Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review
Abstract
1. Introduction
2. Literature Search Methodology
3. NMs-Enhanced Rice Disease Resistance Mechanisms
3.1. Antimicrobial Action
3.2. Induction of Systemic Resistance in Rice
3.2.1. Activation of Rice Immune Responses
3.2.2. Regulation of the Rice Antioxidant System
3.3. Reinforcement of Physical Barriers
3.4. Optimization of Pesticide Utilization Efficiency
3.5. Regulation of Microbial Communities
4. Conclusions
5. Future Prospects
5.1. Potential of NMs for Rice Genetic Modification
5.2. Toxicological Effects of NMs
5.3. Regulatory Frameworks for NMs
5.4. Research Framework of the “NMs-Rice-Soil” Ternary System
- Targeted coupling of functionalized NMs with rhizosphere probiotics, combined with metagenomics, time-resolved metabolomics, and spatially resolved proteomics. This approach aims to achieve cross-scale analysis of material–information flows and quantitative characterization of dose–effect relationships in NMs-mediated microbial metabolic remodeling and host resistance signaling.
- An increased focus on NMs ecotoxicology research, utilizing machine learning models to predict critical disturbance thresholds of soil microbial networks under NMs’ exposure. This effort will help establish early warning indicators and corresponding regulatory frameworks for the ecologically safe application of nano-agricultural technologies.
- The development of multifunctional NMs for rice must be coupled with standardized field application and comprehensive evaluation systems to effectively translate laboratory research into practical agricultural applications. This combined approach is essential for realizing the full potential of nanotechnology in sustainable rice production.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanal, S.; Gaire, S.P.; Zhou, X.G. Kernel smut and false smut: The old-emerging diseases of rice-a review. Phytopathology 2023, 113, 931–944. [Google Scholar] [CrossRef]
- Avery, S.V.; Singleton, I.; Magan, N.; Goldman, G.H. The fungal threat to global food security. Fungal Biol. 2019, 123, 555–557. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Floristic composition and species diversity of weed community after 10 years of different cropping systems and soil tillage in a Mediterranean environment. Weed Res. 2018, 58, 273–283. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144. [Google Scholar]
- Shattuck, A.; Werner, M.; Mempel, F.; Dunivin, Z.; Galt, R. Global Pesticide Use and Trade Database (GLOPUT): New estimates show pesticide use trends in low-income countries substantially underestimated. Global Environ. Change 2023, 82, 102693. [Google Scholar] [CrossRef]
- Guo, Z.; Kang, S.; Sun, D.; Gong, L.; Zhou, J.; Qin, J.; Guo, L.; Zhu, L.; Bai, Y.; Ye, F.; et al. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nat. Commun. 2020, 11, 3003. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.A.; Nawaz, R.; Rehman, M.Z.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.V.K.; Diwakar, B.S.; Govindh, B.; Murthy, Y.L.N. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610. [Google Scholar] [CrossRef]
- Wu, Q.; Miao, W.; Zhang, Y.; Gao, H.; Hui, D. Mechanical properties of nanomaterials: A Review. Nanotechnol. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Grieger, K.D.; Hansen, S.F.; Baun, A. The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology 2009, 3, 222–233. [Google Scholar] [CrossRef]
