Previous Issue
Volume 15, August
 
 

Agronomy, Volume 15, Issue 9 (September 2025) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 1570 KiB  
Review
MicroRNAs Regulate Grain Development in Rice
by Ying Ye, Xiaoya Yuan, Dongsheng Zhao and Qingqing Yang
Agronomy 2025, 15(9), 2027; https://doi.org/10.3390/agronomy15092027 (registering DOI) - 24 Aug 2025
Abstract
Ensuring food security is a challenge for humans. Rice grain yield and quality must urgently be increased to overcome this challenge. MicroRNA (miRNA) is an important regulatory module in plant development and stress responses. Grain yield and quality are pleiotropic traits that employ [...] Read more.
Ensuring food security is a challenge for humans. Rice grain yield and quality must urgently be increased to overcome this challenge. MicroRNA (miRNA) is an important regulatory module in plant development and stress responses. Grain yield and quality are pleiotropic traits that employ cooperative genetic factors, including miRNA and its regulatory mechanisms. This review provides an overview of plant miRNAs and the composition and development process of rice grains. It also summarizes the research progress in miRNA regulation for agronomically important rice grain traits, providing a basis for further identifying miRNAs related to rice grain development and elucidating their regulatory mechanisms. Full article
(This article belongs to the Special Issue Innovative Research on Rice Breeding and Genetics)
Show Figures

