Calcium Biofortification in Potato: Impacts on Photosynthetic Performance, Tuber Calcium Content, and Calcium Distribution in Two Commercial Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Characteristics of the Potato Field
2.2. Experimental Design
2.3. Climate Conditions
2.4. Monitoring of Crop During Biofortification Process
2.5. Photosynthetic Performance During Biofortification Process
2.6. Calcium Content in Tubers
2.7. Calcium Distribution in Tubers
2.8. Yield, Caliber, and Tuber Weight
2.9. Statistical Analysis
3. Results
3.1. Monitoring of Culture During Biofortification Process
3.2. Photosynthetic Performance During Biofortification Process
3.3. Calcium Content and Distribution in Tubers
3.4. Yield, Caliber, and Tuber Weight
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People Around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Sheoran, S.; Kumar, S.; Ramtekey, V.; Kar, P.; Meena, R.S.; Jangir, C.K. Current Status and Potential of Biofortification to Enhance Crop Nutritional Quality: An Overview. Sustainability 2022, 14, 3301. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2017, 69, 172–180. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Roda, F.A.; Pessoa, M.F.G.; Reboredo, F.H.; Pais, I.P.; Ndayiragije, A.; Lidon, F.C.; Ribeiro-Barros, A.I. Selenium Agronomic Biofortification in Rice: Improving Crop Quality Against Malnutrition. In The Future of Rice Demand: Quality Beyond Productivity; Costa de Oliveira, A., Pegoraro, C., Ebeling Viana, V., Eds.; Springer Nature: Cham, Switzerland, 2020; Chapter 8; pp. 179–203. ISBN 978-3-030-37509-6. [Google Scholar] [CrossRef]
- Haider, M.W.; Nafees, M.; Ahmad, I.; Ali, B.; Maryam; Iqbal, R.; Ayyub, C.M.; Amjad, M.; Amin, E.; Saleem, B.A. Postharvest Dormancy-Related Changes of Endogenous Hormones in Relation to Different Dormancy-Breaking Methods of Potato (Solanum tuberosum L.) Tubers. Front. Plant Sci. 2022, 13, 945256. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, A.; Petropoulos, S.A. Post-harvest physiology of potato tubers. In The Potato Crop–Management, Production, and Food Security; Villa, P.M., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2021; ISBN 978-1-68507-096-0. [Google Scholar]
- Singh, B.; Raigond, P.; Dutt, S.; Kumar, M. Potatoes for Food and Nutritional Security. In Potato: Nutrition and Food Security; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K., Eds.; Springer Nature: Singapore, 2020; pp. 1–12. ISBN 978-981-15-7661-4. [Google Scholar] [CrossRef]
- Raigond, P.; Atkinson, F.S.; Lal, M.K.; Thakur, N.; Singh, B.; Mishra, T. Potato Carbohydrates. In Potato: Nutrition and Food Security; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K., Eds.; Springer Nature: Singapore, 2020; pp. 13–36. ISBN 978-981-15-7661-4. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Burgos, G.; Liria, R.; Zeder, C.; Kroon, P.A.; Hareau, G.; Penny, M.; Dainty, J.; Al-Jaibaji, O.; Boy, E.; Mithen, R.; et al. Total Iron Absorbed from Iron-Biofortified Potatoes Is Higher than That from Nonbiofortified Potatoes: A Randomized Trial Using Stable Iron Isotopes in Women from the Peruvian Highlands. J. Nutr. 2023, 153, 1710–1717. [Google Scholar] [CrossRef]
