Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Plant Growth, Yield, and Nutritional Value Determination
2.3. Nutraceutical Potential
2.3.1. Phenolics Determination
Determination of Total Phenolic Compounds (TPC)
Determination of Flavonoid Content (TFC)
Determination of Anthocyanins (TAC)
2.3.2. Reducing Power
2.4. The Index of Biostimulant Effect
2.5. Statistical Analysis
3. Results
3.1. Effect of Biostimulants on Biometric Traits
3.1.1. Plant Height
3.1.2. Number of Internodes in the Main Shoot
3.1.3. Location Height of the First Pod
3.1.4. Number of Pods per Plant
3.2. Effect of Biostimulants on Soybean Yield
3.2.1. Number of Seeds
3.2.2. Seed Yield
3.2.3. Thousand Seed Weight
3.3. Effect of Biostimulant on the Nutritional Properties
3.3.1. Total Protein in Soybean Seeds
3.3.2. Total Fat in Soybean Seeds
3.4. Effect of Biostimulants on the Antioxidant Potential in Soybean Seeds
3.4.1. Total Phenolic Content
3.4.2. Total Anthocyanins Content
3.4.3. Total Flavonoid Content
3.4.4. Reducing Power
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bezerra, A.R.G.; Sediyama, T.; Borém, A.; Soares, M.M. Importância econômica. In Soja: Do plantio à colheita; Sediyama, T., Silva, F., Borém, A., Eds.; UFV: Viçosa, Brazil, 2015; pp. 9–26. [Google Scholar]
- Kocira, S. Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil. J. Agric. Res. 2019, 79, 17–25. [Google Scholar] [CrossRef]
- Stein, H.H.; Berger, L.L.; Drackley, J.K.; Fahey, G.C., Jr.; Hernot, D.C.; Parsons, C.M. Nutritional properties and feeding values of soybeans and their coproducts. In Soybeans, Chemistry, Production, Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 613–660. [Google Scholar]
- Lodhi, K.K.; Choubey, N.K.; Dwivedi, S.K.; Pal, A.; Kanwar, P.C. Impact of seaweed saps on growth, flowering behavior and yield of soybean [Glycine max (L.) Merrill.]. Bioscan 2015, 10, 479–483. [Google Scholar]
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Świeca, M.; Lorencowicz, E.; Kornas, R.; Koszel, M.; Oniszczuk, T. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Basak, A. Biostimulators. Definitions, classification and legislation. In Biostimulators in Modern Agriculture, General Aspects; Gawronska, H., Ed.; Editorial Housen Wies Jutra: Warszawa, Poland, 2008; pp. 7–17. [Google Scholar]
- Paradiković, N.; Vinkovic, T.; Vinkovic, V.I.; Zuntar, I.; Bojic, M.; Medic, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling biometric traits, yield and nutritional and antioxidant properties of seeds of three soybean cultivars through the application of biostimulant containing seaweed and amino acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, G.L., III; Kneivel, D.P.; Watschke, T.L. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Du Jardin, P. The Science of Plant Biostimulants—A bibliographic analysis. Ad hoc Study Report to the European Commission DGENTR. 2012. Available online: https://orbi.uliege.be/bitstream/2268/169257/1/Plant_Biostimulants_final_report_bio_2012_en.pdf (accessed on 1 February 2019).
- Traon, D.; Amat, L.; Zotz, F.; Du Jardin, P. A Legal Framework for Plant Biostimulants and Agronomic Fertiliser Additives in the EU. Report for the European Commission Enterprise & Industry Directorate—General; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Matyjaszczyk, E. The introduction of biostimulants on the Polish market. The present situation and legal requirements. Przem. Chem. 2015, 10, 1841–1844. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Aguilar, J. Algas marinas para la agricultura de alto rendimiento. Available online: http://www.interempresas.net/Horticola/Articulos/136576-Algas-marinas-para-la-agricultura-de-alto-rendimiento.html (accessed on 1 February 2019).
- Panda, D.; Pramanik, K.; Nayak, B.R. Use of sea weed extracts as plant growth regulators for sustainable agriculture. Int. J. Bioresour. Stress Manag. 2012, 3, 404–411. [Google Scholar]
- Stephenson, W.A. Seaweed in Agriculture and Horticulture; Faber and Faber: London, UK, 1968. [Google Scholar]
- Crouch, I.J.; van Staden, J. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul. 1993, 13, 21–29. [Google Scholar] [CrossRef]
- Ecoforce, A. Extracto de algas para agricultura ecológica—Fertilizantes ecoforce. Available online: http://fertilizantesecoforce.es/es/blog/index/list/cat/agricultura-ecologica/?p=19 (accessed on 1 February 2019).
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Medjdoub, R. La algas marinas y la agricultura; Adiego: Zaragoza, Spain; pp. 1–3. Available online: http://catsaigner.adiego.com/sites/default/files/las_algas_marinas.pdf (accessed on 1 February 2019).
