Comparative Analysis of Germination Traits and Gene Expression in Hybrid Progeny of Neo-Tetraploid Rice Under NaCl Stress Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Salt Stress Treatment of Experimental Materials
2.3. Measurement of Seed Germination Traits in Two Hybrid Progenies
2.4. Measurement of the Germinated Grains and Seedlings in Two Hybrid Progenies
2.5. Semi-Section Analysis of Root Tip and Coleoptile Tissues Under the NaCl Treatment
2.6. Root Tip Observation Under the NaCl Stress Using the WE-CLSM Analysis
2.7. RT-qPCR Analysis
2.8. Statistical Analysis
3. Results
3.1. Comparison of Rice Grain Germination Time Between HSRTH and LSRTH Under the NaCl Stress
3.2. Comparison of Germination Characteristics Between HSRTH and LSRTH Under the NaCl Stress
3.3. Comparison of Phenotypic Variation Between HSRTH and LSRTH in the Seeding Stage Under the NaCl Stress
3.4. Effects of NaCl Stress on Root/Shoot Ratio and Moisture Content in HSRTH and LSRTH
3.5. Effects of NaCl Stress on Root Tissue in HSRTH and LSRTH
3.6. Effects of NaCl Stress on Coleoptiles in HSRTH and LSRTH
3.7. Gene Expression of NaCl Stress on Root Tissues in HSRTH and LSRTH
4. Discussion
4.1. Germination Characteristics of Neo-Tetraploid Rice Hybrids
4.2. Stable Adaptability in Root Tissue Likely Causes Salt Resistance in Neo-Tetraploid Rice Hybrids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant Salt-Tolerance Mechanism: A Review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Daba, A.W. Rehabilitation of Soil Salinity and Sodicity Using Diverse Amendments and Plants: A Critical Review. Discov. Environ. 2025, 3, 53. [Google Scholar] [CrossRef]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil Salinization in Agriculture: Mitigation and Adaptation Strategies Combining Nature-Based Solutions and Bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Z.; Bai, X.; Li, L.; Wu, J.; Liu, Y.; Xu, X.; Wang, B. Long-Term Rice Cultivation Enhances Root Development and Yields by Improving the Structural Properties of Soil Aggregates in Saline–Alkaline Environments. Environ. Technol. Inno. 2024, 36, 103848. [Google Scholar] [CrossRef]
- Lv, Q.; Fan, J.; Zhou, T.; Pan, X.; Li, H.; Ren, X.; Zhang, L.; Hu, S. Rice Cultivation in Saline-Alkaline Soil Shifts the Coupling of Phosphorus Functional Genes and Salt Tolerance Genes Based on Metagenomic Analysis. Appl. Soil Ecol. 2025, 211, 106142. [Google Scholar] [CrossRef]
- Peng, W.; Zhu, X.; Zheng, W.; Xie, Q.; Wang, M.; Ran, E. Rice Cultivation Can Mitigate Soil Salinization and Alkalization by Modifying the Macropore Structure in Saline–Sodic Paddy Fields. Agric. Water Manag. 2025, 313, 109473. [Google Scholar] [CrossRef]
- Huang, L.H.; Liang, Z.W.; Suarez, D.L.; Wang, Z.C.; Wang, M.M.; Yang, H.Y.; Liu, M. Impact of Cultivation Year, Nitrogen Fertilization Rate and Irrigation Water Quality on Soil Salinity and Soil Nitrogen in Saline-Sodic Paddy Fields in Northeast China. J. Agric. Sci. 2016, 154, 632–646. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, C.; Liu, L.; Tan, Y.; Sheng, X.; Yu, D.; Sun, Z.; Sun, X.; Chen, J.; Yuan, D.; et al. Effect of Salinity Stress on Rice Yield and Grain Quality: A Meta-Analysis. Eur. J. Agron. 2023, 144, 126765. [Google Scholar] [CrossRef]
- Hussain, S.; Zhang, R.; Chen, Y.; Li, J.; Hussain, Q.; Altaf, A.; Chen, Y.; Dai, Q. An Overview on Salt-Induced Physiological Changes, Molecular Mechanism of Salinity Tolerance and Application Strategies for Its Management in Rice. Cereal Res. Commun. 2024, 52, 1239–1251. [Google Scholar] [CrossRef]