Figure 1

25 pages, 1878 KiB  
Article
Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling
by Yanan Sun, Huayu Zhong, Huanjie Cai, Jiatun Xu and Zhijun Li
Agronomy 2025, 15(9), 2026; https://doi.org/10.3390/agronomy15092026 (registering DOI) - 23 Aug 2025
Abstract
Optimizing aeration, fertilization, and irrigation is vital for improving greenhouse tomato production while mitigating soil greenhouse gas (GHG) emissions. This study investigated the combined effects of three aeration levels (A1: single Venturi, A2: double Venturi, CK: no aeration), two fertilization rates (F1: 180 [...] Read more.
Optimizing aeration, fertilization, and irrigation is vital for improving greenhouse tomato production while mitigating soil greenhouse gas (GHG) emissions. This study investigated the combined effects of three aeration levels (A1: single Venturi, A2: double Venturi, CK: no aeration), two fertilization rates (F1: 180 kg/ha, F2: 240 kg/ha), and two irrigation levels (I1: 0.8 Epan, I2: 1.0 Epan) on tomato yield, CO2, N2O, and CH4 emissions, net GHG emissions, net global warming potential (NGWP), and GHG intensity (GHGI) across Spring–Summer and Autumn–Winter seasons. Results showed that aeration and fertilization significantly increased CO2 and N2O emissions but reduced CH4 emissions. Warmer conditions in Spring–Summer elevated all GHG emissions and yield compared to Autumn–Winter seasons. Tomato yield, net GHG emissions, NGWP, and GHGI were 12.05%, 24.3%, 14.46%, and 2.37% higher, respectively, in Spring–Summer. Combining the Maximal Information Coefficient and TOPSIS models, the optimal practice was A1-F1-I1 in Spring–Summer and A2-F1-I1 in Autumn–Winter seasons. These results provide a theoretical basis for selecting climate-smart management strategies that enhance yield and environmental sustainability in greenhouse tomato systems. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
20 pages, 2267 KiB  
Article
Effects of Groundwater Depth on Soil Water and Salinity Dynamics in the Hetao Irrigation District: Insights from Laboratory Experiments and HYDRUS-1D Simulations
by Zhuangzhuang Feng, Liping Dai, Qingfeng Miao, José Manuel Gonçalves, Haibin Shi, Yuxin Li and Weiying Feng
Agronomy 2025, 15(9), 2025; https://doi.org/10.3390/agronomy15092025 (registering DOI) - 23 Aug 2025
Abstract
The management of groundwater depth (GWD) in alluvial soils under irrigation in arid climates is critical for soil and water conservation, given its influence on salt dynamics and water availability for crops. GWD is influenced by the interaction of irrigation water supply and [...] Read more.
The management of groundwater depth (GWD) in alluvial soils under irrigation in arid climates is critical for soil and water conservation, given its influence on salt dynamics and water availability for crops. GWD is influenced by the interaction of irrigation water supply and drainage system design and operation. Controlling GWD is a significant issue in the Hetao Irrigation District due to continuous irrigation, arid climate, and high risks of soil salinization, which concerns farmers and water management authorities. To address this issue, a study was conducted based on open-air laboratory experimentation to rigorously assess the effects of GWD on soil salt dynamics and capillary rise contribution to maize cultivation under level basin irrigation. Data collected served as the basis for parameterizing and calibrating the HYDRUS-1D model, facilitating simulation of soil water and salt dynamics to enhance understanding of GWD effects ranging from 1.25 m to 2.25 m. It was concluded that during calibration and validation, the model demonstrated strong performance; SWC simulations achieved R2 > 0.69, RMSE < 0.03 cm3 cm−3, and NSE approaching 1; and EC simulations yielded R2 ≥ 0.74 with RMSE < 0.22 S cm−1. Additionally, the simulated bottom boundary moisture flux closely matched the measured values. The most favorable GWD range should be between 1.75 m and 2.0 m, minimizing the negative impacts of irrigation-induced soil salinity while maximizing water use efficiency and crop productivity. A higher GWD causes crop water stress, while a lower value results in a greater risk of soil salinity. This study anticipates future field application in Hetao to assess drainage system effectiveness and variability in salinity and productivity effects. Full article
(This article belongs to the Section Farming Sustainability)
16 pages, 3716 KiB  
Article
The Separation Effect of Heat Treatment on Chili Seeds Based on Seed Viability
by Xinzhong Wang, Xiaolong Pan and Jing Bai
Agronomy 2025, 15(9), 2024; https://doi.org/10.3390/agronomy15092024 (registering DOI) - 23 Aug 2025
Abstract
To improve the separation efficiency of chili seeds, heat treatment on the adhesion between the seeds, peel, and embryo seat was studied. This study was conducted to explore the separation effect of heat treatment on chili seeds based on different temperature conditions. Firstly, [...] Read more.
To improve the separation efficiency of chili seeds, heat treatment on the adhesion between the seeds, peel, and embryo seat was studied. This study was conducted to explore the separation effect of heat treatment on chili seeds based on different temperature conditions. Firstly, the physical properties and thermal properties parameters of the materials (chili seed, peel, and embryo seats) were measured. These physical data were imported into ANSYS 2022 software to carry out a thermal steady-state simulation experiment. And the effects on seed activity were studied with different temperature conditions. The results indicated that it can effectively reduce the adhesion force between seeds, fruit peels, and embryo seats at 120 °C for 60 s. The maximum thermal stresses of the chili peel, seed, and embryo seat were 3.687 MPa, 0.878 MPa, and 0.662 MPa, respectively. At the same time, the germination rate of seeds under this treatment condition remained above 80%, ensuring the high activity of the seeds. This study provided a theoretical basis for the separation technology of chili seeds, and it was expected to bring practical guidance for the efficient utilization and extraction of chili seeds. Full article
(This article belongs to the Section Crop Breeding and Genetics)
21 pages, 6010 KiB  
Article
Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA
by Elsayed Ahmed Elsadek, Said Attalah, Peter Waller, Randy Norton, Douglas J. Hunsaker, Clinton Williams, Kelly R. Thorp, Ethan Orr and Diaa Eldin M. Elshikha
Agronomy 2025, 15(9), 2023; https://doi.org/10.3390/agronomy15092023 (registering DOI) - 23 Aug 2025
Abstract
Improved irrigation guidelines are needed to maximize crop water use efficiency. Combining field data with simulation models can provide information for better irrigation management. The objective of the present study was to evaluate the effects of two flood irrigation treatments on fiber yield [...] Read more.
Improved irrigation guidelines are needed to maximize crop water use efficiency. Combining field data with simulation models can provide information for better irrigation management. The objective of the present study was to evaluate the effects of two flood irrigation treatments on fiber yield (FY) and quality during the 2023 and 2024 growing seasons in Maricopa, Arizona, USA. Two irrigation treatments, denoted as F100% and F80%, were arranged in a randomized complete block design with three replicates. Then, AquaCrop was used to simulate cotton yield (YTot), water use (ETobs), and total soil water content (WCTot) for the two irrigation treatments. Six statistical metrics, including the coefficient of determination (R2), the normalized root-mean-square error (NRMSE), the mean absolute error (MAE), simulation error (Se), the index of agreement (Dindex), and the Nash–Sutcliffe efficiency coefficient (NSE), were employed to assess model performance. The results of the field trial demonstrated that reducing the irrigation rate to 80% of ETc negatively impacted cotton FY and ET water productivity (ETWP); the FY declined by 45.2% (ETWP = 0.097 kg·ha−1) in 2023 and by 38.1% (ETWP = 0.133 kg·ha−1) in 2024. Conversely, F100% produced a more uniform and stronger fiber than F80%, with the uniformity index (UI) and fiber strength (STR) measuring 81.7% and 29.5 g tex−1 in 2023 and 82.2% and 30.0 g tex−1 in 2024, indicating that UI and STR were well correlated with soil water during both growing seasons. AquaCrop showed an excellent performance in simulating cotton CC during the two growing seasons. The R2, NRMSE, Dindex, and NSE were between 0.97 and 0.99, 8.45% and 14.36%, 0.98 and 0.99, and 0.96 and 0.98, respectively. Moreover, the AquaCrop model accurately simulated YTot during these seasons, with R2, NRMSE, Dindex, and NSE for pooled yield data of 0.93, 8.05%, 0.95, and 0.78, respectively. The model consistently overestimated YTot, ETobs, and WCTot, but within an acceptable Se (Se < 15%) during both growing seasons, except for WCTot under the 80% treatment in 2023 (Se = 26.4%). Consequently, AquaCrop can be considered an effective tool for irrigation management and yield prediction in arid climates such as Arizona. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