- Norrie, J.; Keathley, J.P. Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. Acta Hortic. 2006, 727, 243–247. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Spiżewski, T.; Grabowska, A. The effect of seaweed extracts on the yield and quality parameters of broccoli (Brassica oleracea var. cymosa L.) in open field production. Acta Hortic. 2013, 1009, 83–89. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of microalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Guerrero, J. La aplicación de las algas marinas para la fertilización Hortalizas. Available online: http://www.hortalizas.com/nutricion-vegetal/la-aplicacion-de-las-algas-marinas-para-la-fertilizacion/ (accessed on 1 February 2019).
- Jayaraj, J.; Norrie, J.; Punja, Z.K. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 2011, 23, 353–361. [Google Scholar]
- Araujo, I.B.; Peruch, L.A.M.; Stadnik, M.J. Efeito do extrato de alga e da argila silicatada na severidade da alternariose e na produtividade da cebolinha comum (Allium fistulosum L.). Trop. Plant Pathol. 2012, 37, 363–367. [Google Scholar] [CrossRef]
- Uppal, A.K.; El Hadrami, A.; Adam, L.R.; Tenuta, M.; Daayf, F. Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biol. Control 2008, 44, 90–100. [Google Scholar] [CrossRef]
- Zodape, S.T.; Gupta, A.; Bhandari, S.C.; Rawat, U.S.; Cahudhary, D.R.; Eswara, K.; Chikara, J. Foliar application of seaweed sap as biostimulant for enhancement of yield and field quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. 2011, 70, 215–219. [Google Scholar]
- El Modafar, C.; Elgadda, M.; El Boutachfaiti, R.; Abouraicha, E.; Zehhar, N.; Petit, E.; El Alaoui-Talibi, Z.; Courtois, B.; Courtois, J. Induction of natural defence accompanied by salicylic acid-dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci. Hortic. 2012, 138, 55–63. [Google Scholar] [CrossRef]
- Shah, M.T.; Zodape, S.T.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Seaweed sap as an alternative to liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. 2013, 36, 192–200. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Ervin, E.H. Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 2008, 48, 364–370. [Google Scholar] [CrossRef]
- Jayaraj, J.; Wan, A.; Rahman, M.; Punja, Z.K. Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot. 2008, 10, 1360–1366. [Google Scholar] [CrossRef]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2013, 1009, 29–35. [Google Scholar] [CrossRef]
- Colla, G.; Svecova, E.; Rouphael, Y.; Cardarelli, M.; Reynaud, H.; Canaguier, R.; Rouphael, Y. Effectiveness of a plant-derived protein hydrolysate to improve crop performances under different growing conditions. Acta Hortic. 2013, 1009, 175–179. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived protein hydrolysate on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Di Stasio, E.; Rouphael, Y.; Colla, G.; Raimondi, G.; Giordano, M.; Pannico, A.; El-Nakhel, C.; De Pascale, S. The influence of Ecklonia maxima seaweed extract on growth, photosynthetic activity and mineral compositionof Brassica rapa L. subsp. sylvestris under nutrient stress conditions. Eur. J. Hortic. Sci. 2017, 82, 286–293. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguiere, R.; Rouphael, J. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Möller, M.; Smith, M.L. The significance of the mineral component of seaweed suspension on lettuce (Lactuca sativa L.) seedling growth. J. Plant Physiol. 1998, 153, 658–663. [Google Scholar] [CrossRef]
- Farooq, M.; Aziz, T.; Basra, S.M.A.; Cheema, M.A.; Rehman, H. Chilling tolerance in hybrid maize induced by seed treatments with salicylic acid. J. Agron. Crop Sci. 2008, 194, 161–168. [Google Scholar] [CrossRef]
- Sivritepe, N.; Sivritepe, H.Ö.; Türkan, I.; Bor, M.; Özdemir, F. NaCl pre-treatments mediate salt adaptation in melon plants through antioxidative system. Seed Sci. Technol. 2008, 36, 360–370. [Google Scholar] [CrossRef]
- Zodape, S.T.; Kawarkhe, V.J.; Patolia, J.S.; Warade, A.D. Effect of liquid seaweed fertilizer on yield and quality of okra (Abelmoschus esculentus L.). J. Sci. Ind. Res. India 2008, 67, 1115–1117. [Google Scholar]
- Aitken, J.E.; Senn, J.I. Seaweed products as fertilizers and soil conditioners. Bot. Mar. 1965, 8, 144–147. [Google Scholar] [CrossRef]
- Rayorath, P.; Narayanan, J.M.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.; Critchley, A.T.; Prithiviraj, B. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Subramanian, S.; Sangha, J.S.; Gray, B.A.; Singh, R.P.; Hiltz, D.; Critchley, A.T.; Prithiviraj, B. Extracts of the marine brown macroalga, Ascophyllum nodosum, induce jasmonic acid dependent systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. Tomato DC3000 and Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 2011, 131, 237–248. [Google Scholar] [CrossRef]
- Pereira, L.; Gheda, S.F.; Ribeiro-Claro, P.J.A. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013, 7. [Google Scholar] [CrossRef]
- Ordog, V.; Stirk, W.A.; van Staden, J.; Novak, O.; Strand, M. Endogenous cytokinins in the three genera of microalgae from the Chlorophyta. J. Phycol. 2004, 40, 88–95. [Google Scholar] [CrossRef]
- Stirk, W.A.; Tarkowská, D.; Turečová, V.; Strnad, M.; van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 2014, 26, 561–567. [Google Scholar] [CrossRef]
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three south African-based commercial seaweed biostimulants. J. Appl. Phycol. 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Moreira Sisalema, J.M. Comportamiento agronómico del cultivo de soya (Glycine max L.), a la aplicación de tres extractos de algas marinas, en la zona de Puebloviejo. Available online: http://dspace.utb.edu.ec/bitstream/49000/5048/1/TE-UTB-FACIAG-ING%20AGROP-000018.pdf (accessed on 1 February 2019).
