Investigating the Combined Effect of Tillage, Nitrogen Fertilization and Cover Crops on Nitrogen Use Efficiency in Winter Wheat
Abstract
:1. Introduction
2. Results
2.1. Effect of Tillage Treatment and N Fertilizer Rate on Agronomic Traits
2.2. Effect of Tillage Treatment and N Fertilizer Rate on Different NUE Indices
2.3. Effect of Tillage Treatment and N Fertilizer Rate on NNI
2.4. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Site Description and Experimental Design
4.2. Soil Sampling and Chemical Analysis
4.3. Crop Sampling and Plant Analysis
Gy0/N supply in control plots
Gy0/Nt0 supply in control plots
4.4. Statistical Analyses
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–15120. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Nitrogen in crop production: An account of global flows adds recycled in organic up by harvested and Quantification of N losses from crop to 26–60. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Leach, A.M.; Bleeker, A.; Erisman, J.W. A chronology of human understanding of the nitrogen cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130120. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, O.P.; Melchiori, R.J.M.; Sadras, V.O. Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops. Field Crop. Res. 2014, 168, 27–37. [Google Scholar] [CrossRef]
- Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crop. Res. 2008, 107, 89–101. [Google Scholar] [CrossRef]
- Huggins, D.R.; Pan, W.L. Nitrogen efficiency component analysis: An evaluation of cropping system differences in productivity. Agron. J. 1993, 85, 898. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crop. Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Paponov, I.; Aufhammer, W.; Kaul, H.P.; Ehmele, F.P. Nitrogen efficiency components of winter cereals. Eur. J. Agron. 1996, 5, 115–124. [Google Scholar] [CrossRef]
- Dobermann, A.R. Nitrogen Use Efficiency—State of the Art. In Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005; pp. 1–18. [Google Scholar]
- Jin, L.; Cui, H.; Li, B.; Zhang, J.; Dong, S.; Liu, P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crop. Res. 2012, 134, 30–35. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Yadav, R.L. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crop. Res. 2003, 81, 39–51. [Google Scholar] [CrossRef]
- Yan, X.; Ti, C.; Vitousek, P.; Chen, D.; Leip, A.; Cai, Z.; Zhu, Z. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environ. Res. Lett. 2014, 9, 1–9. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. N uptake and distribution in plant canopies. In Diagnosis of the Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Heildeberg, Germany, 1997; pp. 3–41. [Google Scholar]
- Justes, E.; Mary, B.; Meynard, J.-M.; Machet, J.-M.; Thelier-Huche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Claessens, A.; Lefebvre, L.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Parent, L. Determination of a critical nitrogen dilution curve for spring wheat. Agron. J. 2010, 102, 241–250. [Google Scholar] [CrossRef]
- Dordas, C.A. Nitrogen nutrition index and its relationship to N use efficiency in linseed. Eur. J. Agron. 2011, 34, 124–132. [Google Scholar] [CrossRef]
- Hu, D.; Sun, Z.; Li, T.; Yan, H.; Zhang, H. Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. J. Integr. Agric. 2014, 13, 1008–1016. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Habbib, H.; Verzeaux, J.; Nivelle, E.; Roger, D.; Lacoux, J.; Catterou, M.; Hirel, B.; Dubois, F.; Tétu, T. Conversion to no-till improves maize nitrogen use efficiency in a continuous cover cropping system. PLoS ONE 2016, 11, e0164234. [Google Scholar] [CrossRef] [PubMed]
- Awale, R.; Chatterjee, A.; Franzen, D. Tillage and N-fertilizer influences on selected organic carbon fractions in a North Dakota silty clay soil. Soil Tillage Res. 2013, 134, 213–222. [Google Scholar] [CrossRef]
- Christopher, S.F.; Lal, R.; Mishra, U. Regional study of no-till effects on carbon sequestration in the midwestern united states. Soil Sci. Soc. Am. J. 2009, 73, 207. [Google Scholar] [CrossRef]
- Dalal, R.C.; Wang, W.; Allen, D.E.; Reeves, S.; Menzies, N.W. Soil nitrogen and nitrogen-use efficiency under long-term no-till practice. Soil Sci. Soc. Am. J. 2011, 75, 2251. [Google Scholar] [CrossRef]
- Dimassi, B.; Cohan, J.P.; Labreuche, J.; Mary, B. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agric. Ecosyst. Environ. 2013, 169, 12–20. [Google Scholar] [CrossRef]
- Kahlon, M.S.; Lal, R.; Ann-Varughese, M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage Res. 2013, 126, 151–158. [Google Scholar] [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Manchanda, J.S.; Garg, A.K.; Kumar, S.; Dercon, G.; Nguyen, M.-L. Crop production and nutrient use efficiency of conservation agriculture for soybean–wheat rotation in the Indo-Gangetic Plains of Northwestern India. Soil Tillage Res. 2012, 120, 50–60. [Google Scholar] [CrossRef]
