Composting of Urban Sewage Sludge and Its Application in Quarry Soil Reclamation: A Field Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Aerobic Composting of Urban Sewage Sludge
2.3. Reclamation of Quarry Soil by Sewage Sludge Compost
2.4. Chemical Analysis
2.4.1. Sewage Sludge Compost
2.4.2. Soil and Vegetation
2.5. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Aerobic Composting of Urban Sewage Sludge
3.1.1. Temperature and Moisture Content
3.1.2. pH and EC
3.1.3. OM and DOM
3.1.4. GI
3.2. Effect of Sewage Sludge Compost on Soil Properties and Fertility
3.2.1. Soil Physicochemical Properties
3.2.2. Soil Fertility
3.3. Effect of Sewage Sludge Compost on Revegetation
3.3.1. Germination and Vegetation Coverage
3.3.2. Plant Height and Fresh Biomass
3.3.3. Relationships Between Soil Physicochemical Properties and Plant Growth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Qi, L.; Huang, T.; Wang, J.; Sun, Q. A short period of revegetation and fertilization increased the nutrients, enzyme activities, and bacterial community diversity in backfill soils. Appl. Soil. Ecol. 2023, 189, 104959. [Google Scholar] [CrossRef]
- Ke, Z.-Z.; Han, X.; Zhou, R.; Zhang, Y.-F.; Liu, G.-N.; Zhang, C.-Q.; Liu, Z.; Li, X.-S.; Li, W.-B. Insights into wind-driven heavy metal pollution and human health risk assessment in a typical lead-zinc mining area of northern China. China Geol. 2025, 8, 487–499. [Google Scholar]
- Ahirwal, J.; Pandey, V.C. Restoration of mine degraded land for sustainable environmental development. Restor. Ecol. 2021, 29, e13268. [Google Scholar] [CrossRef]
- Xu, H.; Xu, F.; Lin, T.; Xu, Q.; Yu, P.; Wang, C.; Aili, A.; Zhao, X.; Zhao, W.; Zhang, P.; et al. A systematic review and comprehensive analysis on ecological restoration of mining areas in the arid region of China: Challenge, capability and reconsideration. Ecol. Indic. 2023, 154, 110630. [Google Scholar] [CrossRef]
- Xu, H.; Waheed, A.; Kuerban, A.; Muhammad, M.; Aili, A. Dynamic approaches to ecological restoration in China’s mining regions: A scientific review. Ecol. Eng. 2025, 214, 107577. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Mao, D.; Zhang, J.; Zhao, D.; Zeng, Y.; Wu, B. Surface mining caused multiple ecosystem service losses in China. J. Environ. Manag. 2021, 290, 112618. [Google Scholar] [CrossRef]
- Sun, W.; Ji, B.; Khoso, S.A.; Tang, H.; Liu, R.; Wang, L.; Hu, Y. An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res. 2018, 25, 33911–33925. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Benítez, C. Effect of crushed maize straw residus on soil biological properties and soil restoration. Land. Degrad. Dev. 2014, 25, 501–509. [Google Scholar] [CrossRef]
- Raghunathan, K.; Marathe, D.; Singh, A.; Thawale, P. Organic waste amendments for restoration of physicochemical and biological productivity of mine spoil dump for sustainable development. Environ. Monit. Assess. 2021, 193, 599. [Google Scholar] [CrossRef]
- Myszura-Dymek, M.; Żukowska, G. The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil. Sustainability 2023, 15, 4749. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil. Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Salazar, M.; Bosch-Serra, N.; Estudillos, G.; Poch, R.M. Rehabilitation of Semi-Arid Coal Mine Spoil Bank Soils with Mine Residues and Farm Organic By-Products. Arid. Land. Res. Manag. 2009, 23, 327–341. [Google Scholar] [CrossRef]
- Shan, Y.; Lv, M.; Zuo, W.; Tang, Z.; Ding, C.; Yu, Z.; Shen, Z.; Gu, C.; Bai, Y. Sewage sludge application enhances soil properties and rice growth in a salt-affected mudflat soil. Sci. Rep. 2021, 11, 1402. [Google Scholar] [CrossRef] [PubMed]
- Song, U.; Lee, E.J. Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour. Conserv. Recycl. 2010, 54, 1109–1116. [Google Scholar] [CrossRef]
- Almendro-Candel, M.B.; Navarro-Pedreño, J.; Jordán, M.M.; Gómez, I.; Meléndez-Pastor, I. Use of municipal solid waste compost to reclaim limestone quarries mine spoils as soil amendments: Effects on Cd and Ni. J. Geochem. Explor. 2014, 144, 363–366. [Google Scholar] [CrossRef]