- Singh, B.; Goutam, U.; Kukreja, S.; Sharma, J.; Sood, S.; Bhardwaj, V. Potato Biofortification: An Effective Way to Fight Global Hidden Hunger. Physiol. Mol. Biol. Plants 2021, 27, 2297–2313. [Google Scholar] [CrossRef]
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific Opinion on Dietary Reference Values for Calcium. EFSA J. 2015, 13, 4101. [Google Scholar] [CrossRef]
- Ibraheem, F.F.R.; AL-Dulaimi, H.A.T. The Physiological Role of Potassium and Calcium Spraying on Vegetative Characteristics of Two Potato Varieties. Int. J. Health Sci. 2022, 6, 7926–7936. [Google Scholar] [CrossRef]
- Mohammed, S.R.; Eskov, I.D.; Zeitar, E.M. Effect of Chitosan and Calcium Chloride Application on Tuber Yield and Vegetative Parameters against Potato Gangrene under Field Conditions. Plant Arch. 2020, 20, 3149–3153. [Google Scholar]
- El-Hadidi, E.; El-Dissoky, R.; AbdElhafez, A. Foliar Calcium and Magnesium Application Effect on Potato Crop Grown in Clay Loam Soils. J. Soil Sci. Agric. Eng. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Seifu, Y.W.; Deneke, S. Effect of Calcium Chloride and Calcium Nitrate on Potato (Solanum tuberosum L.) Growth and Yield. J. Hortic. 2017, 4, 1000207. [Google Scholar] [CrossRef]
- Ali, M.M.E.; Petropoulos, S.A.; Selim, D.A.F.H.; Elbagory, M.; Othman, M.M.; Omara, A.E.-D.; Mohamed, M.H. Plant Growth, Yield and Quality of Potato Crop in Relation to Potassium Fertilization. Agronomy 2021, 11, 675. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Kang, Y.; Shi, M.; Yang, X.; Li, H.; Yu, H.; Wang, Y.; Qin, S. Application of Different Foliar Iron Fertilizers for Improving the Photosynthesis and Tuber Quality of Potato (Solanum tuberosum L.) and Enhancing Iron Biofortification. Chem. Biol. Technol. Agric. 2022, 9, 79. [Google Scholar] [CrossRef]
- Ramesh, E.; Jana, J.; Chatterjee, R.; Banik, G. Effect of Foliar Application of Secondary and Micronutrients on Quality of Potato. Int. J. Chem. Stud. 2019, 7, 2189–2192. [Google Scholar]
- Moinuddin, G.; Jash, S.; Sarkar, A.; Dasgupta, S. Response of Potato (Solanum tuberosum L.) to Foliar Application of Macro and Micronutrients in the Red and Lateritic Zone of West Bengal. J. Crop Weed 2017, 13, 185–188. [Google Scholar]
- Gabriel, J.; Arce, M.; Angulo, A.; Botello, R.; Casazola, J.L.; Velasco, J.; Veramendi, S.; Rodriguez, F. Agronomic Biofortification in Two Native Potato Cultivars (Solanum tuberosum L.). Rev. Latinoam. Papa 2015, 19, 1–17. [Google Scholar]
- Al-Jobori, K.M.; Al-Hadithy, S.A. Response of potato (Solanum tuberosum) to foliar application of iron, manganese, copper and zinc. Int. J. Agric. Crop Sci. 2014, 7, 358–363. [Google Scholar]
- Singh, H.; Singh, S.; Kumar, D.; Singh, S.K. Impact of Foliar Application of Zinc on Potato (Solanum tuberosum L.) CV. Kufri Pukhraj. Plant Arch. 2018, 18, 1334–1336. [Google Scholar]
- White, P.J.; Thompson, J.A.; Wright, G.; Rasmussen, S.K. Biofortifying Scottish Potatoes with Zinc. Plant Soil 2017, 411, 151–165. [Google Scholar] [CrossRef]