- Yao, A.; Xu, J.; Huang, Y.; Zhang, T. Synthesis and applications of carbon nanospheres: A Review. Particuology 2024, 87, 325–338. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Anderson, J.A.; Gipmans, M.; Hurst, S.; Layton, R.; Nehra, N.; Pickett, J.; Shah, D.M.; Souza, T.L.P.O.; Tripathi, L. Emerging agricultural biotechnologies for sustainable agriculture and food security. J. Agric. Food Chem. 2016, 64, 383–393. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kadam, A.; Shinde, S.; Saratale, R.G.; Patra, J.; Ghodake, G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agric. 2018, 98, 849–864. [Google Scholar] [CrossRef]
- Reda, A.T.; Park, J.Y.; Park, Y.T. Zinc oxide-based nanomaterials for microbiostatic activities: A review. J. Funct. Biomater. 2024, 15, 103. [Google Scholar] [CrossRef]
- Cao, X.; Chen, X.; Liu, Y.; Wang, C.; Yue, L.; Elmer, W.H.; White, J.C.; Wang, Z.; Xing, B. Lanthanum silicate nanomaterials enhance sheath blight resistance in rice: Mechanisms of action and soil health evaluation. ACS Nano 2023, 17, 15821–15835. [Google Scholar] [CrossRef]
- Sun, L.; Hou, C.; Wei, N.; Tan, Y.; Liang, Q.; Feng, J. pH/cellulase dual environmentally responsive nano-metal organic frameworks for targeted delivery of pesticides and improved biosafety. Chem. Eng. J. 2023, 478, 147294. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health 2019, 47, 46. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Patel, S.K.S.; Rasool, K.; Lone, N.; Bhatia, S.K.; Seth, C.S.; Ghodake, G.S. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Sci. Total Environ. 2024, 908, 168318. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, R.; Sidhu, A.; Bala, A. Synthesis and evaluation of iron(II) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur. J. Plant Pathol. 2019, 155, 163–171. [Google Scholar] [CrossRef]
- Du, J.; Liu, B.; Zhao, T.; Xu, X.; Lin, H.; Ji, Y.; Li, Y.; Li, Z.; Lu, C.; Li, P.; et al. Silica nanoparticles protect rice against biotic and abiotic stresses. J. Nanobiotechnol. 2022, 20, 197. [Google Scholar] [CrossRef]
- Hafeez, R.; Guo, J.; Ahmed, T.; Jiang, H.; Raza, M.; Shahid, M.; Ibrahim, E.; Wang, Y.; Wang, J.; Yan, C.; et al. Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.). Carbohydr. Polym. 2024, 334, 122023. [Google Scholar] [CrossRef]
- Yan, X.; Chen, S.; Pan, Z.; Zhao, W.; Rui, Y.; Zhao, L. AgNPs-triggered seed metabolic and transcriptional reprogramming enhanced rice salt tolerance and blast resistance. ACS Nano 2023, 17, 492–504. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, Y.; Liu, Z.; Wen, H.; Jiang, N.; Shi, H.; Kou, Y. The application of zinc oxide nanoparticles: An effective strategy to protect rice from rice blast and abiotic stresses. Environ. Pollut. 2023, 331, 121925. [Google Scholar] [CrossRef]
- Hu, P.; Zhu, L.; Deng, W.; Huang, W.; Xu, H.; Jia, J. ConA-loaded PEGylated graphene oxide for targeted nanopesticide carriers against Magnaporthe oryzae. ACS Appl. Nano Mater. 2023, 6, 9484–9494. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Jayabaskaran, C.; Manikandan, A.; Anusuya, S. Synthesis of nickel-chitosan nanoparticles for controlling blast diseases in Asian rice. Appl. Biochem. Biotechnol. 2022, 194, 2134–2148. [Google Scholar] [CrossRef]
- Jannat, M.; Kiran, S.; Yousaf, S.; Gulzar, T.; Iqbal, S. Potential antifungal effects of D. malabarica assisted zinc oxide and silver nanoparticles against sheath blight disease of Rhizoctonia solani. Pol. J. Environ. Stud. 2022, 31, 4669–4679. [Google Scholar]