- Zittel, R.; da Silva, C.P.; Domingues, C.E.; Seremeta, D.C.H.; da Cunha, K.M.; de Campos, S.X. Availability of nutrients, removal of nicotine, heavy metals and pathogens in compounds obtained from smuggled cigarette tobacco compost associated with industrial sewage sludge. Sci. Total Environ. 2020, 699, 134377. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Ye, C.; He, X.; Zhang, S. Fate of antibiotics and antibiotic resistance genes during aerobic co-composting of food waste with sewage sludge. Sci. Total Environ. 2021, 784, 146950. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, B.; Jia, Y.; Xu, X.; Zhou, P.; Yu, M.; Liu, J. Influence of sewage sludge compost on heavy metals in abandoned mine land reclamation: A large-scale field study for three years. J. Hazard. Mater. 2025, 486, 137098. [Google Scholar] [CrossRef]
- Huang, G.F.; Wong, J.W.C.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Li, W.; Zhang, S.; Zhang, X.; Zhao, Y.; Chen, L. Improving sewage sludge compost process and quality by carbon sources addition. Sci. Rep. 2021, 11, 1319. [Google Scholar] [CrossRef]
- Yang, F.; Li, G.X.; Yang, Q.Y.; Luo, W.H. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere 2013, 93, 1393–1399. [Google Scholar] [CrossRef]
- Cornforth, I.S.; Walmsley, D. Methods of measuring available nutrients in West Indian soils. Plant Soil. 1973, 39, 635–647. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Tong, J.; Wu, L.; Li, B.; Jiang, N.; Huang, J.; Wu, D.; Zhou, L.; Yang, Q.; Jiao, Y.; Chen, J.; et al. Image-based vegetation analysis of desertified area by using a combination of ImageJ and Photoshop software. Environ. Monit. Assess. 2024, 196, 306. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Chen, T.; Yu, J.; Gao, D.; Shen, Y.; Niu, M.; Liu, H. Impact of composting strategies on the degradation of nonylphenol in sewage sludge. Ecotoxicology 2015, 24, 2081–2087. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Hu, B.; Qv, M.; Ma, C.; Wei, M.; Zhang, H. Insight into the potentiality of big biochar particle as an amendment in aerobic composting of sewage sludge. Bioresour. Technol. 2019, 288, 121469. [Google Scholar] [CrossRef]
- Nakasaki, K.; Nakano, Y.; Akiyama, T.; Shoda, M.; Kubota, H. Oxygen diffusion and microbial activity in the composting of dehydrated sewage sludge cakes. J. Ferment. Technol. 1987, 65, 43–48. [Google Scholar] [CrossRef]
- Cai, S.; Liu, M.; Zhang, Y.; Hu, A.; Zhang, W.; Wang, D. Molecular transformation of dissolved organic matter and formation pathway of humic substances in dredged sludge under aerobic composting. Bioresour. Technol. 2022, 364, 128141. [Google Scholar] [CrossRef]
- Zhou, H.-B.; Ma, C.; Gao, D.; Chen, T.-B.; Zheng, G.-D.; Chen, J.; Pan, T.-H. Application of a recyclable plastic bulking agent for sewage sludge composting. Bioresour. Technol. 2014, 152, 329–336. [Google Scholar] [CrossRef]
- Ma, R.; Liu, Y.; Wang, J.; Li, D.; Qi, C.; Li, G.; Yuan, J. Effects of oxygen levels on maturity, humification, and odor emissions during chicken manure composting. J. Clean. Prod. 2022, 369, 133326. [Google Scholar] [CrossRef]
- Aydin Temel, F. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. Bioresour. Technol. 2023, 373, 128748. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-Y.; Zhuang, L.; Cao, W.-D.; Xu, W.; Zhou, S.-G.; Li, F.-B. Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. J. Soil. Sediment. 2010, 10, 722–729. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Zhao, M.; Zhao, W.; Liu, J.; Tang, J.; Liao, H.; Chen, Z.; Zhou, S. Hyperthermophilic composting accelerates the humification process of sewage sludge: Molecular characterization of dissolved organic matter using EEM–PARAFAC and two-dimensional correlation spectroscopy. Bioresour. Technol. 2019, 274, 198–206. [Google Scholar] [CrossRef]
- Saidi, N.; Kouki, S.; M’Hiri, F.; Jedidi, N.; Mahrouk, M.; Hassen, A.; Ouzari, H. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition. J. Environ. Sci. 2009, 21, 1452–1458. [Google Scholar] [CrossRef]
- NY/T 525-2021; Organic Fertilizer. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2021.
