Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Agronomic Management Systems
2.3. Sampling and Data Collection
2.3.1. Yield and Yield Components
2.3.2. Net Photosynthetic Rate and SPAD
2.3.3. Rice Quality
2.3.4. Iron Content and Distribution
2.3.5. Determination of the Phytic Acid Content and Molar Ratio of Phytic Acid to Fe
2.3.6. Statistical Analysis
3. Results
3.1. Yield and Its Components
3.2. Net Photosynthetic Rate and SPAD Value
3.3. Processing Quality and Appearance Quality
3.4. Tasting Quality and Cooking Quality
3.5. Fe Content, Distribution, and Bioavailability in Rice Grains
4. Discussion
4.1. Fe2O3 NPs Application to Rice Yield and Quality
4.2. Fe2O3 NPs Application to Fe Bioavailability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeidan, R.S.; Martenson, M.; Tamargo, J.A.; Mclaren, C.; Ezzati, A.; Lin, Y.; Yang, J.J.; Yoon, H.S.; Mcelroy, T.; Collins, J.F. Iron homeostasis in older adults: Balancing nutritional requirements and health risks. J. Nutr. Health Aging 2024, 28, 100212. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2020, 397, 233–248. [Google Scholar] [CrossRef]
- Chaudhary, R.; Sharma, C.; Kumar, V.; Rajput, V.; Naik, B.; Prasad, R.; Sharma, S.; Kumar, V. Millet biofortification for enhanced iron content: Roadmap for combating hidden hunger. J. Agric. Food Res. 2025, 19, 101654. [Google Scholar] [CrossRef]
- Hou, J.; Gao, X.; Entz, M.H. Enhancing zinc and iron bioavailability through crop rotation and organic farming: Insights from a long-term study. Field Crops Res. 2025, 322, 109710. [Google Scholar] [CrossRef]
- Emma, M.; Deirdre, C.; Mark, A.H. Iron metabolism. Anaesth. Intensive Care Med. 2025, 26, 53–56. [Google Scholar]
- Hotegni, N.V.F.; Sohindji, F.S.; Salaou, M.A.B.; Agbandou, P.C.; Azonhoumon, L.W.S.; Tchokponhoué, D.; Houdegbe, C.; Adjé, C.A.O.; Dako, E.G.A. Agronomic biofortification of cereals and legumes with iron, zinc, calcium and magnesium for food and nutrition security: Available options for farmers in Sub-Saharan Africa. J. Agric. Food Res. 2024, 18, 101391. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Y.; Zhang, R.; Liu, G.; Wei, H.Y.; Zhang, H.; Zhang, H. Mid-stage nitrogen application timing regulates yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Field Crops Res. 2022, 287, 108667. [Google Scholar] [CrossRef]
- Wang, R.; Mi, K.; Yuan, X.; Chen, J.; Pu, J.; Shi, X.; Yang, Y.; Zhang, H.; Zhang, H. Zinc Oxide Nanoparticles Foliar Application Effectively Enhanced Zinc and Aroma Content in Rice (Oryza sativa L.) Grains. Rice 2023, 16, 36. [Google Scholar] [CrossRef]
- Mondal, A.; Dey, I.; Mukherjee, A.; Ismail, A.; Satpati, G.G.; Banerjee, S.; Paul, S.; Paul, S.; Pal, R. Spirulina biomass loaded with iron nanoparticles: A novel biofertilizer for the growth and enrichment of iron content in rice plants. Biocatal. Agric. Biotechnol. 2024, 61, 103387. [Google Scholar] [CrossRef]
