Multi-Stage Salt Tolerance in Leymus chinensis: Contrasting Responses at Germination and Seedling Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Materials
2.2. Germination Test
2.3. Hydroponics Experiment
2.4. Calculation of the Comprehensive Evaluation Value of Salt Tolerance
2.5. Data Analysis
3. Results
3.1. Response to Salt Stress During the Germination Stage
3.2. Response to Salt Stress During the Seedling Stage
3.3. Relationship Between Salt Tolerance at the Germination and Seedling Stage
4. Discussion
4.1. Inhibitory Effects of Salt Stress on Early Development in L. chinensis
4.2. Genotypic Variation in L. chinensis and the Contrasting Adaptation Strategies of G3 and G8 Under Salinity
4.3. Stage-Specific Salt Tolerance During Early Development in L. chinensis
4.4. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MS | Murashige and Skoog |
GLMs | Generalized Linear Models |
LMs | Linear Models |
GP | Germination Percentage |
RL | Radicle Length |
SL | Shoot Length |
R/S | Radicle Shoot Ratio |
PH | Plant Height |
SR | Survival Rate |
References
- Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhu, G.L.; Zhou, G.S.; Younas, M.U.; Suliman, M.S.E.; Liu, J.; Zhu, Y.M.; Salih, E.G.I. Integrated approaches for increasing plant yield under salt stress. Front. Plant Sci. 2023, 14, 1215343. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, F.; Yang, N.; Jia, W.; Cui, Y. Analysis and prospects of saline-alkali land in china from the perspective of utilization. Chin. J. Soil Sci. 2023, 54, 489–494. [Google Scholar] [CrossRef]
- Huang, J.; Kong, Y.L.; Xu, Q.S.; Zhu, C.Q.; Zhu, L.F.; Cao, X.C.; Hong, X.Z.; Zhang, Y.H. Progresses for characteristics and amelioration measures of saline soil. Soils 2022, 50, 18–23. [Google Scholar] [CrossRef]
- Imadi, S.R.; Shah, S.W.; Kazi, A.G.; Azooz, M.M.; Ahmad, P. Phytoremediation of saline soils for sustainable agricultural productivity. In Plant Metal Interaction, 2nd ed.; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 455–468. [Google Scholar] [CrossRef]
- Abebe, H.; Tu, Y. Impact of salt and alkali stress on forage biomass yield, nutritive value, and animal growth performance: A comprehensive review. Grasses 2024, 3, 355–368. [Google Scholar] [CrossRef]
- Shi, W.J.; Yang, J.Q.; Ma, Y. Review on saline-alkali soil improvement with planting halophyte method in arid region. J. Water Resour. Water Eng. 2015, 26, 229–234. [Google Scholar] [CrossRef]
- Al-Farsi, S.M.; Nawaz, A.; Anees-ur-Rehman; Nadaf, S.K.; Al-Sadi, A.M.; Siddique, K.H.M.; Farooq, M. Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop Pasture Sci. 2020, 71, 411–428. [Google Scholar] [CrossRef]
- Li, J.; Diao, Y.J.; Jiang, L.H.; He, Q.Y.; Wang, F.Z.; Hao, W.F. Exploration of ecological restoration of saline-alkali land based on NbS-Study on the salt resistance and desalination performance of three cash crops. PLoS ONE 2022, 17, e0275828. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, S.Q.; Zhao, Z.Y.; Zhang, K.; Tian, C.Y.; Mai, W.X. Progress of euhalophyte adaptation to arid areas to remediate salinized soil. Agriculture 2023, 13, 704. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Hasegawa, P.M. Sodium (Na+) homeostasis and salt tolerance of plants. Environ. Exp. Bot. 2013, 92, 19–31. [Google Scholar] [CrossRef]
- de la Reguera, E.; Veatch, J.; Gedan, K.; Tully, K.L. The effects of saltwater intrusion on germination success of standard and alternative crops. Environ. Exp. Bot. 2020, 180, 104254. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Alderfasi, A.; Ben Romdhane, W.; Seleiman, M.F.; El-Said, R.A.; Al-Doss, A. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants 2020, 9, 287. [Google Scholar] [CrossRef]