- Kromann, P.; Valverde, F.; Alvarado, S.; Vélez, R.; Pisuña, J.; Potosí, B.; Tapie, A.; Caballero, D.; Cabezas, A.; Devaux, A. Can Andean Potatoes Be Agronomically Biofortified with Iron and Zinc Fertilizers? Plant Soil 2017, 411, 121–138. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Huo, W.; Li, T.; Wei, Q.; Huang, M.; Geng, C.; Yan, D. Effect of Sorbitol Calcium Chelate on Yield and Calcium Nutrient Absorption of Peanut. Am. J. Biochem. Biotechnol. 2021, 17, 160–173. [Google Scholar] [CrossRef]
- D’Imperio, M.; Renna, M.; Cardinali, A.; Buttaro, D.; Serio, F.; Santamaria, P. Calcium Biofortification and Bioaccessibility in Soilless “Baby Leaf” Vegetable Production. Food Chem. 2016, 213, 149–156. [Google Scholar] [CrossRef]
- El-Yazied, A.; Ragab, M.E.; Ibrahim, R.E.; El-Wafa, A. Effect of Nitrogen Fertigation Levels and Chelated Calcium Foliar Application on the Productivity of Sweet Corn. Arab Univ. J. Agric. Sci. 2007, 15, 131–139. [Google Scholar] [CrossRef]
- Burondkar, M.M.; Jadhav, B.B.; Chettia, M.B. Post-Flowering Morpho-Physiological Behavior of Alphonso Mango as Influenced by Plant Growth Regulators, Polyamine and Nutrients under Rainfed Conditions. Acta Hortic. 2009, 820, 425–432. [Google Scholar] [CrossRef]
- Loekito, S.; Afandi, A.; Nishimura, N.; Koyama, H.; Senge, M. The Effects of Calcium Fertilizer Sprays during Fruit Development Stage on Pineapple Fruit Quality under Humid Tropical Climate. Int. J. Agron. 2022, 2022, 3207161. [Google Scholar] [CrossRef]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwell, F.; Goulao, L.; et al. Long-Term Elevated Air [CO2] Strengthens Photosynthetic Functioning and Mitigates the Impact of Supra-Optimal Temperatures in Tropical Coffea arabica and C. canephora Species. Glob. Change Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef]
- Daccak, D.; Marques, A.C.; Pessoa, C.C.; Coelho, A.R.F.; Luís, I.C.; Brito, G.; Kullberg, J.C.; Ramalho, J.C.; Rodrigues, A.P.; Scotti-Campos, P.; et al. Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants 2024, 13, 1962. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 279–319. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New Flux Parameters for the Determination of QA Redox State and Excitation Fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.H.; Jahns, P. Non-Photochemical Energy Dissipation Determined by Chlorophyll Fluorescence Quenching: Characterization and Function. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 463–495. [Google Scholar] [CrossRef]
- Klughammer, C.; Schreiber, U. Complementary PS II Quantum Yields Calculated from Simple Fluorescence Parameters Measured by PAM Fluorometry and the Saturation Pulse Method. PAM Appl. Notes 2008, 1, 27–35. [Google Scholar]
- Huang, W.; Zhang, S.; Cao, K. Cyclic Electron Flow Plays an Important Role in Photoprotection of Tropical Trees Illuminated at Temporal Chilling Temperature. Plant Cell Physiol. 2011, 52, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Mangueze, A.V.; Pessoa, M.F.G.; Silva, M.J.; Ndayiragije, A.; Magaia, H.E.; Cossa, V.S.I.; Reboredo, F.H.; Carvalho, M.L.; Santos, J.P.; Guerra, M.; et al. Simultaneous Zinc and Selenium Biofortification in Rice. Accumulation, Localization and Implications on the Overall Mineral Content of the Flour. J. Cereal Sci. 2018, 82, 34–41. [Google Scholar] [CrossRef]
