Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction and HPLC Analysis of Anthocyanin
2.3. Extraction and HPLC Analysis of Phenylpropanoid Compounds
2.4. Statistical Analysis
3. Results
3.1. Phenotype of Tartary Buckwheat Plants under Salinity Stress
3.2. Analysis of Phenylpropanoid Content under Different NaCl Concentrations
3.3. Analysis of Anthocyanin Content under Different NaCl Concentrations
3.4. Analysis of Phenylpropanoid Content by Varying the Time of Treatment with Salt
3.5. Analysis of Anthocyanin Content by Varying the Time of Treatment with Salt
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Yeo, A.R.; Flowers, T.J. Salinity Resistance in Rice (Oryza sativa L.) And a Pyramiding Approach to Breeding Varieties for Saline Soils. Aust. J. Plant Physiol. 1986, 13, 161–173. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, F.; Arvin, M.J.; Kalantari, K.M. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol. Plant. 2010, 32, 91. [Google Scholar] [CrossRef]
- Petrusa, L.M. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem. 1997, 35, 8. [Google Scholar]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Pedranzani, H.; Racagni, G.; Alemano, S.; Miersch, O.; Ramírez, I.; Peña-Cortés, H.; Taleisnik, E.; Machado-Domenech, E.; Abdala, G. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul. 2003, 41, 149–158. [Google Scholar] [CrossRef]
- Muthukumarasamy, M.; Gupta, S.D.; Panneerselvam, R. Enhancement of Peroxidase, Polyphenol Oxidase and Superoxide Dismutase Activities by Triadimefon in NaCl Stressed Raphanus Sativus L. Biol. Plant. 2000, 43, 317–320. [Google Scholar] [CrossRef]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Dietrych-Szostak, D.; Oleszek, W. Effect of Processing on the Flavonoid Content in Buckwheat (Fagopyrum esculentum Möench) Grain. J. Agric. Food Chem. 1999, 47, 4384–4387. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Mazza, G. Flavonoids and Antioxidative Activities in Buckwheat. J. Agric. Food Chem. 1996, 44, 1746–1750. [Google Scholar] [CrossRef]
- Kitabayashi, H.; Ujihara, A.; Hirose, T.; Minami, M. On the Genotypic Differences for Rutin Content in Tartary Buckwheat, Fagopyrum tataricum Gaertn. Jpn. J. Breed. 1995, 45, 189–194. [Google Scholar] [CrossRef]
- Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary Buckwheat (Fagopyrum tataricum Gaertn.) as a Source of Dietary Rutin and Quercitrin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kawaharada, C.; Suzuki, T.; Saito, K.; Hashimoto, N.; Takigawa, S.; Noda, T.; Matsuura-endo, C.; Yamauchi, H. Effect of Natural Light Periods on Rutin, Free Amino Acid and Vitamin C Contents in the Sprouts of Common (Fagopyrum esculentum Moench) and Tartary (F. tataricum Gaertn.) Buckwheats. Food Sci. Technol. Res. 2006, 12, 199–205. [Google Scholar] [CrossRef]
- Barros, J.; Serrani-Yarce, J.C.; Chen, F.; Baxter, D.; Venables, B.J.; Dixon, R.A. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat. Plants 2016, 2, 16050. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Lepiniec, L.; Debeaujon, I.; Routaboul, J.M.; Baudry, A.; Pourcel, L.; Nesi, N.; Caboche, M. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 2006, 57, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yonekura-Sakakibara, K.; Nakabayashi, R.; Higashi, Y.; Yamazaki, M.; Tohge, T.; Fernie, A.R. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biochem. PPB 2013, 72, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Routaboul, J.M.; Dubos, C.; Beck, G.; Marquis, C.; Bidzinski, P.; Loudet, O.; Lepiniec, L. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J. Exp. Bot. 2012, 63, 3749–3764. [Google Scholar] [CrossRef] [PubMed]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. Cell Mol. Biol. 2014, 77, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Butelli, E.; Martin, C. Engineering anthocyanin biosynthesis in plants. Curr. Opin. Plant Biol. 2014, 19, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Alegre, L.; Breusegem, F.; Munné-Bosch, S. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 2009, 14, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Buer, C.S.; Kordbacheh, F.; Truong, T.T.; Hocart, C.H.; Djordjevic, M.A. Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 2013, 238, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Doughty, J.; Aljabri, M.; Scott, R.J. Flavonoids and the regulation of seed size in Arabidopsis. Biochem. Soc. Trans. 2014, 42, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. Int. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Jaleel, C.A.; Azooz, M.M.; Nabi, G. Generation of ROS and Non-Enzymatic Antioxidants During Abiotic Stress in Plants. Bot. Res. Int. 2009, 2, 11–20. [Google Scholar]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.B.; Aung, B.; Amyot, L.; Lalin, I.; Lachâal, M.; Karray-Bouraoui, N.; Hannoufa, A. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol. Plant. 2016, 38, 72. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, K.J.; Kim, B.K.; Jeong, J.W.; Kim, H.J. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 2012, 135, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Kim, J.K.; Wu, Q.; Park, S.U. Effect of cold stress on transcripts and metabolites in tartary buckwheat(Fagopyrum tataricum). Environ. Exp. Bot. 2018, 155, 488–496. [Google Scholar] [CrossRef]
- Tsurunaga, Y.; Takahashi, T.; Katsube, T.; Kudo, A.; Kuramitsu, O.; Ishiwata, M.; Matsumoto, S. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem. 2013, 141, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Honda, Y.; Mukasa, Y. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci. 2005, 168, 1303–1307. [Google Scholar] [CrossRef]
Compound | 0 mM | 100 mM | 200 mM | 300 mM |
---|---|---|---|---|
4-hydroxy benzoic acid | 0.145 ± 0.003 a | 0.163 ± 0.011 bc | 0.170 ± 0.011 c | 0.153 ± 0.006 ab |
Chlorogenic acid | 0.679 ± 0.022 b | 0.638 ± 0.034 b | 0.545 ± 0.012 a | 0.502 ± 0.023 a |
Caffeic acid | 0.091 ± 0.000 b | 0.088 ± 0.011 b | 0.086 ± 0.002 b | 0.059 ± 0.004 a |
Ferulic acid | 0.015 ± 0.000 b | 0.013 ± 0.001 b | 0.013 ± 0.001 b | 0.008 ± 0.000 a |
Benzoic acid | 0.127 ± 0.005 a | 0.149 ± 0.009 ab | 0.159 ± 0.008 b | 0.144 ± 0.006 ab |
Rutin | 12.812 ± 0.181 ab | 14.981 ± 0.150 b | 14.745 ± 0.871 b | 11.108 ± 0.512 a |
Trans-cinnamic acid | 0.012 ± 0.001 a | 0.014 ± 0.001 ab | 0.015 ± 0.001 b | 0.012 ± 0.000 a |
Quercetin | 0.129 ± 0.005 b | 0.155 ± 0.007 c | 0.138 ± 0.003 bc | 0.108 ± 0.001 a |
Kaempferol | 0.043 ± 0.001 c | 0.035 ± 0.003 b | 0.034 ± 0.001 b | 0.025 ± 0.002 a |
Total | 14.057 ± 1.906 b | 16.232 ± 1.640 c | 15.909 ± 0.919 c | 12.122 ± 0.553 a |
Compound | 0 mM | 100 mM | 200 mM | 300 mM |
---|---|---|---|---|