- Meng, Z.; Wu, Q.; Wu, X.; Yang, C.; Xu, W.; Lin, T.; Liang, Y.; Chen, X. Nanoparticles of Fe3O4 loaded with azoxystrobin and pectin to enhance resistance of rice to sheath blight. ACS Appl. Nano Mater. 2024, 7, 2675–2686. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Du, P.; Miao, X.; Huang, S.; Cheng, D.; Xu, H.; Zhang, Z. Inhibition mechanism of Rhizoctonia solani by pectin-coated iron metal-organic framework nanoparticles and evidence of an induced defense response in rice. J. Hazard. Mater. 2024, 474, 134807. [Google Scholar] [CrossRef]
- Cheema, A.I.; Ahmed, T.; Abbas, A.; Noman, M.; Zubair, M.; Shahid, M. Antimicrobial activity of the biologically synthesized zinc oxide nanoparticles against important rice pathogens. Physiol. Mol. Biol. Plants 2022, 28, 1955–1967. [Google Scholar] [CrossRef]
- Giri, V.P.; Pandey, S.; Srivastava, S.; Shukla, P.; Kumar, N.; Kumari, M.; Katiyar, R.; Singh, S.; Mishra, A. Chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) protectively modulate the defense mechanism of tomato during bacterial leaf spot (BLS) disease. Plant Physiol. Biochem. 2023, 197, 107637. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, J.; Wang, H.; Zaki, H.E.M.; Yu, S.; Wang, X.; Ahmed, T.; Shahid, M.S.; Yan, C.; Chen, J.; et al. Bioinspired green synthesis of silver nanoparticles using three plant extracts and their antibacterial activity against rice bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae. Plants 2022, 11, 2892. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Jiang, H.; Shahid, M.; Ma, C.; Wu, Z.; Nazir, M.M.; Ali, M.A.; White, J.C.; Chen, J.; et al. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today 2022, 45, 101547. [Google Scholar] [CrossRef]
- Abdallah, Y.; Nehela, Y.; Ogunyemi, S.O.; Ijaz, M.; Ahmed, T.; Elashmony, R.; Alkhalifah, D.H.M.; Hozzein, W.N.; Xu, L.; Yan, C.; et al. Bio-functionalized nickel-silica nanoparticles suppress bacterial leaf blight disease in rice (Oryza sativa L.). Front. Plant Sci. 2023, 14, 1216782. [Google Scholar] [CrossRef]
- Abdallah, Y.; Ogunyemi, S.O.; Bi, J.; Wang, F.; Huang, X.; Shi, X.; Jiang, J.; Ibrahim, E.; Mohany, M.; Al-Rejaie, S.S.; et al. Nickel oxide nanoparticles: A new generation nanoparticles to combat bacteria Xanthomonas oryzae pv. oryzae and enhance rice plant growth. Pestic. Biochem. Physiol. 2024, 200, 105807. [Google Scholar]
- Ogunyemi, S.O.; Luo, J.; Abdallah, Y.; Yu, S.; Wang, X.; Alkhalifah, D.H.M.; Hozzein, W.N.; Wang, F.; Bi, J.; Yan, C.; et al. Copper oxide nanoparticles: An effective suppression tool against bacterial leaf blight of rice and its impacts on plants. Pest Manag. Sci. 2024, 80, 1279–1288. [Google Scholar] [CrossRef]
- Jahan, Q.S.A.; Sultana, Z.; Ud-Daula, M.A.; Ashikuzzaman, M.; Reja, M.S.; Rahman, M.M.; Khaton, A.; Tang, M.A.K.; Rahman, M.S.; Faruquee, H.M. Optimization of green silver nanoparticles as nanofungicides for management of rice bakanae disease. Heliyon 2024, 10, e27579. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 2011, 270974. [Google Scholar] [CrossRef]
- Net, A.E.; Maedler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar]
- Roller, S.; Covill, N. The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 1999, 47, 67–77. [Google Scholar] [CrossRef]
- Pusztahelyi, T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 2018, 9, 189–201. [Google Scholar] [CrossRef]