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- CJ/T 340-2016; Planting sol for greening. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2016.
- Chu, S.; Wu, D.; Liang, L.L.; Zhong, F.; Hu, Y.; Hu, X.; Lai, C.; Zeng, S. Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil. Sci. Rep. 2017, 7, 13408. [Google Scholar] [CrossRef]
- Silva, R.d.S.; Jalal, A.; Nascimento, R.E.N.d.; Elias, N.C.; Kawakami, K.C.; Abreu-Junior, C.H.; Oliveira, F.C.; Jani, A.D.; He, Z.; Zhao, F.; et al. Composted Sewage Sludge Application Reduces Mineral Fertilization Requirements and Improves Soil Fertility in Sugarcane Seedling Nurseries. Sustainability 2022, 14, 4684. [Google Scholar] [CrossRef]
- Amini, J.; Hossaini, H.; Hossini, H.; Pirsaheb, M. Effect of calcium oxide on enzymatic activities in co-composting of sewage sludge and municipal solid waste. J. Hazard. Mater. Adv. 2025, 18, 100695. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wei, Y.; Meng, H.; Cao, Y.; Lead, J.R.; Hong, J. Effects of fertilization and reclamation time on soil bacterial communities in coal mining subsidence areas. Sci. Total Environ. 2020, 739, 139882. [Google Scholar] [CrossRef]
- Heiskanen, J.; Ruhanen, H.; Hagner, M. Effects of compost, biochar and ash mixed in till soil cover of mine tailings on plant growth and bioaccumulation of elements: A growing test in a greenhouse. Heliyon 2022, 8, e08838. [Google Scholar] [CrossRef]
- Corrêa, R.S.; Balduíno, A.P.d.C.; Teza, C.T.V.; Baptista, G.M.d.M. Vegetation Cover Development Resulting from Different Restoration Approaches of Exploited Mines. Floresta E Ambiente 2018, 25, e20171116. [Google Scholar] [CrossRef]
- Peña, A.; Mingorance, M.D.; Rossini-Oliva, S. Soil quality improvement by the establishment of a vegetative cover in a mine soil added with composted municipal sewage sludge. J. Geochem. Explor. 2015, 157, 178–183. [Google Scholar] [CrossRef]
- Chu, S.; Jacobs, D.F.; Liao, D.; Liang, L.L.; Wu, D.; Chen, P.; Lai, C.; Zhong, F.; Zeng, S. Effects of landscape plant species and concentration of sewage sludge compost on plant growth, nutrient uptake, and heavy metal removal. Environ. Sci. Pollut. Res. 2018, 25, 35184–35199. [Google Scholar] [CrossRef] [PubMed]
- Błońska, E.; Lasota, J.; Zwydak, M.; Klamerus-Iwan, A.; Gołąb, J. Restoration of forest soil and vegetation 15 years after landslides in a lower zone of mountains in temperate climates. Ecol. Eng. 2016, 97, 503–515. [Google Scholar] [CrossRef]
- Malik, A.; Scullion, J. Soil development on restored opencast coal sites with particular reference to organic matter and aggregate stability. Soil. Use Manag. 1998, 14, 234–239. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