- Imran, A.; Shafi, J.; Akbar, N.; Ahmad, W.; Ali, M.; Tariq, S. Response of wheat (Triticum aestivum) cultivars to different tillage practices grown under rice-wheat cropping system. Univ. J. Plant Sci. 2013, 1, 125–131. [Google Scholar] [CrossRef]
- López-Bellido, L.; Muñoz-Romero, V.; Benítez-Vega, J.; Fernández-García, P.; Redondo, R.; López-Bellido, R.J. Wheat response to nitrogen splitting applied to a Vertisols in different tillage systems and cropping rotations under typical Mediterranean climatic conditions. Eur. J. Agron. 2012, 43, 24–32. [Google Scholar] [CrossRef]
- Šíp, V.; Růžek, P.; Chrpová, J.; Vavera, R.; Kusá, H. The effect of tillage practice, input level and environment on the grain yield of winter wheat in the Czech Republic. Field Crop. Res. 2009, 113, 131–137. [Google Scholar] [CrossRef]
- Machado, S.; Petrie, S.; Rhinhart, K.; Qu, A. Long-term continuous cropping in the Pacific Northwest: Tillage and fertilizer effects on winter wheat, spring wheat, and spring barley production. Soil Tillage Res. 2007, 94, 473–481. [Google Scholar] [CrossRef]
- Soon, Y.K.; Malhi, S.S.; Wang, Z.H.; Brandt, S.; Schoenau, J.J. Effect of seasonal rainfall, N fertilizer and tillage on N utilization by dryland wheat in a semi-arid environment. Nutr. Cycl. Agroecosyst. 2008, 82, 149–160. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, G.; Yang, Y.; Feng, M.; Ma, S.; Wang, D.; Bi, Y.; Yang, S. Effects of tillage mode and nitrogen application rate on nitrogen use efficiency of wheat in a farming-pasture zone of North China. Ying Yong Sheng Tai Xue Bao 2013, 24, 995–1000. [Google Scholar] [PubMed]
- López-Bellido, R.J.; López-Bellido, L. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization. Field Crop. Res. 2001, 71, 31–46. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Alonso-Ayuso, M.; García-González, I.; Hontoria, C.; Quemada, M. Nitrogen use efficiency and fertiliser fate in a long-term experiment with winter cover crops. Eur. J. Agron. 2016, 79, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, F.C.; van Kessel, C. The nitrogen and non-nitrogen rotation benefits of pea to succeeding crops. Can. J. Plant Sci. 1996, 76, 735–745. [Google Scholar] [CrossRef]
- Brennan, J.; Hackett, R.; McCabe, T.; Grant, J.; Fortune, R.A.; Forristal, P.D. The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. Eur. J. Agron. 2014, 54, 61–69. [Google Scholar] [CrossRef]
- Ishaq, M.; Ibrahim, M.; Lal, R. Tillage effect on nutrient uptake by wheat and cotton as influenced by fertilizer rate. Soil Tillage Res. 2001, 62, 41–53. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crop. Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- Stanislawska-Glubiak, E.; Korzeniowska, J. Yield of winter wheat grown under zero and conventional tillage on different soil types. In Proceedings of the International Scientific Conference, Tortu, Estonia, 13–24 May 2010; p. 263. [Google Scholar]
- Maltas, A.; Corbeels, M.; Scopel, E.; Oliver, R.; Douzet, J.-M.; Silva, F.A.M.; Wery, J. Long-term effects of continuous direct seeding mulch-based cropping systems on soil nitrogen supply in the Cerrado region of Brazil. Plant Soil 2007, 298, 161–173. [Google Scholar] [CrossRef]
- Verzeaux, J.; Roger, D.; Lacoux, J.; Nivelle, E.; Adam, C.; Habbib, H.; Hirel, B.; Dubois, F.; Tetu, T. In winter wheat, no-till increases mycorrhizal colonization thus reducing the need for nitrogen fertilization. Agronomy 2016, 6, 38. [Google Scholar] [CrossRef]
- Machet, J.M.; Dubrulle, P.; Louis, P. AZOBIL: A computer program for fertilizer N recommandations based on a predictive balance sheet method. In Proceedings of the First Congress of the European Society of Agronomy, Paris, France, 5–7 December 1990; p. 21. [Google Scholar]
- Dumas, J.B.A. Procédés de l’analyse organique. Ann. Chem. Phys. 1831, 47, 198–213. [Google Scholar]
- Lemaire, G.; Gastal, F.; Salette, J. Analysis of the effect of nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. In Proceedings of the XVI International Grassland Congress, Nice, France, 4–11 October 1989; pp. 179–180. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 1982, 74, 562. [Google Scholar] [CrossRef]
- Cox, M.C.; Qualset, C.O.; Rains, D.W. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein. Crop Sci. 1985, 25, 435. [Google Scholar] [CrossRef]
- Beheshti, R.; Behboodi, B. Dry matter accumulation and remobilization in grain sorghum genotypes (Sorghum bicolor L. Moench) under drought stress. Weeds 2010, 4, 185–189. [Google Scholar]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 2007, 26, 179–186. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2015. Available online: http://www.R-project.org/(accessed on 13 June 2017).