- Fang, X.; Mo, J.; Zhou, H.; Shen, X.; Xie, Y.; Xu, J.; Yang, S. Comparative Transcriptome Analysis of Gene Responses of Salt-Tolerant and Salt-Sensitive Rice Cultivars to Salt Stress. Sci. Rep. 2023, 13, 19065. [Google Scholar] [CrossRef]
- Hussain, S.; Zhang, J.; Zhong, C.; Zhu, L.; Cao, X.; Yu, S.; Allen Bohr, J.; Hu, J.; Jin, Q. Effects of Salt Stress on Rice Growth, Development Characteristics, and the Regulating Ways: A Review. J. Integr. Agric. 2017, 16, 2357–2374. [Google Scholar] [CrossRef]
- Gerona, M.E.B.; Deocampo, M.P.; Egdane, J.A.; Ismail, A.M.; Dionisio-Sese, M.L. Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage. Rice Sci. 2019, 26, 207–219. [Google Scholar] [CrossRef]
- Zeng, L.; Shannon, M.C.; Lesch, S.M. Timing of Salinity Stress Affects Rice Growth and Yield Components. Agric. Water Manag. 2001, 48, 191–206. [Google Scholar] [CrossRef]
- Ologundudu, A.F.; Adelusi, A.A.; Akinwale, R.O. Effect of Salt Stress on Germination and Growth Parameters of Rice (Oryza sativa L.). Not. Sci. Biol. 2014, 6, 237–243. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Li, Y.; Quan, R.; Wang, J.; Huang, R.; Qin, H. Salt Stress Promotes Abscisic Acid Accumulation to Affect Cell Proliferation and Expansion of Primary Roots in Rice. Int. J. Mol. Sci. 2021, 22, 10892. [Google Scholar] [CrossRef]
- Rahman, A.; Hossain, S.; Mahmud, J.-A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Manganese-Induced Salt Stress Tolerance in Rice Seedlings: Regulation of Ion Homeostasis, Antioxidant Defense and Glyoxalase Systems. Physiol. Mol. Biol. Plants 2016, 22, 291–306. [Google Scholar] [CrossRef]
- Korres, N.E.; Loka, D.A.; Gitsopoulos, T.K.; Varanasi, V.K.; Chachalis, D.; Price, A.; Slaton, N.A. Salinity Effects on Rice, Rice Weeds, and Strategies to Secure Crop Productivity and Effective Weed Control. A Review. Agron. Sustain. Dev. 2022, 42, 58. [Google Scholar] [CrossRef]
- Zhu, G.; Lu, H.; Shi, X.; Wang, Y.; Zhi, W.; Chen, X.; Liu, J.; Ren, Z.; Shi, Y.; Ji, Z.; et al. Nitrogen Management Enhanced Plant Growth, Antioxidant Ability, and Grain Yield of Rice under Salinity Stress. Agron. J. 2020, 112, 550–563. [Google Scholar] [CrossRef]
- Razzaq, A.; Ali, A.; Safdar, L.B.; Zafar, M.M.; Rui, Y.; Shakeel, A.; Shaukat, A.; Ashraf, M.; Gong, W.; Yuan, Y. Salt Stress Induces Physiochemical Alterations in Rice Grain Composition and Quality. J. Food Sci. 2020, 85, 14–20. [Google Scholar] [CrossRef]
- Li, R.; Zhang, D.; Pan, Y.; Liu, H.; Tang, C.; Liu, X.; Mo, L.; Du, Y.; Zhou, G.; Hu, Y. Effects of Salt Stress During the Growth Period on the Yield and Grain Quality of Hybrid Rice. Agronomy 2024, 15, 21. [Google Scholar] [CrossRef]
- Xu, Y.; Bu, W.; Xu, Y.; Fei, H.; Zhu, Y.; Ahmad, I.; Nimir, N.E.A.; Zhou, G.; Zhu, G. Effects of Salt Stress on Physiological and Agronomic Traits of Rice Genotypes with Contrasting Salt Tolerance. Plants 2024, 13, 1157. [Google Scholar] [CrossRef] [PubMed]
- Sackey, O.K.; Feng, N.; Mohammed, Y.Z.; Dzou, C.F.; Zheng, D.; Zhao, L.; Shen, X. A Comprehensive Review on Rice Responses and Tolerance to Salt Stress. Front. Plant Sci. 2025, 16, 1561280. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Groen, S.N.; Zaidem, M.L.; Sajise, A.G.C.; Calic, I.; Natividad, M.; McNally, K.; Vergara, G.V.; Satija, R.; Franks, S.J.; et al. Systems Genomics of Salinity Stress Response in Rice. eLife 2025, 13, RP99352. [Google Scholar] [CrossRef]
- Lelekami, M.A.; Pahlevani, M.H.; Nezhad, K.Z.; Mashaki, K.M. Gene Metabolite Relationships Revealed Metabolic Adaptations of Rice Salt Tolerance. Sci. Rep. 2025, 15, 2404. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Luan, L.; Liu, Y.; Long, W.; Kong, F.; He, T.; Xu, Q.; Yan, W.; Yu, M. Production and Heterosis Analysis of Rice Autotetraploid Hybrids. Crop Sci. 2007, 47, 2356–2363. [Google Scholar] [CrossRef]
