Phosphorus Deficiency Alters Nutrient Accumulation Patterns and Grain Nutritional Quality in Rice
Abstract
:1. Introduction
2. Results
2.1. Plant Growth, Biomass Accumulation, and Partitioning
2.2. Nutrient Accumulation
2.3. Nutrient Partitioning between Grain and Straw and Tissue Nutrient Concentrations
2.4. Grain Phytic Acid and Phospholipid Concentrations
3. Discussion
3.1. Total Nutrient Uptake and Patterns of Accumulation
3.2. Post-Anthesis Uptake of Key Nutrients and Potential Implications
4. Experimental Section
4.1. Field Site
4.2. Plant Cultivation
4.3. Measurements
4.4. Statistical Analyses
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Impa, S.M.; Johnson-Beebout, S.E. Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant Soil 2012, 361, 3–41. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Haefele, S.M.; Nelson, A.; Hijmans, R.J. Soil quality and constraints in global rice production. Geoderma 2014, 235, 250–259. [Google Scholar] [CrossRef]
- Dobermann, A.; Fairhurst, T.H. Nutrient Disorders and Nutrient Management; Potash and Phosphate Institute, Potash and Phosphate Institute of Canada and International Rice Research Institute: Singapore, 2000. [Google Scholar]
- Saleque, M.A.; Abedin, M.J.; Ahmed, Z.U.; Hasan, M.; Panaullah, G.M. Influences of phosphorus deficiency on the uptake of nitrogen, potassium, calcium, magnesium, sulphur and zinc in lowland rice varieties. J. Plant Nutr. 2001, 24, 1621–1632. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Smith, S.E.; Smith, F.A. Zinc (Zn)-phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Ann. Bot. 2001, 88, 941–945. [Google Scholar] [CrossRef]
- Vandamme, E.; Rose, T.J.; Saito, K.; Jeong, K.; Wissuwa, M. Integration of P acquisition efficiency, P utilization efficiency and low grain P concentrations into P-efficient rice genotypes for specific target environments. Nutr. Cycl. Agroecosys. 2016, 104, 413–427. [Google Scholar] [CrossRef]
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Waters, D.L.E.; Rose, T.J.; Bao, J.; King, G.J. Phospholipids in rice: Significance in grain quality and health benefits: A review. Food Chem. 2013, 139, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G.; Peng, S.; Olk, D.C.; Ladha, J.K.; Reichardt, W.; Dobermann, A.; Singh, U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- Dunn, B.W.; Dunn, T.S.; Beecher, H.G. Nitrogen timing and rate effects on growth and grain yield of delayed permanent-water rice in south-eastern Australia. Crop Pasture Sci. 2014, 65, 878–887. [Google Scholar] [CrossRef]
- Linquist, B.; Liu, L.; van Kessel, C.; van Groenigen, K.J. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Res. 2012, 154, 246–254. [Google Scholar] [CrossRef]
- Rose, T.J.; Bloomfield, C.; Raymond, C.; King, G.J. Perturbation of nutrient source-sink relationships by post-anthesis stresses results in differential accumulation of key nutrients into wheat grain. J. Plant Nutr. Soil Sci. 2015, 178, 89–98. [Google Scholar] [CrossRef]