- Bukomarhe, C.B.; Kimwemwe, P.K.; Githiri, S.M.; Mamati, E.G.; Kimani, W.; Mutai, C.; Nganga, F.; Nguezet, P.M.D.; Mignouna, J.; Civava, R.M. Association Mapping of Candidate Genes Associated with Iron and Zinc Content in Rice (Oryza sativa L.) Grains. Genes 2023, 14, 14. [Google Scholar] [CrossRef]
- Saha, S.; Saha, R.; Sarkhel, S.; Kumari, A.; Chatterjee, K.; Chatterjee, A.; Sahoo, B.; Deb, P.K.; Jha, S.; Mazumder, P.M. Physicochemical properties, micronutrient uptake and bioavailability of iron-fortified intact grain puffed rice. J. Cereal Sci. 2025, 123, 104158. [Google Scholar] [CrossRef]
- Stangoulis, J.C.R.; Knez, M. Biofortification of major crop plants with iron and zinc—Achievements and future directions. Plant Soil 2022, 474, 57–76. [Google Scholar] [CrossRef]
- Sharma, S.; Anand, N.; Bindraban, P.S.; Pandey, R. Foliar Application of Humic Acid with Fe Supplement Improved Rice, Soybean, and Lettuce Iron Fortification. Agriculture 2023, 13, 132. [Google Scholar] [CrossRef]
- Kroh, G.E.; Pilon, M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int. J. Mol. Sci. 2020, 21, 3395. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Shweta, S.; Shweta, G.; Swati, S.; Vaishali, Y.; Shiliang, L.; Singh, V.P.; Shivesh, S.; Prateek, S.; Prasad, S.M. Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance. Front. Environ. Sci. 2018, 5, 86. [Google Scholar] [CrossRef]
- Sharma, S.S.; Pandey, R.; Dimkpa, C.; Kumar, A.; Bindraban, P. Growth Stage-Dependent Foliar Application of Iron Improves its Mobilisation Towards Grain and Enhances Fe Use Efficiency in Rice. J. Plant Growth Regul. 2023, 42, 5628–5641. [Google Scholar] [CrossRef]
- Aknolu, G.; Korkmaz, A. Influence of Divalent and Trivalent Sources of Iron on Growth, Iron Uptake-Transport and Photosynthetic Pigments in Rice (Oryza sativa L.) Cultivars During the Vegetative Stage. Commun. Soil Sci. Plant Anal. 2025, 56, 1247–1263. [Google Scholar] [CrossRef]
- Li, M.; Adeel, M.; Peng, Z.; Yukui, R. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 2021, 269, 116134. [Google Scholar] [CrossRef]
- Zhou, C.-X.; Zhang, C.-C.; Zhao, Q.-Y.; Yu, B.-G.; Zhang, W.; Chen, X.-P.; Zou, C.-Q. Iron biofortification and yield of wheat grain in response to Fe fertilization and its driving variables: A meta-analysis. Glob. Food Secur. 2024, 40, 100737. [Google Scholar] [CrossRef]
- Gülser, F.; Yavuz, H.I.; Gkkaya, T.H.; Sedef, M.S. Effects of iron sources and doses on plant growth criteria in soybean seedlings. Eurasian J. Soil Sci. 2019, 8, 298–303. [Google Scholar] [CrossRef]
- Rahemi, M.; Gharechahi, S.R.; Sedaghat, S. The Application of Nano-Iron Chelate and Iron Chelate to Soil and as Foliar Application: Treatments against Chlorosis and Fruit Quality in Quince. Int. J. Fruit Sci. 2020, 20, 300–313. [Google Scholar] [CrossRef]