Physicochemical Properties | Urban Sewage Sludge | Crop Straw | Crop Cob |
---|---|---|---|
Moisture content (%) | 89.74 | 11.04 | 7.98 |
TC (%) | 23.48 | 39.18 | 43.97 |
TN (%) | 3.88 | 1.18 | 0.70 |
C/N | 6.05 | 33.20 | 62.81 |
Addition Level | PJ | PY | PH | PX | ||||
---|---|---|---|---|---|---|---|---|
Ryegrass | Alfalfa | Ryegrass | Alfalfa | Ryegrass | Alfalfa | Ryegrass | Alfalfa | |
CK | 6.5 ± 3.1 bc | 35.5 ± 4.4 ab | 6.5 ± 4.6 c | 58.8 ± 16.9 a | 9.0 ± 1.4 b | 43.0 ± 16.4 a | 4.0 ± 2.8 bc | 37.0 ± 15.6 bc |
2% | 10.0 ± 2.8 a | 46.5 ± 9.2 a | 8.0 ± 2.1 bc | 44.3 ± 6.7 b | 8.5 ± 1.7 b | 34.8 ± 10.0 a | 11.3 ± 3.8 a | 62.0 ± 9.8 a |
5% | 7.5 ± 2.1 a | 48.0 ± 1.4 a | 15.3 ± 3.6 a | 56.5 ± 11.3 ab | 13.5 ± 2.1 a | 45.5 ± 20.5 a | 10.5 ± 3.5 a | 29.0 ± 1.4 c |
10% | 10.0 ± 2.8 ab | 22.0 ± 2.8 b | 11.8 ± 3.5 ab | 42.8 ± 10.9 b | 13.0 ± 0.0 a | 44.5 ± 14.8 a | 8.5 ± 0.7 abc | 54.0 ± 0.0 ab |
20% | 11.5 ± 9.2 a | 35.5 ± 13.4 ab | 16.3 ± 5.3 a | 57.5 ± 4.2 ab | 16.5 ± 2.1 a | 34.0 ± 5.7 a | 3.0 ± 1.4 b | 43.0 ± 14.1 ab |
Addition Level | PJ | PY | PH | PX | ||||
---|---|---|---|---|---|---|---|---|
15 Days | 60 Days | 15 Days | 60 Days | 15 Days | 60 Days | 15 Days | 60 Days | |
CK | 0.2% | 15.3% | 6.5% | 28.5% | 8.2% | 63.8% | 30.3% | 53.4% |
2% | 28.2% | 71.8% | 34.7% | 89.4% | 28.2% | 97.3% | 35.4% | 50.4% |
5% | 29.9% | 74.4% | 18.6% | 92.4% | 29.9% | 100.0% | 10.2% | 67.4% |
10% | 26.4% | 90.3% | 29.3% | 100.0% | 26.4% | 96.9% | 14.7% | 89.4% |
20% | 42.3% | 97.5% | 38.0% | 100.0% | 42.3% | 100.0% | 16.0% | 95.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, C.; Tian, Z.; Zhang, M.; Feng, X.; Liu, G.; Zhu, Z.; Dong, L.; Wang, Y. Composting of Urban Sewage Sludge and Its Application in Quarry Soil Reclamation: A Field Case Study. Agronomy 2025, 15, 2179. https://doi.org/10.3390/agronomy15092179
Zhang L, Li C, Tian Z, Zhang M, Feng X, Liu G, Zhu Z, Dong L, Wang Y. Composting of Urban Sewage Sludge and Its Application in Quarry Soil Reclamation: A Field Case Study. Agronomy. 2025; 15(9):2179. https://doi.org/10.3390/agronomy15092179
Chicago/Turabian StyleZhang, Luyao, Chong Li, Zengbiao Tian, Mengchao Zhang, Xueyuan Feng, Guannan Liu, Zihan Zhu, Liming Dong, and Yuhao Wang. 2025. "Composting of Urban Sewage Sludge and Its Application in Quarry Soil Reclamation: A Field Case Study" Agronomy 15, no. 9: 2179. https://doi.org/10.3390/agronomy15092179
APA StyleZhang, L., Li, C., Tian, Z., Zhang, M., Feng, X., Liu, G., Zhu, Z., Dong, L., & Wang, Y. (2025). Composting of Urban Sewage Sludge and Its Application in Quarry Soil Reclamation: A Field Case Study. Agronomy, 15(9), 2179. https://doi.org/10.3390/agronomy15092179