- Gamuyao, R.; Chin, J.H.; Pariasca-Tanaka, J.; Pesaresi, P.; Catausan, S.; Dalid, C.; Slamet-Loedin, E.M.; Tecson-Mendoza, M.; Wissuwa, M.; Heuer, S. The protein kinase OsPSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature 2012, 488, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tong, C.; Bao, J.; Waters, D.L.E.; Rose, T.J.; King, G.J. Determination of starch lysophospholipids in rice using liquid chromatography-mass spectrometry (LC-MS). J. Agric. Food Chem. 2014, 62, 6600–6607. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, H.; Wu, Y.; Hazebroek, J.; Meeley, R.B.; Ertl, D.S. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 2003, 131, 507–515. [Google Scholar] [CrossRef] [PubMed]
Phosphorus Supply | Biomass | Macronutrients (kg·ha−1) | Micronutrients (g·ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(t·ha−1) | N | P | K | S | Ca | Mg | Cu | Fe | Zn | B | Mn | |
Whole shoot nutrient content | ||||||||||||
+P | 17 | 175 | 35 | 174 | 22 | 34 | 36 | 76 | 2986 | 343 | 523 | 1007 |
−P | 11 | 115 | 11 | 123 | 18 | 23 | 18 | 67 | 1287 | 280 | 434 | 421 |
Significance | ** | ** | ** | ** | ns | * | ** | ns | ** | * | ns | ** |
% post-anthesis accumulation | ||||||||||||
+P | 51 | 20 | 68 | 22 | 37 | 32 | 58 | 40 | 10 | 49 | 46 | 53 |
−P | 69 | 43 | 72 | 59 | 70 | 53 | 66 | 61 | 14 | 69 | 56 | 56 |
Significance | ** | ** | ns | ** | * | ** | ns | * | ns | ** | ns | ns |
Harvest index | ||||||||||||
+P | 0.62 | 0.69 | 0.90 | 0.42 | 0.61 | 0.15 | 0.56 | 0.71 | 0.28 | 0.64 | 0.48 | 0.36 |
−P | 0.56 | 0.68 | 0.85 | 0.30 | 0.62 | 0.13 | 0.40 | 0.56 | 0.31 | 0.49 | 0.36 | 0.38 |
Significance | * | ns | ** | * | ns | ns | ** | ns | ns | ** | ns | ns |
Phosphorus Supply | Macronutrients (mg·g−1) | Micronutrients (mg·kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | S | Ca | Mg | Cu | Fe | Zn | B | Mn | |
Whole shoot | |||||||||||
+P | 10.4 | 2.05 | 10.4 | 1.32 | 2.00 | 2.15 | 4.49 | 178 | 20.3 | 31.1 | 59.7 |
−P | 10.9 | 1.00 | 11.9 | 1.59 | 2.18 | 1.73 | 6.46 | 132 | 26.8 | 41.0 | 38.9 |
Significance | ns | ** | ns | ns | ns | ** | ns | * | ** | * | ** |
Grain | |||||||||||
+P | 11.7 | 3.01 | 6.98 | 1.30 | 0.431 | 1.96 | 5.16 | 77 | 21.1 | 23.4 | 34.9 |
−P | 13.2 | 1.50 | 6.30 | 1.57 | 0.568 | 1.24 | 6.20 | 61 | 23.3 | 26.4 | 25.7 |
Significance | ns | ** | ns | ns | * | ** | ** | ns | * | ns | ns |
Straw | |||||||||||
+P | 8.37 | 0.483 | 15.7 | 1.35 | 4.56 | 2.46 | 3.40 | 336 | 19.1 | 43.1 | 99.3 |
−P | 7.89 | 0.347 | 19.0 | 1.56 | 4.32 | 2.38 | 6.80 | 228 | 31.3 | 59.8 | 56.6 |
Significance | ns | ns | ns | ns | ns | ns | ns | ns | ** | * | ** |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rose, T.J.; Kretzschmar, T.; Liu, L.; Lancaster, G.; Wissuwa, M. Phosphorus Deficiency Alters Nutrient Accumulation Patterns and Grain Nutritional Quality in Rice. Agronomy 2016, 6, 52. https://doi.org/10.3390/agronomy6040052
Rose TJ, Kretzschmar T, Liu L, Lancaster G, Wissuwa M. Phosphorus Deficiency Alters Nutrient Accumulation Patterns and Grain Nutritional Quality in Rice. Agronomy. 2016; 6(4):52. https://doi.org/10.3390/agronomy6040052
Chicago/Turabian StyleRose, Terry J., Tobias Kretzschmar, Lei Liu, Graham Lancaster, and Matthias Wissuwa. 2016. "Phosphorus Deficiency Alters Nutrient Accumulation Patterns and Grain Nutritional Quality in Rice" Agronomy 6, no. 4: 52. https://doi.org/10.3390/agronomy6040052
APA StyleRose, T. J., Kretzschmar, T., Liu, L., Lancaster, G., & Wissuwa, M. (2016). Phosphorus Deficiency Alters Nutrient Accumulation Patterns and Grain Nutritional Quality in Rice. Agronomy, 6(4), 52. https://doi.org/10.3390/agronomy6040052