Increasing Soil Microbial Necromass Carbon Under Climate Change in Chinese Terrestrial Ecosystems: A Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Microbial Necromass Calculation
2.3. Meta and Statistical Analysis
3. Results
3.1. Effect of Climate Change on Microbial Necromass C
3.2. Response of Microbial Necromass C to Climate Change Depending on Climatic Conditions, Land Uses, and Soil Properties
3.3. Mechanisms of the Impact of Climate Change on Microbial Necromass C
4. Discussion
4.1. Response of Microbial Necromass C to Climate Change
4.1.1. Response of Microbial Necromass C to Warming
4.1.2. Response of Microbial Necromass C to N Addition
4.2. Background Conditions Regulating Microbial Necromass C Under Climate Change
4.2.1. Background Conditions Regulating Microbial Necromass C Under Warming
4.2.2. Background Conditions Regulating Microbial Necromass C Under N Addition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.X.; Du, M.L.; Chen, J.; Tie, L.H.; Zhou, S.X.; Buckeridge, K.M.; Cornelissen, J.H.C.; Huang, C.D.; Kuzyakov, Y. Microbial necromass under climate change and implications for soil organic matter. Glob. Change Biol. 2023, 29, 3503–3515. [Google Scholar] [CrossRef]
- Luo, R.Y.; Kuzyakov, Y.; Liu, D.Y.; Fan, J.L.; Luo, J.F.; Lindsey, S.; He, J.S.; Ding, W.X. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil Biol. Biochem. 2020, 144, 107764. [Google Scholar] [CrossRef]
- Mou, Z.J.; Kuang, L.H.; He, L.F.; Zhang, J.; Zhang, X.Y.; Hui, D.F.; Li, Y.; Wu, W.J.; Mei, Q.M.; He, X.J.; et al. Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. Catena 2021, 207, 105707. [Google Scholar] [CrossRef]
- Ferraro, R.; Waliser, D.E.; Gleckler, P.; Taylor, K.E.; Eyring, V. Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Bull. Amer. Meteorol. Soc. 2015, 96, ES131–ES133. [Google Scholar] [CrossRef]
- Pohlmann, H.; Müller, W.A.; Bittner, M.; Hettrich, S.; Modali, K.; Pankatz, K.; Marotzke, J. Realistic Quasi-Biennial Oscillation Variability in Historical and Decadal Hindcast Simulations Using CMIP6 Forcing. Geophys. Res. Lett. 2019, 46, 14118–14125. [Google Scholar] [CrossRef]
- Simpkins, G. Progress in climate modelling. Nat. Clim. Change 2017, 7, 684–686. [Google Scholar] [CrossRef]
- Piao, S.L.; He, Y.; Wang, X.H.; Chen, F.H. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China-Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Luo, Z.K.; Luo, Y.Q.; Wang, G.C.; Xia, J.Y.; Peng, C.H. Warming-induced global soil carbon loss attenuated by downward carbon movement. Glob. Change Biol. 2020, 26, 7242–7254. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Balser, T.C. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nat. Commun. 2012, 3, 1222. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.Q.; Zhao, Y.; Liang, C.; Zhao, M.Y.; Moore, O.W.; Otero-Fariña, A.; Zhu, Y.G.; Johnson, K.; Peacock, C.L. Introducing the soil mineral carbon pump. Nat. Rev. Earth Environ. 2023, 4, 135–136. [Google Scholar] [CrossRef]
- Shao, P.S.; He, H.B.; Zhang, X.D.; Xie, H.T.; Bao, X.L.; Liang, C. Responses of microbial residues to simulated climate change in a semiarid grassland. Sci. Total Environ. 2018, 644, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zong, N.; Hartley, I.P.; He, N.P.; Zhang, J.J.; Powlson, D.; Zhou, J.Z.; Kuzyakov, Y.; Zhang, F.S.; Yu, G.R.; et al. Microbial metabolic response to winter warming stabilizes soil carbon. Glob. Change Biol. 2021, 27, 2011–2028. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liu, Y.; Dungait, J.A.J.; Kumar, A.; Wang, J.; Tiemann, L.K.; Zhang, F.; Kuzyakov, Y.; Tian, J. Microbial necromass in cropland soils: A global meta-analysis of management effects. Glob. Change Biol. 2023, 29, 1998–2014. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.Y.; Liu, T.Q.; Ding, H.N.; Li, C.F.; Tan, W.F.; Yu, M.; Liu, J.; Cao, C.G. Effects of nitrogen fertilizer on soil microbial residues and their contribution to soil organic carbon and total nitrogen in a rice-wheat system. Appl. Soil Ecol. 2023, 181, 104648. [Google Scholar] [CrossRef]
