSR111~C03M65101 | 3.77 | 0.84 | 4.04 | |
qFtd-4 | 4 | C04M64497~C04M66396 | 4.25 | 0.66 | 3.41 | |
qFtd-7 | 7 | sli800~C07M58966 | 3.80 | 2.468 | 4.48 | |
qFtd-12 | 12 | C12M62194~C12M64038 | 3.56 | 1.48 | 4.13 | |
Fruit longitudinal | qFl-3 | 3 | SSR111~C03M65101 | 7.20 | 3.39 | 13.24 |
qFl-11 | 11 | SSRD120~sli1800 | 3.78 | −1.96 | 4.56 | |
Fruit shape index | qFsi-2 | 2 | C02M52141~C02M53454 | 4.97 | 0.13 | 9.40 |
qFsi-3 | 3 | SSR111~C03M65101 | 6.07 | 0.09 | 15.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ding, F.; Qui, H.; Tian, Y.; Jiang, F.; Zhou, R.; Wu, Z. QTL Mapping of Tomato Fruit Weight-Related Traits Using Solanum pimpinellifolium Introgression Lines. Agronomy 2025, 15, 1914. https://doi.org/10.3390/agronomy15081914
Zhang Y, Ding F, Qui H, Tian Y, Jiang F, Zhou R, Wu Z. QTL Mapping of Tomato Fruit Weight-Related Traits Using Solanum pimpinellifolium Introgression Lines. Agronomy. 2025; 15(8):1914. https://doi.org/10.3390/agronomy15081914
Chicago/Turabian StyleZhang, Yuanhao, Fei Ding, Huiling Qui, Yingjie Tian, Fangling Jiang, Rong Zhou, and Zhen Wu. 2025. "QTL Mapping of Tomato Fruit Weight-Related Traits Using Solanum pimpinellifolium Introgression Lines" Agronomy 15, no. 8: 1914. https://doi.org/10.3390/agronomy15081914
APA StyleZhang, Y., Ding, F., Qui, H., Tian, Y., Jiang, F., Zhou, R., & Wu, Z. (2025). QTL Mapping of Tomato Fruit Weight-Related Traits Using Solanum pimpinellifolium Introgression Lines. Agronomy, 15(8), 1914. https://doi.org/10.3390/agronomy15081914