- Yu, R.; Wang, G.; Yu, X.; Li, L.; Li, C.; Song, Y.; Xu, Z.; Zhang, J.; Guan, C. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. Plant Biol. 2021, 23, 664–674. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. Changes in plant response to nacl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Exp. Bot. 1995, 46, 1843–1852. [Google Scholar] [CrossRef]
- Cuartero, J.; Bolarín, M.C.; Asíns, M.J.; Moreno, V. Increasing salt tolerance in the tomato. J. Exp. Bot. 2006, 57, 1045–1058. [Google Scholar] [CrossRef]
- Keshavarizi, B.; Mohammed, H. Studying the effects of different levels of salinity which caused by NaCl on early and germination of Lctuca sativa L. seedling. J. Stress Physiol. Biochem. 2012, 8, 203–208. [Google Scholar]
- Bojović, B.; Đelić, G.; Topuzović, M.; Stanković, M. Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujev. J. Sci. 2010, 32, 83–87. [Google Scholar]
- Guo, X.F.; Qu, L.L.; Jia, Z.Y.; Yang, Z.K.; Liu, Y.L.; Wei, W.H. Research progress on salt and alkaline tolerance of Leymus chinensis. Grassl. Prataculture 2022, 34, 11–32. [Google Scholar] [CrossRef]
- Xia, G.M.; Chen, H.M. Plant regeneration from intergeneric somatic hybridization between Triticum aestivum L. and Leymus chinensis (Trin.) Tzvel. Plant Sci. 1996, 120, 197–203. [Google Scholar] [CrossRef]
- Zhu, T.C. Yang-Cao Biological Ecology, 3rd ed.; Jilin Science and Technology Press: Changchun, China, 2004; pp. 539–542. [Google Scholar]
- Liang, Z.W.; Wang, Z.C.; Ma, H.Y.; Yang, F.; Chen, Y.; Huang, L.H.; Kong, X.J.; Yan, C.; Wang, M.M.; Qi, C.Y. The progress in improvement of high pH saline-alkali soil in the Songnen Plain by stress tolerant plants. J. Jilin Agric. Univ. 2008, 30, 517–518. [Google Scholar] [CrossRef]
- Ma, H.Y.; Liang, Z.W.; Kong, X.J.; Yan, C.; Chen, Y. Effects of salinity, temperature and their interaction on the germination percentage and seedling growth of Leymus chinensis (Trin.) Tzvel. (Poaceae). Acta Ecol. Sin. 2008, 28, 4710–4717. [Google Scholar] [CrossRef]
- Ma, H.Y.; Lv, B.S.; Yang, H.Y.; Yan, C.; Liang, Z.W. Responses of seed germination of Leymus chinensis to environmental factors in degradedgrassland on Songnen Plain in China. Chin. J. Plant Ecol. 2012, 36, 812–818. [Google Scholar] [CrossRef]
- Li, Q.; Qi, D.M.; Li, X.X.; Chen, S.Y.; Yang, W.G.; Guo, X.F.; Zhang, Q.F.; Liu, H.; Dong, X.B.; Chen, L.Q.; et al. Evaluation of salt tolerance of Leymus chinensis germplasm. Grass Forage Sci. 2019, 15–21. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, H.; Feng, C.L.; Li, B.; Liu, X.Y.; Ma, H.R. Comprehensive evaluation on the salt tolerance of seed germination of different Alfalfa varieties under salt stress. Acta Ecol. Sin. 2023, 31, 3724–3733. [Google Scholar] [CrossRef]
- Hao, S.H.; Wang, Y.R.; Yan, Y.X.; Liu, Y.H.; Wang, J.Y.; Chen, S. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 2021, 7, 132. [Google Scholar] [CrossRef]
- Ye, S.H.; Huang, Z.B.; Zhao, G.B.; Zhai, R.R.; Ye, J.; Wu, M.M.; Yu, F.M.; Zhu, G.F.; Zhang, X.M. Differential physiological responses to salt stress between salt-sensitive and salt-tolerant japonica rice cultivars at the post-germination and seedling stages. Plants 2021, 10, 2433. [Google Scholar] [CrossRef]
- Kruthika, N.; Jithesh, M.N. Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress. J. Plant Res. 2023, 136, 907–930. [Google Scholar] [CrossRef]
- Abo-Kassem, E.E.M. Effects of salinity: Calcium interaction of growth and nucleid acid metabolism in five species of Chenopodiaceae. Turk. J. Bot. 2007, 31, 125–134. [Google Scholar]
- Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Ismail, M.R.; Selamat, A. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918. [Google Scholar] [CrossRef]