- Tian, P.; Zhao, X.C.; Liu, S.G.; Wang, Q.G.; Zhang, W.; Guo, P.; Razavi, B.S.; Liang, C.; Wang, Q.K. Differential responses of fungal and bacterial necromass accumulation in soil to nitrogen deposition in relation to deposition rate. Sci. Total Environ. 2022, 847, 157645. [Google Scholar] [CrossRef]
- Murugan, R.; Loges, R.; Taube, F.; Sradnick, A.; Joergensen, R.G. Changes in Soil Microbial Biomass and Residual Indices as Ecological Indicators of Land Use Change in Temperate Permanent Grassland. Microb. Ecol. 2014, 67, 907–918. [Google Scholar] [CrossRef]
- Anning, D.K.; Li, Z.L.; Qiu, H.Z.; Deng, D.L.; Zhang, C.H.; Ghanney, P.; Shen, Q.R. Divergent Accumulation of Microbial Residues and Amino Sugars in Loess Soil after Six Years of Different Inorganic Nitrogen Enrichment Scenarios. Appl. Sci. 2021, 11, 5788. [Google Scholar] [CrossRef]
- Wang, Q.C.; Yang, L.M.; Song, G.; Jin, S.S.; Hu, H.W.; Wu, F.Z.; Zheng, Y.; He, J.Z. The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests. For. Ecol. Manag. 2022, 509, 120074. [Google Scholar] [CrossRef]
- Wang, Q.T.; Zhang, Y.; Zhang, P.P.; Li, N.; Wang, R.H.; Zhang, X.J.; Yin, H.J. Nitrogen deposition induces a greater soil C sequestration in the rhizosphere than bulk soil in an alpine forest. Sci. Total Environ. 2023, 875, 162701. [Google Scholar] [CrossRef]
- Ma, L.X.; Ju, Z.Q.; Fang, Y.Y.; Vancov, T.; Gao, Q.Q.; Wu, D.; Zhang, A.P.; Wang, Y.A.; Hu, C.S.; Wu, W.L.; et al. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biol. Biochem. 2022, 170, 108693. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, Y.H.; Lu, X.K.; Bai, E.; He, H.B.; Xie, H.T.; Liang, C.; Zhang, X.D. High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem. Soil Biol. Biochem. 2016, 97, 211–214. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Song, C.; Song, Y.; Wang, X.; Sun, L.; Gong, C. Six-year warming decreased amino sugar accumulation in the deep rhizosphere soil of permafrost peatland. Appl. Soil Ecol. 2022, 171, 104316. [Google Scholar] [CrossRef]
- Jing, Y.L.; Wang, Y.; Liu, S.R.; Zhang, X.D.; Wang, Q.K.; Liu, K.; Yin, Y.; Deng, J.F. Interactive effects of soil warming, throughfall reduction, and root exclusion on soil microbial community and residues in warm-temperate oak forests. Appl. Soil Ecol. 2019, 142, 52–58. [Google Scholar] [CrossRef]
- Liang, C.; Gutknecht, J.L.M.; Balser, T.C. Microbial lipid and amino sugar responses to long-term simulated global environment changes in a California annual grassland. Front. Microbiol. 2015, 6, 00385. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Z.; Bao, X.-L.; Tang, S.-X.; Xiao, K.-Q.; Ge, C.-J.; Xie, H.-T.; He, H.-B.; Mueller, C.W.; Liang, C. Toward soil carbon storage: The influence of parent material and vegetation on profile-scale microbial community structure and necromass accumulation. Soil Biol. Biochem. 2024, 193, 109399. [Google Scholar] [CrossRef]
- Ma, T.; Zhu, S.S.; Wang, Z.H.; Chen, D.M.; Dai, G.H.; Feng, B.W.; Su, X.Y.; Hu, H.F.; Li, K.H.; Han, W.X.; et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 2018, 9, 3480. [Google Scholar] [CrossRef]
- Duan, P.P.; Wang, K.L.; Li, D.J. Nitrogen addition effects on soil mineral-associated carbon differ between the valley and slope in a subtropical karst forest. Geoderma 2023, 430, 116357. [Google Scholar] [CrossRef]
- Shi, C.; Jiang, Z.H.; Chen, W.L.; Li, L. Changes in temperature extremes over China under 1.5 °C and 2 °C global warming targets. Adv. Clim. Change Res. 2018, 9, 120–129. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef]