- Elamawi, R.M.; Bassiouni, S.M.; Elkhoby, W.M.; Zayed, B.A. Effect of zinc oxide nanoparticles on brown spot disease and rice productivity under saline soil. J. Plant Prot. Pathol. 2016, 7, 171–181. [Google Scholar] [CrossRef]
- Ahmed, T.; Wu, Z.; Jiang, H.; Luo, J.; Noman, M.; Shahid, M.; Manzoor, I.; Allemailem, K.S.; Alrumaihi, F.; Li, B. Bioinspired green synthesis of zinc oxide nanoparticles from a native Bacillus cereus strain RNT6: Characterization and antibacterial activity against rice panicle blight pathogens Burkholderia glumae and B. gladioli. Nanomaterials 2021, 11, 884. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Aberasturi, D.J.; Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef]
- Yusof, H.M.; Mohamad, R.; Zaidan, U.H.; Rahman, N.A.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Wang, C.; Xiao, Z.; Chen, F.; Feng, Y.; Yue, L.; Wang, Z.; Xing, B. Transcriptomics and metabolomics reveal the mechanisms of enhanced constitutive resistance in rice (Oryza sativa L.) by silica nanomaterials. Environ. Sci. Nano 2023, 10, 2831–2848. [Google Scholar] [CrossRef]
- Najafi, S.; Razavi, S.M.; Khoshkam, M.; Asadi, A. Effects of green synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical factors of lettuce (Lactuca sativa). Physiol. Mol. Biol. Plants 2020, 26, 1055–1066. [Google Scholar] [CrossRef]
- Xu, Y.; Charles, M.T.; Luo, Z.; Mimee, B.; Tong, Z.; Veronneau, P.-Y.; Roussel, D.; Rolland, D. Ultraviolet-C priming of strawberry leaves against subsequent Mycosphaerella fragariae infection involves the action of reactive oxygen species, plant hormones, and terpenes. Plant Cell Environ. 2019, 42, 815–831. [Google Scholar] [CrossRef]
- Czarnockaa, W.; Karpińskia, S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef]
- Xu, X.; Qin, G.; Tian, S. Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. Int. J. Food Microbiol. 2008, 126, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kamran, U.; Bhatti, H.N.; Iqbal, M.; Jamil, S.; Zahid, M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct. 2019, 1179, 532–539. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Meng, S.; Shen, Z.; Shi, H.; Qiu, J.; Lin, F.; Zhang, S.; Kou, Y. OsCERK1 contributes to cupric oxide nanoparticles induced phytotoxicity and basal resistance against blast by regulating the anti-oxidant system in rice. J. Fungi 2023, 9, 36. [Google Scholar] [CrossRef]
- Ghamari, R.; Ahmadikhah, A.; Tohidfar, M.; Bakhtiarizadeh, M.R. RNA-Seq analysis of Magnaporthe grisea transcriptome reveals the high potential of ZnO nanoparticles as a nanofungicide. Front. Plant Sci. 2022, 13, 896283. [Google Scholar] [CrossRef]
- Luo, Z.; Li, D.; Du, R.; Mou, W. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Sci. Hortic. 2015, 183, 144–151. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Y.; Wang, C.; Yue, L.; Li, X.; Cao, X.; White, J.C.; Wang, Z.; Xing, B. Selenium nanomaterials enhance sheath blight resistance and nutritional quality of rice: Mechanisms of action and human health benefit. ACS Nano 2024, 18, 13084–13097. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yang, D.; Jin, Q.; Wu, C.; Cui, J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. J. Hazard. Mater. 2020, 394, 122551. [Google Scholar] [CrossRef]
- Chaiwong, N.; Prom-u-thai, C. Significant roles of silicon for improving crop productivity and factors affecting silicon uptake and accumulation in rice: A review. J. Soil Sci. Plant Nutr. 2022, 22, 1970–1982. [Google Scholar] [CrossRef]
- Reynolds, O.L.; Keeping, M.G.; Meyer, J.H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 2009, 155, 171–186. [Google Scholar] [CrossRef]