26 pages, 15990 KiB  
Article
YOLO-LCE: A Lightweight YOLOv8 Model for Agricultural Pest Detection
by Xinyu Cen, Shenglian Lu and Tingting Qian
Agronomy 2025, 15(9), 2022; https://doi.org/10.3390/agronomy15092022 - 22 Aug 2025
Abstract
Agricultural pest detection through image analysis is a key technology in automated pest-monitoring systems. However, some existing pest detection models face excessive model complexity. This study proposes YOLO-LCE, a lightweight model based on the YOLOv8 architecture for agricultural pest detection. Firstly, a Lightweight [...] Read more.
Agricultural pest detection through image analysis is a key technology in automated pest-monitoring systems. However, some existing pest detection models face excessive model complexity. This study proposes YOLO-LCE, a lightweight model based on the YOLOv8 architecture for agricultural pest detection. Firstly, a Lightweight Complementary Residual (LCR) module is proposed to extract complementary features through a dual-branch structure. It enhances detection performance and reduces model complexity. Additionally, Efficient Partial Convolution (EPConv) is proposed as a downsampling operator. It adopts an asymmetric channel splitting strategy to efficiently utilize features. Furthermore, the Ghost module is introduced to the detection head to reduce computational overhead. Finally, WIoUv3 is used to improve detection performance further. YOLO-LCE is evaluated on the Pest24 dataset. Compared to the baseline model, YOLO-LCE achieves mAP50 improvement of 1.7 percentage points, mAP50-95 improvement of 0.4 percentage points, and precision improvement of 0.5 percentage points. For computational efficiency, parameters are reduced by 43.9%, and GFLOPs are reduced by 33.3%. These metrics demonstrate that YOLO-LCE improves detection accuracy while reducing computational complexity, providing an effective solution for lightweight pest detection. Full article
(This article belongs to the Section Pest and Disease Management)
22 pages, 2402 KiB  
Article
Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics
by Ioana Maria Borza, Cristina Adriana Rosan, Daniela Gitea, Manuel Alexandru Gitea, Alina Dora Samuel, Carmen Violeta Iancu, Ioana Larisa Bene, Daniela Padilla-Contreras, Cristian Gabriel Domuta and Simona Ioana Vicas
Agronomy 2025, 15(9), 2021; https://doi.org/10.3390/agronomy15092021 - 22 Aug 2025
Abstract
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. [...] Read more.
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. A two-year field experiment (2023–2024) was conducted using three experimental methods: mulching with sheep wool (V2), application of a soil conditioner, corn starch-based polymer (V3), and a combination of sheep wool and corn starch-based polymer (V4) along with a control (V1). Tree growth parameters, fruit physicochemical properties, total phenolic and flavonoid content, and soil enzyme activities (dehydrogenase, catalase, phosphatase) were assessed. Data were analyzed using Principal Component Analysis (PCA) and Pearson’s correlation. PCA showed that the combined variant (V4) improved fruit size, weight, and bioactive compound content, while wool mulch alone (V2) was associated with higher fruit yield and better vegetative growth. Catalase activity correlated positively and consistently with bioactive compounds in both years, while phosphatase activity showed an intensified positive relationship in 2024. Dehydrogenase activity was negatively correlated with phenolic content in both seasons. Organic and integrated mulching practices can beneficially modulate both aboveground and belowground plant–soil interactions. The combined variant proved to be the most effective strategy, enhancing fruit nutritional quality and supporting sustainable apple orchard management. Full article
Show Figures