- Shaddox, T.W.; Fu, H.; Gardner, D.S.; Goss, R.M.; Guertal, E.A.; Kreuser, W.C.; Miller, G.L.; Stewart, B.R.; Tang, K.; Unruh, J.B. Solubility of Ten Iron Fertilizers in Eleven North American Soils. Agron. J. 2019, 111, 1498–1505. [Google Scholar] [CrossRef]
- Malhotra, H.; Pandey, R.; Sharma, S.; Bindraban, P.S. Foliar fertilization: Possible routes of iron transport from leaf surface to cell organelles. Arch. Agron. Soil Sci. 2019, 66, 279–300. [Google Scholar] [CrossRef]
- Shirsat, S.; K, S. Iron oxide nanoparticles as iron micronutrient fertilizer—Opportunities and limitations. J. Plant Nutr. Soil Sci. 2024, 187, 565–588. [Google Scholar] [CrossRef]
- Zuluaga, M.Y.A.; Cardarelli, M.; Rouphael, Y.; Cesco, S.; Pii, Y.; Colla, G. Iron nutrition in agriculture: From synthetic chelates to biochelates. Sci. Hortic. 2023, 312, 111833. [Google Scholar] [CrossRef]
- D'Amato, R.; De Feudis, M.; Troni, E.; Gualtieri, S.; Soldati, R.; Famiani, F.; Businelli, D. Agronomic potential of two different glass–based materials as novel inorganic slow-release iron fertilizers. J. Sci. Food Agric. 2022, 102, 1660–1664. [Google Scholar] [CrossRef]
- Wee, J.L.; Law, M.; Chan, Y.S.; Choy, S.Y.; Tiong, A.N.T. The Potential of Fe-Based Magnetic Nanomaterials for the Agriculture Sector. Chem. Sel. 2022, 7, e202104603. [Google Scholar]
- Neto, M.E.; Britt, D.W.; Jackson, K.A.; Almeida Junior, J.H.V.; Lima, R.S.; Zaia, D.A.M.; Inoue, T.T.; Batista, M.A. Synthesis and Characterization of Zinc, Iron, Copper, and Manganese Oxides Nanoparticles for Possible Application as Plant Fertilizers. J. Nanomater. 2023, 2023, 1312288. [Google Scholar] [CrossRef]
- Gutiérrez-Ruelas, N.J.; Palacio-Márquez, A.; Sánchez, E.; Muñoz-Márquez, E.; Chávez-Mendoza, C.; Ojeda-Barrios, D.L.; Flores-Córdova, M.A. Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12437. [Google Scholar] [CrossRef]
- Gracheva, M.; Klencsár, Z.; Kis, V.K.; Béres, K.A.; May, Z.; Halasy, V.; Singh, A.; Fodor, F.; Solti, Á.; Kiss, L.F.; et al. Iron nanoparticles for plant nutrition: Synthesis, transformation, and utilization by the roots of Cucumis sativus. J. Mater. Res. 2023, 38, 1035–1047. [Google Scholar] [CrossRef]
- Rokana, S.; Mandal, N.; Singh, M.; Ghosh, M.; Tiwari, A.; Biswas, S.; Kumar, V.; Pradhan, A.K. Evaluation of Synthesized Nanoscale Fe Carriers for Enhanced Wheat Crop Nutrition in a Typic Ustifluvents. BioNanoScience 2025, 15, 74. [Google Scholar] [CrossRef]
- Ghouri, F.; Shahid, M.J.; Ali, S.; Ashraf, H.; Alomrani, S.O.; Liu, J.; Alshehri, M.A.; Fahad, S.; Shahid, M.Q. Tetraploidy and Fe2O3 nanoparticles: Dual strategy to reduce the Cd-induced toxicity in rice plants by ameliorating the oxidative stress and downregulation of metal transporters. Environ. Sci. Nano 2025, 12, 634–646. [Google Scholar] [CrossRef]
- Huang, G.; Pan, D.; Wang, M.; Zhong, S.; Huang, Y.; Li, F.; Li, X.; Xing, B. Regulation of iron and cadmium uptake in rice roots by iron(iii) oxide nanoparticles: Insights from iron plaque formation, gene expression, and nanoparticle accumulation. Environ. Sci. Nano 2022, 9, 4093–4103. [Google Scholar] [CrossRef]