- Cai, K.; Gao, D.; Luo, S.; Zeng, R.; Yang, J.; Zhu, X. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol. Plant 2008, 134, 324–333. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Wang, Y.; Gao, Y.; Zhang, Z.; Xu, J.; Xing, G. Comparative physiological and metabolomic analyses revealed that foliar spraying with zinc oxide and silica nanoparticles modulates metabolite profiles in cucumber (Cucumis sativus L.). Food Energy Secur. 2021, 10, e269. [Google Scholar] [CrossRef]
- Yin, J.; Li, K.; Liu, X.; Han, S.; Han, X.; Liu, W.; Li, Y.; Chen, Y.; Zhu, Y. Silica nanoparticles enhance wheat resistance to fusarium head blight through modulating antioxidant enzyme activities and salicylic acid accumulation. Environ. Sci. Nano 2024, 11, 4765–4778. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.-H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef]
- Shangguan, W.; Huang, Q.; Chen, H.; Zheng, Y.; Zhao, P.; Cao, C.; Yu, M.; Cao, Y.; Cao, L. Making the complicated simple: A minimizing carrier strategy on innovative nanopesticides. Nano-Micro Lett. 2024, 16, 193. [Google Scholar] [CrossRef]
- Jiang, C.; Yan, J.; Du, R.; Li, Y.; Wu, M.; Xu, B.; Qiu, J. Stimuli-Responsive and Defect-Regulated Luminescent Organic Metal Halide for High-Security Anti-Counterfeiting and Force Sensing. Adv. Sci. 2025, 12, e10163. [Google Scholar] [CrossRef]
- Ly, N.H.; Nguyen, N.B.; Tran, H.N.; Hoang, T.T.H.; Joo, S.-W.; Vasseghian, Y.; Kamyab, H.; Chelliapan, S.; Klemes, J.J. Metal-organic framework nanopesticide carrier for accurate pesticide delivery and decrement of groundwater pollution. J. Clean. Prod. 2023, 402, 136809. [Google Scholar] [CrossRef]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.; Ho, K.; Burgess, R.; Flury, M.; White, J. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- He, L.; Xiao, C.; Zhu, L.; Deng, W.; Zhang, Y.; Li, Y.; Wu, X.; Wu, H.; Xu, H.; Jia, J. GABA-decorated nanocarrier for smart delivery of fludioxonil for targeted control of banana wilt disease. J. Agric. Food Chem. 2024, 72, 26664–26676. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Guo, Z.; Wang, M.; Qi, C.; Chen, G.; Huang, X.; Yan, S.; Xu, D. Stimuli-responsive pesticide carriers based on porous nanomaterials: A review. Chem. Eng. J. 2023, 455, 140167. [Google Scholar] [CrossRef]
- Zahoor, A.; Sharma, S.; Khuller, G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents 2005, 26, 298–303. [Google Scholar] [CrossRef]
- Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol. 2012, 51, 681–689. [Google Scholar] [CrossRef]
- Liang, Y.; Guo, M.; Fan, C.; Dong, H.; Ding, G.; Zhang, W.; Tang, G.; Yang, J.; Kong, D.; Cao, Y. Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials. ACS Sustain. Chem. Eng. 2017, 5, 4802–4810. [Google Scholar] [CrossRef]
- Abdelrahman, T.M.; Qin, X.; Li, D.; Senosy, I.A.; Mmby, M.; Wan, H.; Li, J.; He, S. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. Chem. Eng. J. 2020, 404, 126440. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Adomako, M.O.; Yu, F.-H. Potential effects of micro- and nanoplastics on phyllosphere microorganisms and their evolutionary and ecological responses. Sci. Total Environ. 2023, 884, 163760. [Google Scholar] [CrossRef]
- Ning, W.M.; Li, M.X.; Jiang, L.; Yang, M.; Liu, M.Y.; Liu, Y. Endophytic Bacterial Community Structure and Function Response of BLB Rice Leaves After Foliar Application of Cu-Ag Nanoparticles. Nanomaterials 2025, 15, 778. [Google Scholar] [CrossRef]