- Yu, G.R.; Jia, Y.L.; He, N.P.; Zhu, J.X.; Chen, Z.; Wang, Q.F.; Piao, S.L.; Liu, X.J.; He, H.L.; Guo, X.B.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Xu, R.C.; Tong, D.; Xiao, Q.Y.; Qin, X.Y.; Chen, C.H.; Yan, L.; Cheng, J.; Cui, C.; Hu, H.W.; Liu, W.Y.; et al. MEIC-global-CO2: A new global CO2 emission inventory with highly-resolved source category and sub-country information. Sci. China-Earth Sci. 2024, 67, 450–465. [Google Scholar] [CrossRef]
- Shi, P.J.; Sun, S.; Wang, M.; Li, N.; Wang, J.A.; Jin, Y.Y.; Gu, X.T.; Yin, W.X. Climate change regionalization in China (1961-2010). Sci. China-Earth Sci. 2014, 57, 2676–2689. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, H.Y.H.; Jin, L.; Wang, C.T.; Zhang, R.T.; Ruan, H.H.; Yang, J.Y. Drought stress induced increase of fungi:bacteria ratio in a poplar plantation. Catena 2020, 193, 104607. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.; Wang, B.; Xue, Z.; Wang, Y.; An, S.; Chang, S.X. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta 2023, 2, e66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.K.; Fang, Y.Y.; Liang, Y.Q.; Li, Y.H.; Liu, S.L.; Li, Y.F.; Li, B.Z.; Gao, W.; Yuan, H.Z.; Kuzyakov, Y.; et al. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biol. Biochem. 2022, 169, 108669. [Google Scholar] [CrossRef]
- Liao, C.; Men, X.; Wang, C.; Chen, R.; Cheng, X. Nitrogen availability and mineral particles contributed fungal necromass to the newly formed stable carbon pool in the alpine areas of Southwest China. Soil Biol. Biochem. 2022, 173, 108788. [Google Scholar] [CrossRef]
- Tian, J.; Lou, Y.L.; Gao, Y.; Fang, H.J.; Liu, S.T.; Xu, M.G.; Blagodatskaya, E.; Kuzyakov, Y. Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biol. Fertil. Soils 2017, 53, 523–532. [Google Scholar] [CrossRef]
- Hu, J.X.; Huang, C.D.; Zhou, S.X.; Liu, X.; Dijkstra, F.A. Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis. Soil Biol. Biochem. 2022, 165, 108500. [Google Scholar] [CrossRef]
- Piton, G.; Legay, N.; Arnoldi, C.; Lavorel, S.; Clément, J.C.; Foulquier, A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J. Ecol. 2020, 108, 876–893. [Google Scholar] [CrossRef]
- Wang, C.; Kuzyakov, Y. Mechanisms and implications of bacterial–fungal competition for soil resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef]
- Gao, C.; Xu, L.; Montoya, L.; Madera, M.; Hollingsworth, J.; Chen, L.; Purdom, E.; Singan, V.; Vogel, J.; Hutmacher, R.B.; et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 2022, 13, 3867. [Google Scholar] [CrossRef] [PubMed]
- Li, C.N.; Liao, H.J.; Xu, L.; Wang, C.T.; He, N.P.; Wang, J.M.; Li, X.Z. The adjustment of life history strategies drives the ecological adaptations of soil microbiota to aridity. Mol. Ecol. 2022, 31, 2920–2934. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.X.; Huang, Y.W.; Ren, W.; Coyne, M.; Jacinthe, P.A.; Tao, B.; Hui, D.F.; Yang, J.; Matocha, C. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Glob. Change Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.G.; Zhao, Y.F.; Wang, X.; Wu, J.H.; Jiang, S.L.; Xiao, J.N.; Wang, K.C.; Zhou, X.H.; Liu, H.Y.; Li, J.; et al. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. Commun. Earth Environ. 2021, 2, 236. [Google Scholar] [CrossRef]
- Du, Y.D.; Cui, B.J.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W.Q. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-analysis and the science of research synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Zhang, X.Y.; Zhang, C.; Wang, H.M.; Chen, F.S.; Fu, X.L.; Fang, X.M.; Sun, X.M.; Lei, Q.L. Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions. J. For. Res. 2018, 29, 953–962. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing. 2014. Available online: https://www.r-project.org (accessed on 22 August 2025).