- Liu, L.; Cong, W.F.; Suter, B.; Zhang, F.; Werf, W.V.D.; Stomph, T.J. How much can Zn or Fe fertilization contribute to Zn and Fe mass concentration in rice grain? A global meta-analysis. Field Crops Res. 2023, 301, 109033. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, B.; Hu, Y.; Li, G.; Liu, Z.; Ding, Y.; Chen, L. Facilitating Phloem-Mediated Iron Transport Can Improve the Adaptation of Rice Seedlings to Iron Deficiency Stress. Rice 2025, 18, 54. [Google Scholar] [CrossRef]
- Riaz, N.; Guerinot, M.L. All Together Now: Regulation of the Iron Deficiency Response. J. Exp. Bot. 2021, 72, 2045–2055. [Google Scholar] [CrossRef]
- Wang, X.; Deng, S.; Zhou, Y.; Long, J.; Ding, D.; Du, H.; Lei, M.; Chen, C.; Tie, B.Q. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. Environ. Sci. Pollut. Res. 2021, 28, 7828–7839. [Google Scholar] [CrossRef]
- Sakariyawo, O.S.; Oyedeji, O.E.; Soretire, A.A. Effect of iron deficiency on the growth, development and grain yield of some selected upland rice genotypes in the rainforest. J. Plant Nutr. 2020, 43, 851–863. [Google Scholar] [CrossRef]
- Mahmoud Soltani, S.; Ebadi, A.A.; Tajadoditalab Rashti, K.; Sartipi, S.; Shakouri Katigari, M. Foliar spray of glycine-chelated zinc (Zn) and iron (Fe) lowered the effect of macronutrient deficiencies and enhanced rice yield components, yield, and grain biofortification. J. Plant Nutr. 2025, 48, 147–163. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Chen, T.; Shen, W.; Dai, J.; Zhang, H.; Zhang, H. Enhanced leaf photosynthesis, grain yield, rice quality and aroma characteristics in rice grains (Oryza sativa L.) with foliar application of selenium nanoparticles. Plant Physiol. Biochem. 2025, 223, 109812. [Google Scholar] [CrossRef]
- Slafer, G.A.; Foulkes, M.J.; Reynolds, M.P.; Murchie, E.H.; Carmo-Silva, E.; Flavell, R.; Gwyn, J.; Sawkins, M.; Griffiths, S. A ‘wiring diagram’ for sink strength traits impacting wheat yield potential. J. Exp. Bot. 2022, 74, 40–71. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Wang, Z.; Wu, M.; Li, H.; Gu, J.; Yang, J.; Zhang, H.; Zhang, Z. Optimized leaf anatomy improves photosynthetic producing capacity of mid-season indica rice in the Yangtze River Basin during the genetic improvement. Eur. J. Agron. 2024, 158, 127196. [Google Scholar] [CrossRef]
- Wang, R.; Pu, J.; Chen, J.; Lu, H.; Cui, P.; Yang, Y.; Zhang, H.; Zhang, H. Enhancing Rice Taste Quality and Selenium Availability through Foliar Application of Selenium Nanoparticles. J. Agric. Food Chem. 2025, 73, 15270–15280. [Google Scholar] [CrossRef] [PubMed]
- Barman, F.; Kundu, R. Foliar application of selenium affecting pollen viability, grain chalkiness, and transporter genes in cadmium accumulating rice cultivar: A pot study. Chemosphere 2023, 313, 137538. [Google Scholar] [CrossRef]