- Marques, A.C.; Lidon, F.C.; Coelho, A.R.F.; Pessoa, C.C.; Luís, I.C.; Scotti-Campos, P.; Simões, M.; Almeida, A.S.; Legoinha, P.; Pessoa, M.F.; et al. Quantification and Tissue Localization of Selenium in Rice (Oryza sativa L., Poaceae) Grains: A Perspective of Agronomic Biofortification. Plants 2020, 9, 1670. [Google Scholar] [CrossRef]
- Rastegar, S.; Shojaie, A.; Koy, R.A.M. Foliar application of salicylic acid and calcium chloride delays the loss of chlorophyll and preserves the quality of broccoli during storage. J. Food Biochem. 2022, 46, e14154. [Google Scholar] [CrossRef] [PubMed]
- Alonso, T.A.; Ferreira Barreto, R.; de Mello Prado, R.; Pereira de Souza, J.; Falleiros Carvalho, R. Silicon spraying alleviates calcium deficiency in tomato plants, but Ca-EDTA is toxic. J. Plant Nutr. Soil Sci. 2020, 183, 659–664. [Google Scholar] [CrossRef]
- Rafiq, M.; Shahid, M.; Shamshad, S.; Khalid, S.; Niazi, N.K.; Abbas, G.; Murtaza, B. A Comparative Study to Evaluate Efficiency of EDTA and Calcium in Alleviating Arsenic Toxicity to Germinating and Young Vicia faba L. Seedlings. J. Soils Sediments 2018, 18, 2271–2281. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Han, X.; Chen, R.; Xue, X. Effects of Spraying Calcium Fertilizer on Photosynthesis, Mineral Content, Sugar–Acid Metabolism and Fruit Quality of Fuji Apples. Agronomy 2022, 12, 2563. [Google Scholar] [CrossRef]
- He, L.; Yu, L.; Li, B.; Du, N.; Guo, S. The Effect of Exogenous Calcium on Cucumber Fruit Quality, Photosynthesis, Chlorophyll Fluorescence, and Fast Chlorophyll Fluorescence during the Fruiting Period under Hypoxic Stress. BMC Plant Biol. 2018, 18, 180. [Google Scholar] [CrossRef]
- Tan, W.; Meng, Q.W.; Brestic, M.; Olsovska, K.; Yang, X. Photosynthesis Is Improved by Exogenous Calcium in Heat-Stressed Tobacco Plants. J. Plant Physiol. 2011, 168, 2063–2071. [Google Scholar] [CrossRef]
- Sakhonwasee, S.; Phingkasan, W. Effects of the Foliar Application of Calcium on Photosynthesis, Reactive Oxygen Species Production, and Changes in Water Relations in Tomato Seedlings under Heat Stress. Hortic. Environ. Biotechnol. 2017, 58, 119–126. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Mansfield, T.A.; Kean, A.M.; Davies, W.J. Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. New Phytol. 1989, 111, 9–17. [Google Scholar] [CrossRef]
- Hochmal, A.K.; Schulze, S.; Trompelt, K.; Hippler, M. Calcium-Dependent Regulation of Photosynthesis. Biochim. Biophys. Acta Bioenerg. 2015, 1847, 993–1003. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Rebelo, M.C.; Santos, M.E.; Antunes, M.L.; Nunes, M.A. Effects of Calcium Deficiency on Coffea arabica. Nutrient Changes and Correlation of Calcium Levels with Some Photosynthetic Parameters. Plant Soil 1995, 172, 87–96. [Google Scholar] [CrossRef]
- Ziegler, H. Nature of Transported Substances. In Transport in Plants I: Phloem Transport. Encyclopedia of Plant Physiology; Zimmermann, M.H., Milburn, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1975; Volume 1, pp. 59–100. [Google Scholar] [CrossRef]