- Zhang, J.; Khan, S.A.; Heckel, D.G.; Bock, R. Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol. 2017, 35, 871–882. [Google Scholar] [CrossRef]
- Serag, M.F.; Kaji, N.; Habuchi, S.; Bianco, A.; Baba, Y. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers. RSC Adv. 2013, 3, 4856–4862. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Tuteja, S.K.; Kim, K.-H. Nanovehicles for plant modifications towards pest- and disease-resistance traits. Trends Plant Sci. 2020, 25, 198–212. [Google Scholar] [CrossRef]
- Hajiahmadi, Z.; Shirzadian-Khorramabad, R.; Kazemzad, M.; Sohani, M.M. Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach. Sci. Hortic. 2019, 243, 367–375. [Google Scholar] [CrossRef]
- Demirer, G.S.; Zhang, H.; Goh, N.S.; Gonzalez-Grandio, E.; Landry, M.P. Carbon nanotube-mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019, 14, 2954–2971. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.-H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef]
- Sarraf, M.; Vishwakarma, K.; Kumar, V.; Arif, N.; Das, S.; Johnson, R.; Janeeshma, E.; Puthur, J.T.; Aliniaeifard, S.; Chauhan, D.K.; et al. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants 2022, 11, 316. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Jin, Q.; Yang, D.; Wu, C.; Cui, J. Physiological and biochemical effects of Ti3AlC2 nanosheets on rice (Oryza sativa L.). Sci. Total Environ. 2021, 770, 145340. [Google Scholar] [CrossRef]
- Samarajeewa, A.D.; Velicogna, J.R.; Schwertfeger, D.M.; Princz, J.I.; Beaudette, L.A. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil. Sci. Total Environ. 2020, 763, 143037. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Ren, Y.; Zhang, L.; Xue, Y.; Zhang, L.; He, J. Phytotoxicity assessment of copper oxide nanoparticles on the germination, early seedling growth, and physiological responses in Oryza sativa L. Bull. Environ. Contam. Toxicol. 2020, 104, 770–777. [Google Scholar] [CrossRef]
- Waani, S.P.T.; Irum, S.; Gul, I.; Yaqoob, K.; Khalid, M.U.; Ali, M.A.; Manzoor, U.; Noor, T.; Ali, S.; Rizwan, M.; et al. TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicol. Environ. Saf. 2021, 213, 111977. [Google Scholar] [CrossRef]
- Shi, N.; Bai, T.; Wang, X.; Tang, Y.; Wang, C.; Zhao, L. Toxicological effects of WS2 nanomaterials on rice plants and associated soil microbes. Sci. Total Environ. 2022, 832, 154987. [Google Scholar] [CrossRef]
- Biswas, A.; Pal, S. Plant-nano interactions: A new insight of nano-phytotoxicity. Plant Physiol. Biochem. 2024, 210, 108646. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Mishra, R.K.; Singh, S.; Singh, S.; Vishwakarma, K.; Sharma, S.; Singh, V.P.; Singh, P.K.; Prasad, S.M.; Dubey, N.K.; et al. Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: Implication of the ascorbate-glutathione cycle. Front. Plant Sci. 2017, 8, 1. [Google Scholar] [CrossRef]
- Iftikhar, A.; Ali, S.; Yasmeen, T.; Arif, M.S.; Zubair, M.; Rizwan, M.; Alhaithloul, H.A.S.; Alayafi, A.A.M.; Soliman, M.H. Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. Environ. Pollut. 2019, 254, 113109. [Google Scholar] [CrossRef]
- Wang, F.; Adams, C.A.; Shi, Z.; Sun, Y. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere 2018, 209, 421–429. [Google Scholar] [CrossRef]
- Zuo, Z.; Sun, L.; Wang, T.; Miao, P.; Zhu, X.; Liu, S.; Song, F.; Mao, H.; Li, X. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules 2017, 22, 1727. [Google Scholar] [CrossRef]