Figure 1

20 pages, 2195 KiB  
Article
Biofertilizer and Bioherbicide Potential of Microalgae-Based Wastewater and Diplotaxis harra Boiss for Sustainable Barley Production
by Ghofrane Jmii, Chema Keffala, Jesús G. Zorrilla, Fouad Zouhir, Hugues Jupsin, Ameni Mokhtar and Bernard Tychon
Agronomy 2025, 15(9), 2020; https://doi.org/10.3390/agronomy15092020 - 22 Aug 2025
Abstract
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex [...] Read more.
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex spinosa (L.) Campd., along with the effects of algal biomass (primarily composed of Closterium, Chlorella, and Scenedesmus spp.) and Diplotaxis harra leaf powder. Initial pot trials applied microalgae and D. harra at 2, 4, and 6 g·kg−1 soil, also confirming that the treated wastewater met reuse standards and did not affect plant growth. The combined treatment at 4 g·kg−1 led to the highest H. vulgare increases in fresh weight (162.71%), root length (73.75%), and shoot length (72.87%), while reducing E. spinosa shoot and root lengths by 30.79% and 52.18%, and fresh weight by 68.24%. Subsequent field experiments using 1.26 t ha−1 of 0.5-cm-applied D. harra and microalgae powders enhanced H. vulgare growth, while reducing the growth of E. spinosa. The reduction in E. spinosa growth was associated with increased electrolyte leakage and malondialdehyde content. These results support the integration of high-rate algal ponds into agriculture, promoting water reuse and reducing reliance on synthetic fertilizers and herbicides in barley production. Full article
(This article belongs to the Special Issue Natural Products in Crop Diseases Control)
Show Figures

Figure 1

16 pages, 447 KiB  
Article
Evaluation of Insect Farming Residue (Frass) as a Phosphate Fertilizer Within the Context of the Circular Economy
by Juan Nieto-Cantero, Miguel A. Romero-Gil, Gina P. Suárez-Cáceres, Antonio Delgado and Víctor M. Fernández-Cabanás
Agronomy 2025, 15(9), 2019; https://doi.org/10.3390/agronomy15092019 - 22 Aug 2025
Abstract
Phosphorus (P) stock scarcity is driving the need to develop alternatives to mineral fertilizers. The growing production of insects for high-protein feed results in significant amounts of residues (frass), which can be used as fertilizers. However, its efficiency as such a basic indicator [...] Read more.
Phosphorus (P) stock scarcity is driving the need to develop alternatives to mineral fertilizers. The growing production of insects for high-protein feed results in significant amounts of residues (frass), which can be used as fertilizers. However, its efficiency as such a basic indicator for promoting the recycling of these residues has been rarely assessed. This work aimed to evaluate the efficiency of frass as a P fertilizer. To this end a study was conducted involving P fractionation of frass from two different species (TM: Tenebrio molitor and BSF: black soldier fly or Hermetia illucens) together with vermicompost and a 48-day pot experiment with lettuce (Lactuca sativa). In both frasses, water-soluble P and organic P accounted for more than 30% and 50% of total P, respectively. These P fractions explained the short- and long-term effects of frasses as P fertilizer, which showed a higher P use efficiency than mineral phosphate and vermicompost, with mineral fertilizer replacement values (MFRVs) of 150 and 180% for BSF and TM frass, respectively. Additionally, frass increased P bioavailability in soils more than superphosphate and boosted C and P cycling, thereby enhancing the soil P availability to plants. Therefore, frasses can be effective alternatives to mineral P fertilizers which also contribute to the enhancement of soil health indicators. Full article
Show Figures