- Guo, H.; Mendrikahy, J.N.; Xie, L.; Deng, J.; Lu, Z.; Wu, J.; Li, X.; Shahid, M.Q.; Liu, X. Transcriptome Analysis of Neo-Tetraploid Rice Reveals Specific Differential Gene Expressions Associated with Fertility and Heterosis. Sci. Rep. 2017, 7, 40139. [Google Scholar] [CrossRef]
- Ghaleb, M.A.A.; Li, C.; Shahid, M.Q.; Yu, H.; Liang, J.; Chen, R.; Wu, J.; Liu, X. Heterosis Analysis and Underlying Molecular Regulatory Mechanism in a Wide-Compatible Neo-Tetraploid Rice Line with Long Panicles. BMC Plant Biol. 2020, 20, 83. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.W.; Shahid, M.Q. Development of Neo-Tetraploid Rice and Research Progress on Its Heterosis Mechanism. Biotechnol. Bull. 2022, 38, 44. [Google Scholar] [CrossRef]
- Lin, H.; Huang, Z.; Deng, R.; Guo, H.; Lu, Z.; Liu, X.; Wu, J. Analysis of germination characteristics and differential gene expressionin neo-tetraploid rice under NaCl stress. J. South China Agric. Univ. 2023, 44, 696–707. [Google Scholar] [CrossRef]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High Temperature and Drought Stress Cause Abscisic Acid and Reactive Oxygen Species Accumulation and Suppress Seed Germination Growth in Rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T., Jr. Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Mu, Y.; Li, Y.; Zhang, Y.; Guo, X.; Song, S.; Huang, Z.; Li, L.; Ma, Q.; Khan, M.N.; Nie, L. A Comparative Study on the Role of Conventional, Chemical, and Nanopriming for Better Salt Tolerance during Seed Germination of Direct Seeding Rice. J. Integr. Agric. 2024, 23, 3998–4017. [Google Scholar] [CrossRef]
- Jira-Anunkul, W.; Pattanagul, W. Seed Priming with Hydrogen Peroxide Alleviates the Effects of Drought Stress in Rice (Oryza sativa L.) Seedlings. Not. Bot. Horti Agrobo. 2020, 48, 273–283. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, P.; Chen, S.; Hu, M.; Yu, H.; Guo, H.; Shahid, M.Q.; Liu, X.; Wu, J. Comparative Cytological and Gene Expression Analysis Reveals That a Common Wild Rice Inbred Line Showed Stronger Drought Tolerance Compared with the Cultivar Rice. Int. J. Mol. Sci. 2024, 25, 7134. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ganguly, M.; Datta, K.; Roychoudhury, A.; Gayen, D.; Sengupta, D.N.; Datta, S.K. Overexpression of Rab16A Gene in Indica Rice Variety for Generating Enhanced Salt Tolerance. Plant Signal. Behav. 2012, 7, 502–509. [Google Scholar] [CrossRef]
- Kanneganti, V.; Gupta, A.K. Overexpression of OsiSAP8, a Member of Stress Associated Protein (SAP) Gene Family of Rice Confers Tolerance to Salt, Drought and Cold Stress in Transgenic Tobacco and Rice. Plant Mol. Biol. 2008, 66, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Tang, N.; Du, H.; Ye, H.; Xiong, L. Characterization of OsbZIP23 as a Key Player of the Basic Leucine Zipper Transcription Factor Family for Conferring Abscisic Acid Sensitivity and Salinity and Drought Tolerance in Rice. Plant Physiol. 2008, 148, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Dai, X.; Zhang, W.-H. A R2R3-Type MYB Gene, OsMYB2, Is Involved in Salt, Cold, and Dehydration Tolerance in Rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hu, Q.; Luo, L.; Yang, T.; Zhang, S.; Hu, Y.; Yu, L.; Xu, G. Rice Potassium Transporter OsHAK1 Is Essential for Maintaining Potassium-Mediated Growth and Functions in Salt Tolerance over Low and High Potassium Concentration Ranges. Plant Cell Environ. 2015, 38, 2747–2765. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Liu, H.; Qiu, D.; Zhou, Y.; Li, X.; Xu, C.; Wang, S. A Pair of Allelic WRKY Genes Play Opposite Roles in Rice-Bacteria Interactions. Plant Physiol. 2009, 151, 936–948. [Google Scholar] [CrossRef]