- Chen, H.; Huang, X.; Chen, H.; Zhang, S.; Fan, C.; Fu, T.; He, T.; Gao, Z. Effect of silicon spraying on rice photosynthesis and antioxidant defense system on cadmium accumulation. Sci. Rep. 2024, 14, 15265. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, Y.; Wang, Z.; Chen, X.; Cao, J.; Liu, G.; Li, G.; Wei, H.; Zhang, H. Effect of starch and protein on eating quality of japonica rice in Yangtze River Delta. Int. J. Biol. Macromol. 2024, 261, 129918. [Google Scholar] [CrossRef]
- Ma, Z.; Yu, J.; Chen, X.; Cao, J.; Zhu, Y.; Liu, G.; Li, G.; Xu, F.; Hu, Q.; Zhang, H. Differences in starch and protein composition, morphological and structure, and their impacts on eating quality of soft japonica rice under different light and nitrogen fertilizer conditions in southern China. Food Chem. 2025, 474, 143204. [Google Scholar] [CrossRef]
- Shi, S.; Ma, Y.; Zhao, D.; Li, L.; Cao, C.; Jiang, Y. The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application. Int. J. Biol. Macromol. 2023, 253, 126546. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, G.; Cheng, L.; Zhang, H.; Qi, X. Investigation on molecular and morphology changes of protein and starch in rice kernel during cooking. Food Chem. 2020, 316, 126262. [Google Scholar] [CrossRef]
- Shrestha, J.; Kandel, M.; Subedi, S.; Shah, K.K. Role of nutrients in rice (Oryza sativa L.): A review. Agrica 2020, 9, 53–62. [Google Scholar] [CrossRef]
- Prom-U-Thai, C.; Rashid, A.; Ram, H.; Zou, C.; Cakmak, I. Simultaneous Biofortification of Rice With Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef]
- Majumder, S.; Datta, K.; Datta, S.K. Rice Biofortification: High Iron, Zinc, and Vitamin-A to Fight against “Hidden Hunger”. Agronomy 2019, 9, 803. [Google Scholar] [CrossRef]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- Dashti, B.; Al-Waalan, T.; Al-Fili, B.; Khashawi, R.; Al-Azmi, B.; Ejaz, M. Establishment of a Phytate Database in Kuwait for Frequently Consumed Traditional and Composite Dishes in Kuwait: A Study on the Role of Phytate in the Bioavailability of Iron and Zinc Using Phytate-Mineral Molar Ratios. J. Food Compos. Anal. 2023, 121, 105387. [Google Scholar] [CrossRef]
Year | Treatment | Panicles (×104 hm−2) | Spikelets Per Panicle | Filled Grain Rate (%) | 1000-Grain Weight (g) | Grain Yield (t hm−2) |
---|---|---|---|---|---|---|
2020 | CK | 340.64 ± 14.87 a | 128.30 ± 5.06 a | 90.45 ± 1.24 c | 27.37 ± 0.11 c | 10.42 ± 0.10 b |
NF0.5 | 341.29 ± 10.16 a | 128.01 ± 3.10 a | 91.79 ± 1.14 b | 27.54 ± 0.14 b c | 10.54 ± 0.13 a b | |
NF1 | 338.69 ± 10.61 a | 127.92 ± 8.56 a | 92.93 ± 1.18 a | 27.69 ± 0.18 b | 10.71 ± 0.10 a | |
NF2 | 342.45 ± 11.49 a | 129.48 ± 6.12 a | 94.89 ± 0.54 a | 27.90 ± 0.16 a | 10.81 ± 0.14 a | |
2021 | CK | 350.98 ± 13.10 a | 126.88 ± 5.21 a | 92.51 ± 1.95 c | 27.47 ± 0.20 c | 10.56 ± 0.14 d |
NF0.5 | 351.03 ± 15.71 a | 127.20 ± 4.14 a | 94.30 ± 1.38 b | 27.70 ± 0.13 b c | 10.70 ± 0.16 c | |