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Rosenberg, M.S. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 2005, 59, 464–468. [Google Scholar] [CrossRef]
- Oberski, D. lavaan. survey: An R Package for Complex Survey Analysis of Structural Equation Models. J. Stat. Softw. 2014, 57, 1–27. [Google Scholar] [CrossRef]
- Wu, W.; Feng, J.; Wang, X.; Xiao, J.; Qin, W.; Zhu, B. The response of soil microbial necromass carbon to global change: A global meta-analysis. CATENA 2025, 249, 108693. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Wang, X.X.; Zhou, L.Y.; Fu, Y.L.; Jiang, Z.; Jia, S.X.; Song, B.Q.; Liu, D.Q.; Zhou, X.H. Drought-induced changes in rare microbial community promoted contribution of microbial necromass C to SOC in a subtropical forest. Soil Biol. Biochem. 2024, 189, 109252. [Google Scholar] [CrossRef]
- Hati, K.M.; Jha, P.; Dalal, R.C.; Jayaraman, S.; Dang, Y.P.; Kopittke, P.M.; Kirchhof, G.; Menzies, N.W. 50 years of continuous no-tillage, stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol. Soil Tillage Res. 2021, 214, 105163. [Google Scholar] [CrossRef]
- Ding, X.L.; Chen, S.Y.; Zhang, B.; He, H.B.; Filley, T.R.; Horwath, W.R. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol. Fertil Soils 2020, 56, 881–892. [Google Scholar] [CrossRef]
- Pan, J.X.; Peng, Y.F.; Wang, J.S.; Tian, D.S.; Zhang, R.Y.; Li, Y.; Yang, L.; Wang, S.; Chen, C.; Niu, S.L. Controlling factors for soil bacterial and fungal diversity and composition vary with vegetation types in alpine grasslands. Appl. Soil Ecol. 2023, 184, 104777. [Google Scholar] [CrossRef]
- Liu, Z.W.; Liu, X.X.; Wu, X.L.; Bian, R.J.; Liu, X.Y.; Zheng, J.F.; Zhang, X.H.; Cheng, K.; Li, L.Q.; Pan, G.X. Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil. Biol. Fertil. Soils 2021, 57, 673–684. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, S.Y.; Zhang, J.F.; He, X.Y.; Liu, W.J.; Zhao, Q.; Zhao, L.; Tian, C.J. Depth-related responses of soil microbial communities to experimental warming in an alpine meadow on the Qinghai-Tibet Plateau. Eur. J. Soil Sci. 2015, 66, 496–504. [Google Scholar] [CrossRef]
- Guo, X.; Feng, J.J.; Shi, Z.; Zhou, X.S.; Yuan, M.T.; Tao, X.Y.; Hale, L.; Yuan, T.; Wang, J.J.; Qin, Y.J.; et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 2018, 8, 813–818. [Google Scholar] [CrossRef]
- Gartzia-Bengoetxea, N.; Virto, I.; Arias-González, A.; Enrique, A.; Fernández-Ugalde, O.; Barré, P. Mineral control of organic carbon storage in acid temperate forest soils in the Basque Country. Geoderma 2020, 358, 113998. [Google Scholar] [CrossRef]