- Ji, K.; Wang, Y.; Sun, W.; Lou, Q.; Mei, H.; Shen, S.; Chen, H. Drought-Responsive Mechanisms in Rice Genotypes with Contrasting Drought Tolerance during Reproductive Stage. J. Plant Physiol. 2012, 169, 336–344. [Google Scholar] [CrossRef]
- Barbez, E.; Dünser, K.; Gaidora, A.; Lendl, T.; Busch, W. Auxin Steers Root Cell Expansion via Apoplastic pH Regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2017, 114, E4884–E4893. [Google Scholar] [CrossRef]
- Zuo, G.; Huo, J.; Yang, X.; Mei, W.; Zhang, R.; Khan, A.; Feng, N.; Zheng, D. Photosynthetic Mechanisms Underlying NaCl-Induced Salinity Tolerance in Rice (Oryza sativa). BMC Plant Biol. 2024, 24, 41. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, X.; Song, L.; Li, K.; Zhang, X.; Liu, S.; Qin, Y.; Li, P. Polysaccharides from Grateloupia filicina Enhance Tolerance of Rice Seeds (Oryza sativa L.) under Salt Stress. Int. J. Biol. Macromol. 2019, 124, 1197–1204. [Google Scholar] [CrossRef]
- Ye, S.; Huang, Z.; Zhao, G.; Zhai, R.; Ye, J.; Wu, M.; Yu, F.; Zhu, G.; Zhang, X. Differential Physiological Responses to Salt Stress between Salt-Sensitive and Salt-Tolerant Japonica Rice Cultivars at the Post-Germination and Seedling Stages. Plants 2021, 10, 2433. [Google Scholar] [CrossRef]
- Felix Macha, J.; Mihara, M. Review on Causes, Effects, and Management of Soil Salinity on Irrigated Rice Fields in Tanzania. Int. J. Environ. Rural Dev. 2023, 14, 1–6. [Google Scholar] [CrossRef]
- Esterhuizen, L.; Ampimah, N.; Yandeau-Nelson, M.D.; Nikolau, B.J.; Sparks, E.E.; Saha, R. AraRoot—A Comprehensive Genome-Scale Metabolic Model for the Arabidopsis Root System. In Silico Plants 2025, 7, diaf003. [Google Scholar] [CrossRef]
- Gu, Y.; Yan, J.; Xue, Z.; Shu, C.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Zhou, Z.; Xu, D.; et al. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms. Crops 2023, 39, 67–76. [Google Scholar] [CrossRef]
- Saxena, B.; Sharma, K.; Kapoor, R.; Wu, Q.-S.; Giri, B. Insights into the Molecular Aspects of Salt Stress Tolerance in Mycorrhizal Plants. World J. Microbiol. Biotechnol. 2022, 38, 253. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Xie, X.; Cai, X.; Chen, S.; Zheng, Y.; Huang, Z.; Shahid, M.Q.; Liu, X.; Wu, J. Comparative Analysis of Germination Traits and Gene Expression in Hybrid Progeny of Neo-Tetraploid Rice Under NaCl Stress Conditions. Agronomy 2025, 15, 2066. https://doi.org/10.3390/agronomy15092066
Huang P, Xie X, Cai X, Chen S, Zheng Y, Huang Z, Shahid MQ, Liu X, Wu J. Comparative Analysis of Germination Traits and Gene Expression in Hybrid Progeny of Neo-Tetraploid Rice Under NaCl Stress Conditions. Agronomy. 2025; 15(9):2066. https://doi.org/10.3390/agronomy15092066
Chicago/Turabian StyleHuang, Peishan, Xinhui Xie, Xiaoyu Cai, Shihui Chen, Yutong Zheng, Zijuan Huang, Muhammad Qasim Shahid, Xiangdong Liu, and Jinwen Wu. 2025. "Comparative Analysis of Germination Traits and Gene Expression in Hybrid Progeny of Neo-Tetraploid Rice Under NaCl Stress Conditions" Agronomy 15, no. 9: 2066. https://doi.org/10.3390/agronomy15092066
APA StyleHuang, P., Xie, X., Cai, X., Chen, S., Zheng, Y., Huang, Z., Shahid, M. Q., Liu, X., & Wu, J. (2025). Comparative Analysis of Germination Traits and Gene Expression in Hybrid Progeny of Neo-Tetraploid Rice Under NaCl Stress Conditions. Agronomy, 15(9), 2066. https://doi.org/10.3390/agronomy15092066