- Wang, H.; Jafir, M.; Irfan, M.; Ahmad, T.; Zia-ur-Rehman, M.; Usman, M.; Rizwan, M.; Hamoud, Y.A.; Shaghaleh, H. Emerging trends to replace pesticides with nanomaterials: Recent experiences and future perspectives for ecofriendly environment. J. Environ. Manag. 2024, 360, 121178. [Google Scholar] [CrossRef]
- Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017, 15, 15–22. [Google Scholar] [CrossRef]
- Rajpal, V.R.; Prakash, S.; Mehta, S.; Minkina, T.; Rajput, V.D.; Deswal, R. A comprehensive review on mitigating abiotic stresses in plants by metallic nanomaterials: Prospects and concerns. Clean Technol. Environ. Policy 2023, 26, 3595–3633. [Google Scholar] [CrossRef]
- Kookana, R.S.; Boxall, A.B.A.; Reeves, P.T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T.F.; Gan, J.; Kah, M.; et al. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62, 4227–4240. [Google Scholar] [CrossRef]
- Allan, J.; Belz, S.; Hoeveler, A.; Hugas, M.; Anklam, E. Regulatory Landscape of Nanotechnology and Nanoplastics from a Global Perspective. Regul. Toxicol. Pharmacol. 2021, 122, 104885. [Google Scholar] [CrossRef]
- Ali, F.; Neha, K.; Parveen, S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. J. Drug Deliv. Sci. Technol. 2023, 80, 104118. [Google Scholar] [CrossRef]
- Quinn, B.M. Substance in nanomaterials regulation. Nat. Nanotechnol. 2021, 16, 1172–1175. [Google Scholar] [CrossRef]
- Malsch, I.; Mullins, M.; Semenzin, E.; Zabeo, A.; Hristozov, D.; Marcomini, A. Decision Support for International Agreements Regulating Nanomaterials. Nanoethics 2018, 12, 39–54. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Joshi, A.S.; Perumalsamy, H.; Mijakovic, I.; Singh, P. Advancing Sustainable Agriculture: A Critical Review of Smart and Eco-Friendly Nanomaterial Applications. J. Nanobiotechnol. 2023, 21, 372. [Google Scholar] [CrossRef]
- Chatterjee, R. The Challenge of Regulating Nanomaterials. Environ. Sci. Technol. 2008, 42, 339–343. [Google Scholar] [CrossRef][Green Version]
- Xie, C.; Guo, Z.; Zhang, P.; Yang, J.; Zhang, J.; Ma, Y.; He, X.; Lynch, I.; Zhang, Z. Effect of CeO2 nanoparticles on plant growth and soil microcosm in a soil-plant interactive system. Environ. Pollut. 2022, 300, 118938. [Google Scholar] [CrossRef]
- Chu, Q.; Sha, Z.; Li, D.; Feng, Y.; Xue, L.; Zhou, D.; Xing, B. Oxygen nanobubble-loaded biochars mitigate copper transfer from copper-contaminated soil to rice and improve rice growth. ACS Sustain. Chem. Eng. 2023, 11, 5032–5044. [Google Scholar] [CrossRef]
Disease | NMs Used 1 | Concentration | Antibacterial Rate (%) 1 | Mechanism | Ref. |
---|---|---|---|---|---|
F. verticillioides | FeS-NPs | 18.00 μg/mL | 50.00 (V) | Disrupted membrane integrity. | [23] |
M. oryzae | SiO2 NPs | 1.00 × 105 μg/mL | 75.00 (F) | Highly induced the expressions of SA-responsive genes. | [24] |
3.00 × 106 μg/mL | 85.00 (R) | ||||
M-CsNPs | 2.00 × 105 μg/mL | 79.20 (V) | Inhibited spore germination and germ tube elongation by disrupting cell membranes. Enhanced antioxidant enzyme activities and modulated the microbiome. | [25] | |
1.00 × 105 μg/mL | 70.00 (F) | ||||
Ag NPs | 4.00 × 104 μg/mL | 59.00 (S) | Upregulated the expression of immune response-related genes and the relative abundance of signaling-associated metabolites. | [26] | |
ZnO NPs | 5.00 × 105 μg/mL | 61.00 (F) | Reduced conidiation and appressoria formation while inducing defense-related genes, increasing ROS accumulation, and decreasing ABA levels in rice. | [27] | |