Source of Variance | 2014 | 2015 | |||||
---|---|---|---|---|---|---|---|
N Fertilizer Rate | Tillage Practice | AG Biomass (kg ha−1) | Grain Yield (kg ha−1) | Grain N (kg ha−1) | AG Biomass (kg ha−1) | Grain Yield (kg ha−1) | Grain N (kg ha−1) |
N0 | NT | 3520 f | 1869 c | 22.76 e | 4541 g | 2298 g | 26.47 e |
NTcc | 3499 f | 2467 c | 34.38 e | 5229 g | 2492 fg | 28.69 e | |
CT | 5868 e | 2228 c | 34.92 e | 5870 fg | 2548 fg | 28.88 e | |
CTcc | 5583 e | 2530 c | 37.05 e | 7192 f | 3495 f | 38.97 e | |
N1 | NT | 13,921 d | 6463 a | 93.48 dc | 15,637 e | 8907 d | 118.3 cd |
NTcc | 15,434 cd | 8109 ab | 118.9 bc | 19,084 cd | 10,123 bc | 129.2 bc | |
CT | 17,805 ab | 8390 ab | 115.7 c | 16,039 e | 7627 e | 105.5 d | |
CTcc | 16,231 bc | 8534 ab | 119.6 bc | 15,891 e | 7645 e | 103.5 dc | |
N2 | NT | 18,194 ab | 8967 ab | 118.8 bc | 21,588 ab | 11,560 a | 171.6 ab |
NTcc | 17,196 abc | 9065 ab | 137.4 ab | 22,440 a | 11,816 a | 177.5 a | |
CT | 17,409 abc | 8409 ab | 114.2 c | 18,206 d | 9175 cd | 141.2 b | |
CTcc | 18,936 a | 10,069 a | 143.8 a | 20,453 bc | 11,061 ab | 170.4 a | |
Analysis of variance | p > F | ||||||
Tillage practice | <0.01 ** | ns | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | |
N fertilizer | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | |
Tillage practice × N fertilizer | ns | ns | ns | <0.001 *** | <0.001 *** | <0.001 *** |
Source of Variance | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|
N Fertilizer | Tillage Practice | AEN (kg kg−1) | PFPN (kg kg−1) | NAR (%) | AEN (kg kg−1) | PFPN (kg kg−1) | NAR (%) | |
N1 | NT | 42.27 ab | 56.01 ab | 62.85 ab | 42.41 c | 54.37 bc | 88.24 de | |
NTcc | 42.25 ab | 59.26 a | 66.06 a | 55.73 a | 69.54 a | 89.8 cd | ||
CT | 36.25 bc | 53.10 b | 60.43 abc | 31.81 d | 48.53 d | 80.23 f | ||
CTcc | 40.58 abc | 57.19 ab | 64.37 a | 25.78 e | 47.49 d | 75.66 ef | ||
N2 | NT | 36.21 b | 44.37 c | 56.68 bc | 46.16 b | 56.06 b | 64.55 ac | |
NTcc | 50.41 a | 44.14 c | 61.39 ab | 43.37 bc | 54.96 bc | 70.40 a | ||
CT | 25.62 d | 34.65 d | 48.64 d | 34.23 d | 48.16 d | 56.28 b | ||
CTcc | 33.40 c | 43.50 c | 53.75 c | 35.19 d | 51.45 cd | 60.22 bc | ||
Analyse of variance | p > F | |||||||
Tillage practice | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
N fertilizer | <0.001 *** | <0.001 *** | <0.001 *** | ns | <0.05 * | <0.001 *** | ||
Tillage × N fertilizer | <0.001 *** | ns | ns | <0.001 *** | <0.001 *** | ns |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habbib, H.; Hirel, B.; Verzeaux, J.; Roger, D.; Lacoux, J.; Lea, P.; Dubois, F.; Tétu, T. Investigating the Combined Effect of Tillage, Nitrogen Fertilization and Cover Crops on Nitrogen Use Efficiency in Winter Wheat. Agronomy 2017, 7, 66. https://doi.org/10.3390/agronomy7040066
Habbib H, Hirel B, Verzeaux J, Roger D, Lacoux J, Lea P, Dubois F, Tétu T. Investigating the Combined Effect of Tillage, Nitrogen Fertilization and Cover Crops on Nitrogen Use Efficiency in Winter Wheat. Agronomy. 2017; 7(4):66. https://doi.org/10.3390/agronomy7040066
Chicago/Turabian StyleHabbib, Hazzar, Bertrand Hirel, Julien Verzeaux, David Roger, Jérôme Lacoux, Peter Lea, Frédéric Dubois, and Thierry Tétu. 2017. "Investigating the Combined Effect of Tillage, Nitrogen Fertilization and Cover Crops on Nitrogen Use Efficiency in Winter Wheat" Agronomy 7, no. 4: 66. https://doi.org/10.3390/agronomy7040066
APA StyleHabbib, H., Hirel, B., Verzeaux, J., Roger, D., Lacoux, J., Lea, P., Dubois, F., & Tétu, T. (2017). Investigating the Combined Effect of Tillage, Nitrogen Fertilization and Cover Crops on Nitrogen Use Efficiency in Winter Wheat. Agronomy, 7(4), 66. https://doi.org/10.3390/agronomy7040066