- Barthakur, N.N.; Donnelly, D.J.; Habib, A. Transfer of Strontium-90 and Ca-45 from Medium to Plant and Their Translocation in Micropropagated Potato. In Proceedings of the International Congress on the Radioecology and Ecotoxicology of Continental and Estuarine Environments (ECO-RAD 2001), Aix-en-Provence, France, 3–7 September 2001. [Google Scholar]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Drazeta, L.; Lang, A.; Hall, A.J.; Volz, R.K.; Jamson, P.E. Causes and Effects of Changes in Xylem Functionality in Apple Fruit. Ann. Bot. 2004, 93, 275–282. [Google Scholar] [CrossRef]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The Three-Dimensional Distribution of Minerals in Potato Tubers. Ann. Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.V.; Millard, P. Fractionation and Distribution of Calcium in Sprouting and Non-Sprouting Potato Tubers. Ann. Bot. 1985, 56, 745–754. [Google Scholar] [CrossRef]
- Nelson, D.P.; Pan, W.L.; Franceschi, V.R. Xylem and Phloem Transport of Mineral Nutrients from Solanum tuberosum Roots. J. Exp. Bot. 1990, 41, 1143–1148. [Google Scholar] [CrossRef]
- Oparka, K.J.; Davies, H.V. Subcellular Localisation of Calcium in Potato Tubers. Potato Res. 1988, 31, 297–304. [Google Scholar] [CrossRef]
Cultivar | Planting Date | Foliar Applications | Harvest Date | ||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | |||
Picasso | 12/3 | 19/5 | 27/5 | 3/6 | 9/6 | 16/6 | 23/6 | 30/6 | 22/7 |
Rossi | 16/3 | 19/5 | 27/5 | 3/6 | 9/6 | 16/6 | 23/6 | 30/6 | 11/8 |
Picasso | Rossi | ||||
---|---|---|---|---|---|
Parameter | Treatment | 22 June | 30 July | 22 June | 30 July |
Pn (µmol CO2 m−2 s−1) | Control | 7.89 ± 0.54 a | - | 16.3 ± 0.80 aA | 7.90 ± 1.35 bB |
CaCl2 | 8.85 ± 1.48 a | - | 17.7 ± 0.69 aA | 12.4 ± 0.71 aA | |
Ca-EDTA | 3.52 ± 0.78 b | - | 17.5 ± 1.99 a | - | |
gs (mmol H2O m−2 s−1) | Control | 51.5 ± 1.95 a | - | 97.2 ± 10.8 bA | 77.1 ± 17.9 aA |
CaCl2 | 61.0 ± 7.61 a | - | 118 ± 14.2 bA | 94.9 ± 4.39 aA | |
Ca-EDTA | 44.8 ± 2.65 a | - | 227 ± 48.6 a | - | |
E (mmol H2O m−2 s−1) | Control | 1.54 ± 0.05 a | - | 1.92 ± 0.13 bA | 1.22 ± 0.23 aA |
CaCl2 | 1.76 ± 0.15 a | - | 2.15 ± 0.20 abA | 1.56 ± 0.06 aA | |
Ca-EDTA | 1.41 ± 0.08 a | - | 2.93 ± 0.36 a | - | |
iWUE (mmol CO2 mol−1 H2O) | Control | 4.37 ± 0.18 a | - | 7.21 ± 0.14 abA | 6.80 ± 0.32 aA |
CaCl2 | 4.71 ± 0.47 a | - | 7.94 ± 0.19 aA | 7.87 ± 0.26 aA | |
Ca-EDTA | 2.23 ± 0.15 b | - | 5.56 ± 0.57 b | - |
Picasso | Rossi | ||||
---|---|---|---|---|---|
Parameter | Treatment | 22 June | 30 July | 22 June | 30 July |
Fv/Fm | Control | 0.825 ± 0.002 a | - | 0.797 ± 0.008 aA | 0.768 ± 0.010 aA |
CaCl2 | 0.832 ± 0.003 a | - | 0.793 ± 0.015 aA | 0.773 ± 0.005 aA | |
Ca-EDTA | 0.541 ± 0.041 b | - | 0.815 ± 0.003 a | - | |
Fv’/Fm’ | Control | 0.458 ± 0.040 a | - | 0.478 ± 0.019 aA | 0.484 ± 0.022 aA |
CaCl2 | 0.419 ± 0.055 a | - | 0.522 ± 0.028 aA | 0.471 ± 0.033 aB | |
Ca-EDTA | 0.135 ± 0.018 b | - | 0.425 ± 0.048 a | - | |
Y(II) | Control | 0.318 ± 0.033 a | - | 0.325 ± 0.017 aA | 0.297 ± 0.036 aA |
CaCl2 | 0.282 ± 0.044 a | - | 0.374 ± 0.037 aA | 0.220 ± 0.034 aB | |
Ca-EDTA | 0.044 ± 0.013 b | - | 0.235 ± 0.046 b | - | |
Y(NPQ) | Control | 0.474 ± 0.030 b | - | 0.448 ± 0.018 bB | 0.504 ± 0.038 aA |
CaCl2 | 0.537 ± 0.055 b | - | 0.398 ± 0.043 bB | 0.523 ± 0.033 aA | |