93.00 (V) | |||||
GO-PEG-EPXConA | 0.18 μg/mL | 50.00 (V) | Controlled hyphal growth and inhibited spore germination. | [28] | |
P. oryzae | Ni-Ch NPs | 0.10% (w/v) | 64.00 (V) | Disrupted fungal membrane integrity, induced cytoplasmic leakage, and ultimately triggered lytic cell death. | [29] |
23.40 (S) | |||||
R. solani | ZnO NPs | 450.00 μg/mL | 51.10 (V) | Penetrated the target pathogen’s cell wall and damaged cellular functions. | [30] |
Ag NPs | 61.80 (V) | ||||
AZOX-AFS-Pec NPs | 1.93 × 103 μg/mL | 50.00 (V) | Decreased IAA levels, increased SA levels, and SOD and POD activities in rice plants. | [31] | |
7.50 × 103 μg/mL | 100.00 (F) | ||||
La10Si6O27 NRs | 1.00 × 105 μg/mL | 62.40 (F) | Activated CAM and enhanced antioxidant enzymes, boosted SA production, and strengthened physical barriers. | [18] | |
Fe-MOF-PT NPs | 2.25 × 103 μg/mL | 50.00 (V) | Induced cellular oxidative stress which damaged cell membranes, mitochondria, and DNA. | [32] | |
8.00 × 105 μg/mL | 59.54 (F) | ||||
B. oryzae | ZnO NPs | 50.00 μg/mL | 72.78 (V) | Reduced spore germination in both strains, disintegrated hyphal, induced cytoplasmic leakage, and collapsed cellular structures. | [33] |
S. oryzina | 85.78 (V) | ||||
Xoo | CS NPs | 8.00 μg/mL | 86.76 (V) | Suppressed biofilm formation and swimming motility, enhanced SOD activity, induced cell wall and membrane wrinkling and rupture that led to nutrient and nucleic acid leakage. | [34] |
ZnO NPs | 73.93 (V) | ||||
Tm-Ag NPs | 20.00 μg/mL | 65.60 (V) | Direct killed and indirect effected in biofilm formation, swimming, and cell integrity. | [35] | |
Al-Ag NPs | 72.10 (V) | ||||
Sm-Ag NPs | 68.19 (V) | ||||
BNCs | 250.00 μg/mL | 92.50 (V) | Suppressed pathogen growth, motility, and biofilm formation. Induced plant defense responses through upregulated defense genes, enhanced SOD and POD activities, ultimately reshaped rice phyllospheric and root-endophytic microbiota. | [36] | |
67.10 (F) | |||||
Ni-SiO2 NPs | 2.00 × 105 μg/mL | 89.07 (V) | Inhibited biofilm formation, cell injury or death. | [37] | |
70.20 (F) | |||||
NiO NPs | 200.00 μg/mL | 88.68 (V) | Reduced the growth and biofilm formation, produced a significant amount of ROS. | [38] | |
69.64 (F) | |||||
CuO NPs | 50.00 μg/mL | 79.65 (V) | Wounded the cell membrane, resulting in intracellular content leakage and ROS generation. | [39] | |
67.93 (F) | |||||
F. Fujikuroi (40) | Ag NPs | 12.08 μg/mL | 95.56 (V) | Had not yet been explored. | [40] |
F. proliferatum (58) | 70.00 (V) | ||||
F. proliferatum (65) | 100.00 (V) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhu, L.; Yan, X.; Liao, Z.; Teng, W.; Wang, Y.; Xing, Z.; Chen, Y.; Liu, L. Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review. Agronomy 2025, 15, 1938. https://doi.org/10.3390/agronomy15081938
Chen Y, Zhu L, Yan X, Liao Z, Teng W, Wang Y, Xing Z, Chen Y, Liu L. Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review. Agronomy. 2025; 15(8):1938. https://doi.org/10.3390/agronomy15081938
Chicago/Turabian StyleChen, Yi, Li Zhu, Xinyao Yan, Zhangjun Liao, Wen Teng, Yule Wang, Zhiguang Xing, Yun Chen, and Lijun Liu. 2025. "Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review" Agronomy 15, no. 8: 1938. https://doi.org/10.3390/agronomy15081938
APA StyleChen, Y., Zhu, L., Yan, X., Liao, Z., Teng, W., Wang, Y., Xing, Z., Chen, Y., & Liu, L. (2025). Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review. Agronomy, 15(8), 1938. https://doi.org/10.3390/agronomy15081938