Figure 1

23 pages, 12982 KiB  
Article
Response of the End of the Growing Season to ExtremeClimatic Events in the Semi-Arid Grassland of Inner Mongolia
by Erhua Liu and Guangsheng Zhou
Agronomy 2025, 15(9), 2018; https://doi.org/10.3390/agronomy15092018 - 22 Aug 2025
Abstract
Climate change impacts on vegetation phenology, especially under extreme climate events, remain inadequately understood. Based on the Fraction of Photosynthetically Active Radiation (FPAR) from MODIS, this study extracted and investigated the end of the growing season (EOS) dynamics in semi-arid grassland of Inner [...] Read more.
Climate change impacts on vegetation phenology, especially under extreme climate events, remain inadequately understood. Based on the Fraction of Photosynthetically Active Radiation (FPAR) from MODIS, this study extracted and investigated the end of the growing season (EOS) dynamics in semi-arid grassland of Inner Mongolia from 2003 to 2020. The relationship between the EOS and extreme climate events was examined, and the coincidence rate (CR) between these events and EOS standardized anomaly (EOSSA) was quantified. The results showed that the EOS exhibited a significant delaying trend (1.48 days/year, p < 0.05) after 2011, with its spatial distribution patterns strongly correlated with climatic gradients. Compound dry–warm events exhibited the widest spatial extent and highest frequency among all compound extreme climate events (CECEs). The impact of extreme climate events on EOSSA varied depending on climatic background. Extreme dry delayed EOSSA in colder regions but advanced it in warmer regions. CECEs exerted a stronger regulatory effect on EOSSA. Compound dry–warm events showed high CR with EOSSA (CR > 0.4), which was higher under low temperature gradients but decreased under high gradients. The result enhances our understanding of how semi-arid grassland respond to extreme climate events, aiding the improvement of phenology models. Full article
(This article belongs to the Section Grassland and Pasture Science)
14 pages, 1821 KiB  
Article
Verification of Agricultural Practices for Winter Pea–Cereals Intercropping
by Agnieszka Klimek-Kopyra, Ewa Hanus-Fajerska, Iwona Kamińska, Tomasz Głąb, Reinhard W. Neugschwandtner and Wiktor Chudzik
Agronomy 2025, 15(9), 2017; https://doi.org/10.3390/agronomy15092017 - 22 Aug 2025
Viewed by 35
Abstract
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create [...] Read more.
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create a mixture suitable for agricultural practice is probably essential. Therefore, arbitrarily selected winter pea cultivars were intercropped with some chosen cereals in order to assess certain yield parameters using a two-factorial field experiment conducted on brown soil. The studied factors were the cultivar of pea (Pisum sativum), ‘Pandora’ and ‘E.F.B. 33′ respectively, and the cropping system: single crop vs. cereal/legume intercropping mixture. Cereals used were rye (Secale cereale L.) ‘Amber’ and triticale (× Triticosecale) ‘Borwo’. To assess the potential of winter pea in this cultivation system, the yield level, some plant parameters (above- and belowground), and LER and CR indices were applied. Additionally, to demonstrate the effect of intercropping on pea, the root system, root nodulation, and nitrogen uptake efficiency were assessed. It was shown that yield and plant indices were closely related to the intercropping variant used. The key element determining the potential of the cultivated crops was the selection of cultivars. The most productive one was proved pea ‘E.F.B. 33’, which formed the largest number of nodules when intercropped with triticale. Moreover, it was ascertained that the drought period during the formation of nodules negatively affected their structure, which had a rather negative impact on the pea yield. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop