New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change
Abstract
:1. Introduction
2. Abiotic Stress Tolerance in the Domesticated Genepools of Crops
3. Novel Genetic Stress Tolerance from Wild Relatives
4. Ecological Screening by the Habitats for Collection of Germplasm
5. Genomics and Control Mechanisms for Stress Tolerance
6. Synthesis of Plant Breeding, Genomics and Genotype × Environment Interaction
7. Conclusions
References
- Intergovernmental Panel on Climate Change (IPCC), Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Cambridge University Press: Cambridge, UK, 2007.
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecented seasonal heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for Food Security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef]
- Schafleitner, R.; Ramirez, J.; Jarvis, A.; Evers, D.; Gutierrez, R.; Scurrah, M. Adaptation of the Potato Crop to Changing Climates. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 11; pp. 287–297. [Google Scholar]
- Singh, R.P.; Vara Prasad, P.V.; Sharma, A.K.; Raja Reddy, K. Impacts of High-Temperature Stress and Potential Opportunities for Breeding. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 5.1; pp. 166–185. [Google Scholar]
- Lafarge, T.; Peng, S.; Hasegawa, T.; William, P.; Quick, S.V.; Jagadish, K.; Wassmann, R. Genetic Adjustment to Changing Climates: Rice. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 12; pp. 298–313. [Google Scholar]
- Vadez, V.; Kholova, J.; Choudhary, S.; Zindy, P.; Terrier, M.; Krishnamurthy, L.; Ratna Kumar, P.; Turner, N.C. Responses to Increased Moisture Stress and Extremes: Whole Plant Response to Drought under Climate Change. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 5.2; pp. 186–197. [Google Scholar]
- Lotze-Campden, H. Climate Change, Population Growth, and Crop Production: An Overview. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 1; pp. 1–11. [Google Scholar]
- Redden, R.J.; Yadav, S.S.; Hatfield, J.L.; Prasanna, B.M.; Vasal, S.K.; Lafarge, T. The Potential of Climate Change Adjustment in Crops: A Synthesis. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 24; pp. 482–494. [Google Scholar]
- Turner, N.C.; Meyer, R. Synthesis of Regional Impacts and Global Agricultural Adjustments. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 4; pp. 156–165. [Google Scholar]
- Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci. 2012, 63, 251–268. [Google Scholar] [CrossRef]
- Diakité, L.; Sidibé, A.; Smale, M.; Grum, M. Seed Value Chains for Sorghum and Millet in Mali. A State-Based System in Transition; IFPRI Discussion Paper 00749; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Uprety, D.C.; Sirohi, G.S. Comparative study on the effect of water stress on the photosynthesis and water relations of triticale, rye and wheat. J. Agron. Crop Sci. 1987, 159, 349–355. [Google Scholar] [CrossRef]
- Gowda, C.L.L.; Saxena, K.B.; Srivastava, R.K.; Upadhyaya, H.D.; Silim, S.N. Pigeonpea: From an Orphan to A Leader in Food Legumes. In Biodiversity in Agriculture: Domestication, Evolution, and Sustainability; Cambridge University Press: New York, NY, USA, 2011; pp. 362–373, ISBN 9780521764599. [Google Scholar]
- Bennett, E. Adaptation in Wild and Cultivated Plant Populations. In Genetic Resources in Plants—Their Exploration and Cultivation; IBP Handbook No 11; Frankel, O.H., Bennett, E., Eds.; Blackwell Scientific Publications: Oxford, UK, 1970; pp. 115–129. [Google Scholar]
- Vigouroux, Y.; Mariac, C.; De Mita, S.; Pham, J.-L.; Gerárd, B.; Sagnard, F.; Deu, M.; Chantereau, J.; Ali, A.; Ndjeung, J.; Thuillet, A.C.; Daidou, A.A.; Bezancon, G. Selection for early flowering crop associated climatic variations in the Sahel. PloS One 2011, 6, e19563. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; He, Y.; Zong, X.; Wang, L.; Li, L.; Enneking, D.; Rose, I.A.; Leonforte, T.; Redden, R.J.; Paull, J. Collection of pea (Pisum. sativum) and faba bean (Vicia. faba) germplasm in Yunnan. Plant Genet. Resour. Newsl. FAO Bioversity 2008, 156, 11–22. [Google Scholar]
- Chenbang, H.; Yujiao, L.; Kunlun, W.; Mingyi, Y.; Qinhua, F.; Yang, L.; Qingbiao, Y.; Jianping, G.; Rose, I.A.; Redden, R.J.; et al. Collecting and surveying landraces of pea (Pisum. sativum) and faba bean (Vicia. faba) in Qinghai province of China. Plant Genet. Resour. Newsl. FAO Bioversity 2008, 156, 1–10. [Google Scholar]
- Frankel, O.H.; Bennett, E. Genetic Resources-Introduction. In Genetic Resources in Plants—Their Exploration and Conservation; IBP Handbook No 11; Frankel, O.H., Bennett, E., Eds.; Blackwell Scientific Publications: Oxford, UK, 1970; pp. 7–17. [Google Scholar]
- Mercer, K.L.; Perales, H. Evolutionary response of landraces to climatic change in centres of diversity. Evol. Appl. 2010, 3, 480–493. [Google Scholar] [CrossRef]
- Trethowan, R.M.; Mahmood, T. Genetic Options for Improving Productivity of Wheat in Water-Linited and Temperature-Stressed Environments. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 7; pp. 218–237. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, pp. 1965–1978. Available online: http://www.worldclim.org/current (accessed on 7 May 2013).
- Upadhyaya, H.D.; Dwivedi, S.L.; Ambrose, M.; Ellis, N.; Berger, J.; Smykal, P.; Bebouck, D.; Dumet, D.; Flavell, A.; Sharma, S.K.; et al. Legume genetic resources: Management, diversity assessment, and utilisation in crop improvement. Euphytica 2011, 180, 27–47. [Google Scholar] [CrossRef]
- Li, L.; Redden, R.J.; Zong, X.; Berger, J.D.; Bennett, S.J. Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet. Resour. Crop Evol. Available online: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10722-013–9955-6 (accessed on 7 May 2013).
- Islam, F.; Beebe, S.; Munoz, M.; Tohme, J.; Redden, R.J.; Basford, K.E. Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool. Theor. Appl. Genet. 2004, 108, 243–252. [Google Scholar] [CrossRef]
- Berger, J.D.; Mackay, M.C.; Street, K.A.; Konopka, J.; Adhikari, K.; Clarke, H.J.; Sandhu, J.S.; Nayyar, H. Emerging Opportunities for Agriculture: Investigating Plant Adaptation by Characterizing Germplasm Collection Habitats. In Proceedings of the 14th Australian Agronomy Conference, Global Issues, Paddock Action, 5395, Adelaide, Australia, 21–25 September 2008.
- Ehlers, J.D.; Hall, A.E. Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res. 1998, 55, 11–21. [Google Scholar] [CrossRef]
- Hall, A.E. Breeding Cowpea for Future Climates. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 15; pp. 340–355. [Google Scholar]
- Abbo, S.; Berger, J.; Turner, N.C. Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 2003, 30, 1081–1087. [Google Scholar] [CrossRef]
- Mayr, E. Systematics and the Origin of Species; Columbia Univ. Press: New York, NY, USA, 1942. [Google Scholar]
- Ladizinsky, G. The Course of Reducing and Maintaining Genetic Diversity under Domestication. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998; Chapter 3; pp. 113–126. [Google Scholar]
- Ladizinsky, G. Origins of Agriculture. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998; Chapter 1; pp. 1–60. [Google Scholar]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An analysis of 203 global food crops. New Phytol. 2013, 196, 29–48. [Google Scholar] [CrossRef]
- Vardi, A.; Zohary, D. Introgression in wheat via triploid hybrids. Heredity 1967, 22, 541–560. [Google Scholar] [CrossRef]
- Hancock, J.F. The Dynamics of Plant Domestication. In Plant Evolution and the Origin of Crop Species, 3rd ed; CABI: Wallingford, UK, 2012; Chapter 7; pp. 114–131. [Google Scholar]
- Nguyen, T.T.; Taylor, P.W.J.; Redden, R.J.; Ford, R. Mining resistance to Ascochyta. rabiei in a wild Cicer. germplasm collection. Aust. J. Exp. Agric. 2005, 45, 1291–1296. [Google Scholar] [CrossRef]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 227, 1063–1066. [Google Scholar] [CrossRef]
- Xue, G.-P.; McIntyre, C.L. Wild Relative and Transgenic Innovation for Enhancing Crop Adaptation to Warmer and Drier Climate. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Chapter 27; pp. 522–545. [Google Scholar]
- Gur, A.; Zamit, D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2004, 2, 1610–1615. [Google Scholar]
- Ladizinsky, G. Genetic Resources for Future Crop Evolution. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998; Chapter 7; pp. 209–222. [Google Scholar]
- Redden, R.J.; Berger, J.D. History and Origin of Chickpea. In Chickpea Breeding & Management; Yadav, S.S., Redden, R., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; Chapter 1; pp. 1–13. [Google Scholar]
- Ladizinsky, G. Weeds and Their Evolution. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998; Chapter 5; pp. 156–159. [Google Scholar]
- Ellstrand, N.C.; Prentice, H.C.; Hancock, J.F. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 1999, 30, 539–563. [Google Scholar] [CrossRef]
- Haijar, R.; Hodgins, T. The use of wild relatives in crop improvement: A survey of developments over the last 30 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Erskine, W.; Sarker, A.; Ashraf, M. Reconstructing an ancient bottleneck of the movement of the lentil (Lens culinaris ssp. culinaris) into South Asia. Genet. Resour. Crop Evol. 2010, 58, 373–381. [Google Scholar] [CrossRef]
- Langridge, P.; Fleury, D. Making the most of the ‘omics’ for crop breeding. Trends Biotechnol. 2011, 29, 33–40. [Google Scholar] [CrossRef]
- Rafalski, J.A. Association genetics in crop improvement. Curr. Opin. Plant Biol. 2010, 13, 174–180. [Google Scholar] [CrossRef]
- Bernado, R. Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci. 2009, 49, 419–425. [Google Scholar] [CrossRef]
- Jhanwar, S.; Priya, P.; Garg, R.; Parida, S.K.; Tyagi, A.K.; Jain, M. Transcriptome sequencing of wild chickpea as a rich redource for marker development. Plant Biotechnol. J. 2012, 10, 690–702. [Google Scholar] [CrossRef]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630. [Google Scholar] [CrossRef]
- Weller, J.L.; Chee liew, L.; Hecht, V.F.G.; Rajandan, V.; Laurie, R.E.; Ridge, S.; Wenden, B.; Vander Schoor, J.K.; Jaminon, O.; Blassiau, C.; et al. A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc. Natl. Acad. Sci. USA 2012, 109, 21158–21163. [Google Scholar] [CrossRef]