NF1 | 349.54 ± 16.51 a | 126.24 ± 5.73 a | 95.56 ± 1.36 a | 27.98 ± 0.21 a b | 10.89 ± 0.15 b | |
NF2 | 350.12 ± 10.25 a | 126.77 ± 3.11 a | 97.59 ± 0.44 a | 28.15 ± 0.15 a | 11.01 ± 0.17 a |
Year | Treatment | Net Photosynthetic Rate (μmol m−2 s−1) | SPAD Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Heading | 20 Days After Heading | 40 Days After Heading | Maturity | Heading | 20 Days After Heading | 40 Days After Heading | Maturity | ||
2020 | CK | 27.42 ± 0.44 d | 19.22 ± 0.25 c | 12.36 ± 0.27 c | 5.45 ± 0.14 a | 44.77 ± 0.68 c | 32.07 ± 0.35 c | 20.17 ± 0.31 c | 9.03 ± 0.15 a |
NF0.5 | 27.83 ± 0.35 c | 19.61 ± 0.21 b c | 12.77 ± 0.44 b | 5.48 ± 0.09 a | 45.47 ± 0.75 b c | 33.03 ± 0.50 b | 20.90 ± 0.26 b | 9.10 ± 0.10 a | |
NF1 | 28.22 ± 0.24 b | 20.03 ± 0.19 ab | 13.04 ± 0.36 a b | 5.51 ± 0.12 a | 46.10 ± 0.80 a b | 33.73 ± 0.36 a b | 21.47 ± 0.21 a | 9.13 ± 0.06 a | |
NF2 | 28.57 ± 0.28 a | 20.38 ± 0.23 a | 13.34 ± 0.47 a | 5.55 ± 0.16 a | 46.57 ± 0.60 a | 34.23 ± 0.31 a | 21.87 ± 0.15 a | 9.17 ± 0.08 a | |
2021 | CK | 27.61 ± 0.38 d | 19.65 ± 0.29 c | 12.50 ± 0.30 c | 5.20 ± 0.14 a | 45.27 ± 0.61 c | 32.73 ± 0.31 c | 20.53 ± 0.15 d | 9.10 ± 0.10 a |
NF0.5 | 27.98 ± 0.49 c | 20.06 ± 0.27 b c | 12.85 ± 0.54 b | 5.24 ± 0.12 a | 46.03 ± 0.79 b c | 33.43 ± 0.54 b | 21.33 ± 0.21 c | 9.17 ± 0.15 a | |
NF1 | 28.36 ± 0.28 b | 20.50 ± 0.22 a b | 13.19 ± 0.20 a | 5.26 ± 0.10 a | 46.50 ± 0.56 a b | 33.97 ± 0.43 a b | 21.90 ± 0.14 b | 9.20 ± 0.12 a | |
NF2 | 28.79 ± 0.64 a | 20.81 ± 0.20 a | 13.47 ± 0.29 a | 5.29 ± 0.18 a | 47.03 ± 0.88 a | 34.30 ± 0.50 a | 22.27 ± 0.15 a | 9.27 ± 0.07 a |
Year | Treatment | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Rice Rate (%) | Chalkiness Grain Rate (%) | Chalkiness Degree (%) |
---|---|---|---|---|---|---|
2020 | CK | 85.50 ± 0.37 c | 75.20 ± 0.19 c | 63.46 ± 0.18 c | 47.64 ± 0.55 a | 18.54 ± 0.59 a |
NF0.5 | 85.79 ± 0.35 b c | 75.42 ± 0.22 c | 63.67 ± 0.31 b c | 46.43 ± 0.33 b | 17.41 ± 0.87 b | |
NF1 | 86.08 ± 0.17 a b | 75.70 ± 0.17 b | 63.95 ± 0.24 b | 45.61 ± 0.59 c | 16.02 ± 0.31 c | |
NF2 | 86.25 ± 0.14 a | 75.89 ± 0.12 a | 64.27 ± 0.22 a | 44.37 ± 0.55 d | 14.40 ± 0.56 d | |
2021 | CK | 85.68 ± 0.24 b | 75.37 ± 0.18 d | 64.05 ± 0.13 c | 44.78 ± 0.67 a | 16.14 ± 0.51 a |
NF0.5 | 85.97 ± 0.27 a b | 75.63 ± 0.16 c | 64.27 ± 0.20 b c | 43.57 ± 1.02 a | 15.38 ± 0.21 a | |
NF1 | 86.17 ± 0.20 a b | 76.02 ± 0.25 b | 64.54 ± 0.18 a b | 41.78 ± 0.45 b | 14.96 ± 0.59 b | |
NF2 | 86.37 ± 0.12 a | 76.28 ± 0.14 a | 64.75 ± 0.12 a | 39.42 ± 0.70 c | 13.82 ± 0.45 c |
Year | Treatment | Protein Content (%) | Amylose Content (%) | Tasting Value | Appearance Value | Hardness Value | Viscosity Value | Balance Value |
---|---|---|---|---|---|---|---|---|
2020 | CK | 7.65 ± 0.11 b | 13.57 ± 0.40 a | 78.23 ± 0.35 d | 7.80 ± 0.06 d | 6.03 ± 0.06 a | 8.40 ± 0.10 c | 7.93 ± 0.06 d |