- Mao, X.L.; Van Zwieten, L.; Zhang, M.K.; Qiu, Z.T.; Yao, Y.C.; Wang, H.L. Soil parent material controls organic matter stocks and retention patterns in subtropical China. J. Soils Sediments 2020, 20, 2426–2438. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Battistuzzi, F.U.; Hedges, S.B. A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Mol. Biol. and Evol. 2009, 26, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Delgado-Baquerizo, M.; Jeffries, T.C.; Trivedi, C.; Anderson, I.C.; Lai, K.; McNee, M.; Flower, K.; Singh, B.P.; Minkey, D.; et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 2017, 19, 3070–3086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Ding, W.X.; Yu, H.Y.; He, X.H. Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. Biol. Fertil. Soils 2015, 51, 137–150. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Lu, Z.; Li, H.; Sayer, E.J.; Liu, Z.; Li, L.; Chen, Y.; Qin, G.; Li, J.; Zhou, J.; Huang, X.; et al. Enhanced abundance of generalist and litter saprotrophs explain increased tropical forest soil carbon with long-term nitrogen deposition. Funct. Ecol. 2023, 37, 2282–2296. [Google Scholar] [CrossRef]
- Niu, G.; Wang, Y.; Wang, R.; Ning, Q.; Guan, H.; Yang, J.; Lu, X.; Han, X.; Huang, J. Intensity and duration of nitrogen addition jointly alter soil nutrient availability in a temperate grassland. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006698. [Google Scholar] [CrossRef]
- Galantini, J.A.; Senesi, N.; Brunetti, G.; Rosell, R. Influence of texture on organic matter distribution and quality and nitrogen and sulphur status in semiarid Pampean grassland soils of Argentina. Geoderma 2004, 123, 143–152. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van Der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Yang, T.; Lupwayi, N.; Marc, S.A.; Siddique, K.H.; Bainard, L.D. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Glob. Ecol. Conserv. 2021, 27, e01521. [Google Scholar] [CrossRef]
- Han, C.; Chen, L.; Xin, X.; Zhou, G.; Zhang, C.; Ma, D.; Li, Y.; Ma, L.; Zhang, J. Long-term fertilization affects microbial necromass accumulation by regulating nutrient and enzymatic stoichiometry in a calcareous Fluvisol. Appl. Soil Ecol. 2024, 194, 105169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Ni, R.; Peng, Z.; Ma, Y.; Xue, C.; Zhang, M.; Wang, Y. Increasing Soil Microbial Necromass Carbon Under Climate Change in Chinese Terrestrial Ecosystems: A Meta-Analysis. Agronomy 2025, 15, 2080. https://doi.org/10.3390/agronomy15092080
Peng Y, Ni R, Peng Z, Ma Y, Xue C, Zhang M, Wang Y. Increasing Soil Microbial Necromass Carbon Under Climate Change in Chinese Terrestrial Ecosystems: A Meta-Analysis. Agronomy. 2025; 15(9):2080. https://doi.org/10.3390/agronomy15092080
Chicago/Turabian StylePeng, Yifei, Ruiqiang Ni, Zhengping Peng, Ying Ma, Cheng Xue, Mengping Zhang, and Yang Wang. 2025. "Increasing Soil Microbial Necromass Carbon Under Climate Change in Chinese Terrestrial Ecosystems: A Meta-Analysis" Agronomy 15, no. 9: 2080. https://doi.org/10.3390/agronomy15092080
APA StylePeng, Y., Ni, R., Peng, Z., Ma, Y., Xue, C., Zhang, M., & Wang, Y. (2025). Increasing Soil Microbial Necromass Carbon Under Climate Change in Chinese Terrestrial Ecosystems: A Meta-Analysis. Agronomy, 15(9), 2080. https://doi.org/10.3390/agronomy15092080