- Bhattarai, S.; Lundell, S.; Biligetu, B. Effect of sodium chloride salt on germination, growth, and elemental composition of alfalfa cultivars with different tolerances to salinity. Agronomy 2022, 12, 2516. [Google Scholar] [CrossRef]
- Shiade, S.R.G.; Boelt, B. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agric. Scand. Sect. B-Soil. Plant Sci. 2020, 70, 485–494. [Google Scholar] [CrossRef]
- Li, H.Y.; Ding, X.M.; Zhou, C.; Yang, Y.F. The effect of saline stress on the germination and embryo growth of three saline-grass seeds. Acta Agrestia Sin. 2004, 12, 45–50. [Google Scholar]
- Lin, J.X.; Li, X.Y.; Zhang, Z.J.; Wang, J.F.; Li, Z.L.; Mu, C.S. Effects of temperature, salinity, alkalinity and their interactions on seed germination and seedling growth of Leymus chinensis. Acta Agrestia Sin. 2001, 19, 1005–1009. [Google Scholar]
- Ma, M.Y.; Ma, H.Y.; Wang, L.; Qi, W.W.; Li, S.Y.; Zhao, D.D. Differences in the seed germination of Leymus chinensis (Poaceae) ecotypes reveal distinct strategies for coping with salinity stress: A common garden experiment. Front. Ecol. Evol. 2021, 9, 703287. [Google Scholar] [CrossRef]
- Mer, R.K.; Prajith, P.K.; Pandya, D.H.; Pandey, A.N. Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J. Agron. Crop Sci. 2000, 185, 209–217. [Google Scholar] [CrossRef]
- Ouji, A.; El-Bok, S.; Mouelhi, M.; Younes, M.B.; Kharrat, M. Effect of salinity stress on germination of five tunisian lentil (Lens culinaris L.) genotypes. Eur. Sci. J. 2015, 11, 63–75. [Google Scholar]
- Alom, R.; Hasan, M.A.; Islam, M.R.; Wang, Q.F. Germination characters and early seedling growth of wheat (Triticum aestivum L.) genotypes under salt stress conditions. J. Crop Sci. Biotechnol. 2016, 19, 383–392. [Google Scholar] [CrossRef]
- Bernstein, N.; Meiri, A.; Zilberstaine, M. Root growth of avocado is more sensitive to salinity than shoot growth. J. Am. Soc. Hortic. Sci. 2004, 129, 188–192. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.X.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Geng, Y.; Wu, R.; Wee, C.W.; Xie, F.; Wei, X.; Chan, P.M.; Tham, C.; Duan, L.; Dinneny, J.R. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 2013, 25, 2132–2154. [Google Scholar] [CrossRef]
- Yang, Q.S.; Zhang, R.M.; Cao, Y.B.; Ma, G.L.; Wang, H.J.; Chen, X.X.; Li, G.L. Comprehensive evaluation of salt tolerance in six oak species (Quercus spp.): Unraveling growth-resistance trade-offs. Sci. Hortic. 2024, 338, 113835. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Meng, Q.S.; Qin, H.; Quan, R.D.; Wei, P.C.; Li, X.Y.; Jiang, L.; Huang, R.F. A natural variation in osdsk2a modulates plant growth and salt tolerance through phosphorylation by snrk1a in rice. Plant Biotechnol. J. 2024, 22, 1881–1896. [Google Scholar] [CrossRef]
- Yang, X.; He, J.X.; Xu, M.; Huo, Q.Y.; Song, J.Q.; Han, W.; Lv, G.H. Salt gradient-driven adaptation in okra: Uncovering mechanisms of tolerance and growth regulation. Front. Plant Sci. 2025, 16, 1648092. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Zhang, H.; Song, C.P.; Zhu, J.K.; Shabala, S. Mechanisms of plant responses and adaptation to soil salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef]
- Liang, X.Y.; Li, J.F.; Yang, Y.Q.; Jiang, C.F.; Yan, G. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Chapagain, S.; Pruthi, R.; Singh, L.; Subudhi, P.K. Comparison of the genetic basis of salt tolerance at germination, seedling, and reproductive stages in an introgression line population of rice. Mol. Biol. Rep. 2024, 51, 252. [Google Scholar] [CrossRef]