Cyanidin 3-O-glucoside | 0.010 ± 0.003 a | 0.009 ± 0.001 a | 0.010 ± 0.001 a | 0.009 ± 0.001 a |
Cyanidin 3-O-rutinoside | 0.095 ± 0.012 a | 0.091 ± 0.007 a | 0.081 ± 0.004 a | 0.094 ± 0.004 a |
Compound | NaCl | 2 Days | 4 Days | 6 Days | 8 Days |
---|---|---|---|---|---|
4-hydroxy benzoic acid | 0 mM | 0.151 ± 0.007 b | 0.150 ± 0.007 b | 0.150 ± 0.05 b | 0.150 ± 0.007 b |
100 mM | 0.150 ± 0.006 b | 0.156 ± 0.005 ab | 0.161 ± 0.002 ab | 0.165 ± 0.005 a | |
Chlorogenic acid | 0 mM | 0.675 ± 0.038 a | 0.677 ± 0.014 a | 0.678 ± 0.001 a | 0.675 ± 0.016 a |
100 mM | 0.674 ± 0.042 a | 0.664 ± 0.014 ab | 0.637 ± 0.003 b | 0.631 ± 0.010 b | |
Caffeic acid | 0 mM | 0.090 ± 0.006 a | 0.091 ± 0.005 a | 0.090 ± 0.004 a | 0.091 ± 0.006 a |
100 mM | 0.091 ± 0.006 a | 0.088 ± 0.002 a | 0.086 ± 0.004 a | 0.087 ± 0.005 a | |
Ferulic acid | 0 mM | 0.015 ± 0.004 a | 0.016 ± 0.001 a | 0.016 ± 0.001 a | 0.015 ± 0.001 a |
100 mM | 0.015 ± 0.000 a | 0.015 ± 0.001 a | 0.014 ± 0.000 a | 0.013 ± 0.001 b | |
Benzoic acid | 0 mM | 0.120 ± 0.004 c | 0.122 ± 0.003 c | 0.122 ± 0.004 c | 0.120 ± 0.007 c |
100 mM | 0.120 ± 0.004 c | 0.133 ± 0.001 b | 0.151 ± 0.008 a | 0.154 ± 0.006 a | |
Rutin | 0 mM | 12.702 ± 0.605 b | 12.725 ± 0.601 b | 12.721 ± 0.649 b | 12.763 ± 0.573 b |
100 mM | 12.702 ± 0.605 b | 13.335 ± 0.213 b | 14.432 ± 0.572 a | 15.045 ± 0.740 a | |
Trans-cinnamic acid | 0 mM | 0.012 ± 0.000 b | 0.012 ± 0.001 b | 0.012 ± 0.001 b | 0.012 ± 0.007 b |
100 mM | 0.012 ± 0.000 b | 0.013 ± 0.001 b | 0.014 ± 0.000 a | 0.015 ± 0.001 a | |
Quercetin | 0 mM | 0.127 ± 0.005 c | 0.127 ± 0.006 c | 0.127 ± 0.006 c | 0.128 ± 0.004 c |
100 mM | 0.127 ± 0.005 c | 0.141 ± 0.002 b | 0.150 ± 0.007 ab | 0.155 ± 0.001 a | |
Kaempferol | 0 mM | 0.043 ± 0.002 a | 0.044 ± 0.002 a | 0.045 ± 0.002 a | 0.044 ± 0.003 a |
100 mM | 0.043 ± 0.002 a | 0.041 ± 0.002 ab | 0.037 ± 0.004 bc | 0.035 ± 0.003 c | |
Total | 0 mM | 13.893 ± 0.596 b | 13.919 ± 0.605 b | 13.915 ± 0.643 b | 13.954 ± 0.571 b |
100 mM | 13.891 ± 0.596 b | 14.545 ± 0.214 b | 15.645 ± 0.576 a | 16.264 ± 0.754 a |
Compound | NaCl | 2 Days | 4 Days | 6 Days | 8 Days |
---|---|---|---|---|---|
Cyanidin 3-O-glucoside | 0 mM | 0.020 ± 0.000 b | 0.017 ± 0.001 ab | 0.014 ± 0.001 a | 0.019 ± 0.004 ab |
100 mM | 0.017 ± 0.000 ab | 0.019 ± 0.002 ab | 0.017 ± 0.000 ab | 0.015 ± 0.001 a | |
Cyanidin 3-O-rutinoside | 0 mM | 0.110 ± 0.019 a | 0.115 ± 0.024 a | 0.117 ± 0.017 a | 0.113 ± 0.029 a |
100 mM | 0.112 ± 0.008 a | 0.101 ± 0.007 a | 0.120 ± 0.013 a | 0.106 ± 0.013 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.S.; Kwon, S.-J.; Cuong, D.M.; Jeon, J.; Park, J.S.; Park, S.U. Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress. Agronomy 2019, 9, 739. https://doi.org/10.3390/agronomy9110739
Kim NS, Kwon S-J, Cuong DM, Jeon J, Park JS, Park SU. Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress. Agronomy. 2019; 9(11):739. https://doi.org/10.3390/agronomy9110739
Chicago/Turabian StyleKim, Nam Su, Soon-Jae Kwon, Do Manh Cuong, Jin Jeon, Jong Seok Park, and Sang Un Park. 2019. "Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress" Agronomy 9, no. 11: 739. https://doi.org/10.3390/agronomy9110739
APA StyleKim, N. S., Kwon, S.-J., Cuong, D. M., Jeon, J., Park, J. S., & Park, S. U. (2019). Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress. Agronomy, 9(11), 739. https://doi.org/10.3390/agronomy9110739