NF0.5 | 7.69 ± 0.07 b | 12.95 ± 0.19 b | 80.87 ± 0.31 c | 8.23 ± 0.06 c | 5.87 ± 0.10 b | 8.67 ± 0.12 b | 8.33 ± 0.10 c | |
NF1 | 7.77 ± 0.06 a b | 12.27 ± 0.23 c | 83.07 ± 0.38 b | 8.53 ± 0.15 b | 5.80 ± 0.06 b | 8.73 ± 0.06 b | 8.57 ± 0.12 b | |
NF2 | 7.86 ± 0.06 a | 11.99 ± 0.15 c | 85.07 ± 0.32 a | 8.77 ± 0.06 a | 5.67 ± 0.15 c | 8.97 ± 0.06 a | 8.83 ± 0.10 a | |
2021 | CK | 7.60 ± 0.11 b | 13.78 ± 0.29 a | 80.97 ± 0.21 d | 8.17 ± 0.10 d | 5.97 ± 0.06 a | 8.63 ± 0.06 d | 8.33 ± 0.06 d |
NF0.5 | 7.65 ± 0.08 b | 13.27 ± 0.16 b | 82.70 ± 0.44 c | 8.50 ± 0.06 c | 5.77 ± 0.06 b | 8.83 ± 0.10 c | 8.57 ± 0.06 c | |
NF1 | 7.70 ± 0.09 a b | 12.57 ± 0.18 c | 84.43 ± 0.50 b | 8.83 ± 0.15 b | 5.70 ± 0.10 b | 9.07 ± 0.15 b | 8.90 ± 0.10 b | |
NF2 | 7.80 ± 0.05 a | 12.15 ± 0.15 c | 87.83 ± 0.47 a | 9.07 ± 0.10 a | 5.60 ± 0.06 b | 9.23 ± 0.12 a | 9.23 ± 0.15 a |
Year | Treatment | Peak Viscosity (cP) | Trough Viscosity (cP) | Breakdown Value (cP) | Final Viscosity (cP) | Setback Value (cP) | Consistence VALUE (cP) |
---|---|---|---|---|---|---|---|
2020 | CK | 2651.33 ± 19.71 b | 1707.33 ± 18.07 a | 944.00 ± 15.87 b | 2209.67 ± 18.15 a | −441.67 ± 21.50 a | 502.33 ± 18.01 a |
NF0.5 | 2716.00 ± 26.23 a | 1715.33 ± 35.25 a | 1000.67 ± 29.19 a | 2225.00 ± 19.47 a | −491.00 ± 20.07 b | 509.67 ± 28.43 a | |
NF1 | 2757.67 ± 38.42 a | 1705.00 ± 24.00 a | 1052.67 ± 35.13 a | 2222.67 ± 49.50 a | −535.00 ± 23.90 c | 517.67 ± 39.40 a | |
NF2 | 2771.00 ± 39.28 a | 1681.00 ± 34.77 a | 1090.00 ± 42.51 a | 2200.33 ± 23.03 a | −570.67 ± 20.43 c | 519.33 ± 53.16 a | |
2021 | CK | 2708.67 ± 17.47 c | 1683.00 ± 22.52 a | 1025.67 ± 17.16 d | 2232.67 ± 33.31 a | −476.00 ± 15.87 a | 549.67 ± 24.01 a |
NF0.5 | 2784.00 ± 28.16 b | 1700.00 ± 22.34 a | 1084.00 ± 16.37 c | 2243.33 ± 40.97 a | −540.67 ± 17.21 b | 543.33 ± 25.36 a | |
NF1 | 2815.67 ± 26.92 a b | 1686.00 ± 25.24 a | 1129.67 ± 28.50 b | 2240.67 ± 23.18 a | −575.00 ± 16.58 c | 554.67 ± 22.08 a | |
NF2 | 2853.00 ± 30.81 a | 1674.67 ± 26.35 a | 1178.33 ± 22.78 a | 2247.67 ± 31.97 a | −605.33 ± 21.53 d | 573.00 ± 33.59 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhang, M.; Sun, J.; Liu, X.; Chen, J.; Wang, R.; Lu, H.; Yang, Y. Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains. Agronomy 2025, 15, 2096. https://doi.org/10.3390/agronomy15092096
Yuan X, Zhang M, Sun J, Liu X, Chen J, Wang R, Lu H, Yang Y. Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains. Agronomy. 2025; 15(9):2096. https://doi.org/10.3390/agronomy15092096
Chicago/Turabian StyleYuan, Xijun, Muyan Zhang, Jingtong Sun, Xinyue Liu, Jie Chen, Rui Wang, Hao Lu, and Yanju Yang. 2025. "Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains" Agronomy 15, no. 9: 2096. https://doi.org/10.3390/agronomy15092096
APA StyleYuan, X., Zhang, M., Sun, J., Liu, X., Chen, J., Wang, R., Lu, H., & Yang, Y. (2025). Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains. Agronomy, 15(9), 2096. https://doi.org/10.3390/agronomy15092096