Ca-EDTA | 0.756 ± 0.008 a | - | 0.565 ± 0.055 a | - | |
Y(NO) | Control | 0.209 ± 0.009 a | - | 0.227 ± 0.008 aA | 0.199 ± 0.003 bB |
CaCl2 | 0.181 ± 0.014 a | - | 0.228 ± 0.014 aA | 0.257 ± 0.017 aA | |
Ca-EDTA | 0.200 ± 0.014 a | - | 0.200 ± 0.011 b | - | |
qN | Control | 0.830 ± 0.018 b | - | 0.797 ± 0.016 bA | 0.818 ± 0.020 aA |
CaCl2 | 0.858 ± 0.031 ab | - | 0.751 ± 0.043 bA | 0.795 ± 0.026 aA | |
Ca-EDTA | 0.950 ± 0.005 a | - | 0.851 ± 0.033 a | - | |
qL | Control | 0.556 ± 0.051 a | - | 0.531 ± 0.038 aA | 0.450 ± 0.047 aA |
CaCl2 | 0.534 ± 0.033 a | - | 0.548 ± 0.050 aA | 0.329 ± 0.059 bB | |
Ca-EDTA | 0.290 ± 0.061 b | - | 0.396 ± 0.042 b | - |
Cultivar | Treatment | Peeled | Unpeeled |
---|---|---|---|
Picasso | Control | 0.041 ± 0.002 cB | 0.050 ± 0.000 bA |
CaCl2 | 0.048 ± 0.001 bA | 0.046 ± 0.000 cA | |
Ca-EDTA | 0.056 ± 0.001 aB | 0.094 ± 0.001 aA | |
Rossi | Control | 0.044 ± 0.002 cB | 0.066 ± 0.001 bA |
CaCl2 | 0.057 ± 0.001 aB | 0.064 ± 0.001 bA | |
Ca-EDTA | 0.051 ± 0.001 bB | 0.118 ± 0.001 aA |
Cultivar | Treatment | Tuber Weight | Minimum Diameter | Maximum Diameter | Yield |
---|---|---|---|---|---|
Picasso | Control | 205 ± 30.3 ab | 5.37 ± 0.273 ab | 9.40 ± 0.872 a | 105 |
CaCl2 | 268 ± 25.3 a | 5.63 ± 0.376 a | 9.40 ± 0.208 a | 93.8 | |
Ca-EDTA | 159 ± 23.3 b | 4.43 ± 0.176 b | 8.97 ± 0.578 a | 59.3 | |
Rossi | Control | 227 ± 40.4 a | 6.70 ± 0.611 a | 19.3 ± 0.060 ab | 169 |
CaCl2 | 195 ± 29.9 a | 5.87 ± 0.410 a | 11.5 ± 0.273 a | 160 | |
Ca-EDTA | 186 ± 4.27 a | 5.32 ± 0.174 a | 8.73 ± 0.882 b | 46.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.R.F.; Pais, I.P.; Guerra, M.; Rodrigues, A.P.; Semedo, J.N.; Luís, I.; Marques, A.C.; Pessoa, C.C.; Daccak, D.; Lidon, F.C.; et al. Calcium Biofortification in Potato: Impacts on Photosynthetic Performance, Tuber Calcium Content, and Calcium Distribution in Two Commercial Cultivars. Agronomy 2025, 15, 2140. https://doi.org/10.3390/agronomy15092140
Coelho ARF, Pais IP, Guerra M, Rodrigues AP, Semedo JN, Luís I, Marques AC, Pessoa CC, Daccak D, Lidon FC, et al. Calcium Biofortification in Potato: Impacts on Photosynthetic Performance, Tuber Calcium Content, and Calcium Distribution in Two Commercial Cultivars. Agronomy. 2025; 15(9):2140. https://doi.org/10.3390/agronomy15092140
Chicago/Turabian StyleCoelho, Ana Rita F., Isabel P. Pais, Mauro Guerra, Ana P. Rodrigues, José N. Semedo, Inês Luís, Ana Coelho Marques, Cláudia C. Pessoa, Diana Daccak, Fernando C. Lidon, and et al. 2025. "Calcium Biofortification in Potato: Impacts on Photosynthetic Performance, Tuber Calcium Content, and Calcium Distribution in Two Commercial Cultivars" Agronomy 15, no. 9: 2140. https://doi.org/10.3390/agronomy15092140
APA StyleCoelho, A. R. F., Pais, I. P., Guerra, M., Rodrigues, A. P., Semedo, J. N., Luís, I., Marques, A. C., Pessoa, C. C., Daccak, D., Lidon, F. C., Simões, M., Silva, M. M., Legoinha, P., Scotti-Campos, P., Reboredo, F. H., & Ramalho, J. C. (2025). Calcium Biofortification in Potato: Impacts on Photosynthetic Performance, Tuber Calcium Content, and Calcium Distribution in Two Commercial Cultivars. Agronomy, 15(9), 2140. https://doi.org/10.3390/agronomy15092140