- Marcar, N. Salt tolerance in the genus Lolium (ryegrass) during germination and growth. Aust. J. Agric. Res. 1987, 38, 297–307. [Google Scholar] [CrossRef]
- Wu, J.F.; Yang, B.W.; Xiang, X.C.; Xu, L.; Yan, L.M. Identification of salt tolerance in different rice germplasm at different growth stages. Chin. Bull. Bot. 2017, 52, 77–88. [Google Scholar] [CrossRef]
- Damaris, R.N.; Lin, Z.; Yang, P.; He, D. The rice alpha-amylase, conserved regulator of seed maturation and germination. Int. J. Mol. Sci. 2019, 20, 450. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H.M. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [Google Scholar] [CrossRef]
- Foolad, M.R.; Lin, G.Y. Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breed. 1997, 116, 363–367. [Google Scholar] [CrossRef]
- Zhang, G.F.; Zhou, J.Z.; Peng, Y.; Tan, Z.D.; Li, L.; Yu, L.Q.; Jin, C.; Fang, S.; Lu, S.P.; Guo, L. Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus. Front. Plant Sci. 2022, 12, 772708. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.N.; Tao, L.Y.; Shi, J.M.; Han, X.R.; Cheng, X.G. Exogenous salicylic acid signal reveals an osmotic regulatory role in priming the seed germination of Leymus chinensis under salt-alkali stress. Environ. Exp. Bot. 2021, 188, 104498. [Google Scholar] [CrossRef]
- Yan, G.; Shi, Y.J.; Mu, C.S.; Wang, J.F. Differences in organic solute and metabolites of Leymus chinensis in response to different intensities of salt and alkali stress. Plants 2023, 12, 1916. [Google Scholar] [CrossRef]
- Di, D.; Qi, D.M.; Zhang, R.; Li, Q.; Cheng, L.Q.; Wu, Z.N.; Li, X.X. Salt stress-related function of the oil body-associated protein gene lcobap2b in Leymus chinensis. Gene 2025, 943, 149260. [Google Scholar] [CrossRef]
Source of Variation | df | GP | RL | SL | R/S | PH | SR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | F | p | F | p | F | p | F | p | χ2 | p | ||
NaCl | 3 | 422.06 | <0.001 | 373.85 | <0.001 | 18.99 | <0.001 | 273.46 | <0.001 | 113.20 | <0.001 | 297.67 | <0.001 |
Genotype | 9 | 223.97 | <0.001 | 2.66 | 0.004 | 15.33 | <0.001 | 4.72 | <0.001 | 12.19 | <0.001 | 32.55 | <0.001 |
NaCl × Genotype | 27 | 71.36 | <0.001 | 2.23 | <0.001 | 3.56 | <0.001 | 1.92 | 0.003 | 2.01 | 0.002 | 58.58 | <0.001 |
NaCl Concentration (mM) | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1.3 a | 1.6 a | 1.3 a | 1.2 a | 1.2 a | 1.5 a | 1.1 a | 1.2 a | 1.3 a | 1.1 a |
50 | 0.7 b | 0.7 b | 0.7 b | 0.9 b | 0.6 b | 0.7 b | 0.7 b | 0.6 b | 0.7 b | 0.6 b |
100 | 0.6 bc | 0.5 b | 0.5 c | 0.6 c | 0.5 bc | 0.6 b | 0.4 c | 0.5 b | 0.6 b | 0.8 ab |
150 | 0.4 c | 0.6 b | 0.3 c | 0.7 bc | 0.4 c | 0.6 b | 0.5 c | 0.4 b | 0.4 b | 0.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Sun, M.; Zhao, D.; Li, S.; Qi, W.; Chen, S.; Liu, J.; Ma, H. Multi-Stage Salt Tolerance in Leymus chinensis: Contrasting Responses at Germination and Seedling Stages. Agronomy 2025, 15, 2192. https://doi.org/10.3390/agronomy15092192
Shi M, Sun M, Zhao D, Li S, Qi W, Chen S, Liu J, Ma H. Multi-Stage Salt Tolerance in Leymus chinensis: Contrasting Responses at Germination and Seedling Stages. Agronomy. 2025; 15(9):2192. https://doi.org/10.3390/agronomy15092192
Chicago/Turabian StyleShi, Mingxue, Mengdan Sun, Dandan Zhao, Shaoyang Li, Wenwen Qi, Shiman Chen, Jushan Liu, and Hongyuan Ma. 2025. "Multi-Stage Salt Tolerance in Leymus chinensis: Contrasting Responses at Germination and Seedling Stages" Agronomy 15, no. 9: 2192. https://doi.org/10.3390/agronomy15092192
APA StyleShi, M., Sun, M., Zhao, D., Li, S., Qi, W., Chen, S., Liu, J., & Ma, H. (2025). Multi-Stage Salt Tolerance in Leymus chinensis: Contrasting Responses at Germination and Seedling Stages. Agronomy, 15(9), 2192. https://doi.org/10.3390/agronomy15092192