- Xia, H.; Camus-Kulandaivelu, L.; Dtephan, W.; Tellier, A.; Zhang, Z. Nucleotide diversity patterns of local adaptation at drought related candidate genes in wild tomatoes. Mol. Ecol. 2010, 19, 4144–4154. [Google Scholar] [CrossRef]
- You, F.M.; Huo, N.; Deai, K.R.; Gu, Y.Q.; Luo, M.; McGuire, P.; Dvorak, J.; Anderson, O. Annotation-based genome-wide SNP discovery in the large and complex Aegilops. tauschii genome using next-generation sequencing without a reference genome. BMC Genomics 2011, 12, 59–84. [Google Scholar]
- Xue, G.P.; McIntyre, C.L.; Jenkins, C.L.D.; Glassop, D.; van Herwaarden, A.F.; Shorter, R. Molecular dissection of variation in carbohydrate metabolism related to water soluble carbohydrate accumulation in stems of wheat (Triticum. aestivum L.). Plant Physiol. 2008, 146, 441–454. [Google Scholar]
- Varshney, R.K.; Nayak, S.N.; Gregory, D.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef]
- Edwards, D.; Batley, J.; Snowden, R.J. Assessing complex crop genomes with next-generation sequencing. Theor. Appl. Genet. 2013, 126, 1–11. [Google Scholar] [CrossRef]
- Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.A.; D’Amore, R.; Allen, A.; McKenzie, N.; Kramer, M.; Kerhornou, A.; Bolser, D.; et al. Analysis of the bread wheat genome using whole-genome shot-gun sequencing. Nature 2012, 421. [Google Scholar] [CrossRef]
- Redden, R. The effect of epistasis on chromosome mapping of quantitative characters in wheat. II. Agronomic characters. Aust. J. Agric. Res. 1991, 42, 335–345. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant breeding program. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- Jordan, D.R.; Mace, E.S.; Cruickshank, A.W.; Hunt, C.H.; Henzell, R.H. Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci. 2011, 51, 1444–1457. [Google Scholar] [CrossRef]
- Redden, R.J.; Basford, K.E.; Kroonenberg, P.M.; Amirul Islam, F.M.; Ellis, R.; Wang, S.; Cao, Y.; Zong, X.; Wang, X. Variation in adzuki bean (Vigna. angularis) germplasm grown in China. Crop Sci. 2009, 49, 771–782. [Google Scholar] [CrossRef]
- Zong, X.; Redden, R.J.; Liu, U.Q.; Wang, S.; Guan, J.; Liu, J.; Xu, Y.; Liu, X.; Gu, J.; Yan, L.; et al. Analysis of a diverse global Pisum. sp. Collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor. Appl. Genet. 2009, 118, 193–204. [Google Scholar] [CrossRef]
- Wang, H.; Zong, X.; Guan, J.; Yang, T.; Sun, X.; Ma, Y.; Redden, R. Genetic diversity and relationship of global faba bean (Vicia. faba L.) germplasm revealed by ISSR markers. Theor. Appl. Genet. 2012, 124, 789–797. [Google Scholar] [CrossRef]
- Wang, S.M.; Redden, R.J.; Hu, J.P.; Desborough, P.J.; Lawrence, P.L.; Usher, T. Chinese adzuki bean germplasm: 1. Evaluation of agronomic traits. Aust. J. Agric. Res. 2001, 52, 671–681. [Google Scholar] [CrossRef]
- Desborough, P.; Lawrence, P.; Redden, R.; Xuxiao, Z. Characterisation of Response to Temperature and Photoperiod in a Core Collection of Adzuki Bean from China. In Plant Breeding for the 11th Millennium; Proceedings of the 12th Australasian Plant Breed Conference, Perth, Australia, 15–20 September 2002; McComb, J., Ed.; pp. 565–568.
- Lopes, M.S.; Reynolds, M.P.; Jalal-Kamali, M.R.; Moussa, M.; Feltaous, Y.; Tahir, I.S.A.; Barma, N.; Vargas, M.; Mannes, Y.; Baum, M. The yield correlations of selectable phenotypic traits in a population of advanced spring lines grown in warm and drought environments. Field Crops Res. 2012, 128, 129–136. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Redden, R. New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change. Agronomy 2013, 3, 419-432. https://doi.org/10.3390/agronomy3020419
Redden R. New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change. Agronomy. 2013; 3(2):419-432. https://doi.org/10.3390/agronomy3020419
Chicago/Turabian StyleRedden, Robert. 2013. "New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change" Agronomy 3, no. 2: 419-432. https://doi.org/10.3390/agronomy3020419
APA StyleRedden, R. (2013). New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change. Agronomy, 3(2), 419-432. https://doi.org/10.3390/agronomy3020419