- Ficha Técnica. Available online: https://www.calstiendavirtual.cl/html5/Fichas/6CASA%20JARD%C3%8DN/0126756%20KELPAK.pdf (accessed on 1 February 2019).
- Ali, N.; Farrell, A.; Ramsubhag, A.; Jayaraman, J. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato under tropical conditions. J. Appl. Phycol. 2016, 28, 1353–1362. [Google Scholar] [CrossRef]
- Raj, T.; Nishanthi, P.; Hane Graff, K.; Ann Suji, H. Seaweed extract as a biostimulant and a pathogen controlling agent in plants. Int. J. Trop. Agric. 2018, 36, 563–580. [Google Scholar]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Świeca, M.; Gawlik-Dziki, U.; Kowalczyk, D.; Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 2012, 140, 87–95. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Lamaison, J.L.C.; Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 1990, 65, 315–320. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 1968, 33, 72–77. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Papenfus, H.B.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Seasonal variation in the polyamines of Ecklonia maxima. Bot. Mar. 2012, 55, 539–546. [Google Scholar] [CrossRef]
- Aremu, A.O.; Plačková, L.; Gruz, J.; Bíba, O.; Novák, O.; Stirk, W.A.; Doležal, K.; Van Staden, J. Seaweed-derived biostimulant (Kelpak®) influences endogenous cytokinins and bioactive compounds in hydroponically grown Eucomis autumnalis. J. Plant Growth Regul. 2016, 35, 151–162. [Google Scholar] [CrossRef]
- Crouch, I.J.; van Staden, J. Commercial seaweed products as biostimulants in horticulture. J. Home Consum. Hortic. 1994, 1, 19–76. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Stadnik, M.J.; de Freitas, M.B. Algal polysaccharides as source of plant resistance inducers. Trop. Plant Pathol. 2014, 39, 111–118. [Google Scholar] [CrossRef]
- Depuydt, S.; Hardtke, C.S. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 2011, 21, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Horgan, R. Present and future prospects for cytokinin research. In Physiology and Biochemistry of Cytokinins in Plants; Kamĭnek, M., Mok, D.W.S., Eds.; SPB Academic Publishing: Hague, The Netherlands, 1992; pp. 3–13. [Google Scholar]
- Strnad, M. The aromatic cytokinins. Physiol. Plant 1997, 101, 674–688. [Google Scholar] [CrossRef]
- Sakakibara, H. Cytokinins: Activity, biosynthesis, and translocation. Ann. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Frébort, I.; Kowalska, M.; Hluska, T.; Frébortová, J.; Galuszka, P. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 2011, 62, 2431–2452. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; Van Staden, J. Flow of cytokinins through the environment. Plant Growth Regul. 2010, 62, 101–116. [Google Scholar] [CrossRef]
- Zalabák, D.; Pospısilová, H.; Šmehilová, M.; Mrızová, K.; Freébort, I.; Galuszka, P. Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnol. Adv. 2013, 31, 97–117. [Google Scholar] [CrossRef] [PubMed]
- McKersie, B.D.; Leshem, Y.Y. Stress and Stress Coping in Cultivated Plants; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Fike, J.H.; Allen, V.G.; Schmidt, R.E.; Zhang, X.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Coelho, R.W.; Wester, D.B. Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. J. Anim. Sci. 2001, 79, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Ervin, E.H.; Zhang, X.; Fike, J. Ultraviolet-B Radiation Damage on Kentucky Bluegrass II: Hormone Supplement Effects. HortScience 2004, 39, 1471–1474. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Jennings, R.C. Gibberellins as endogenous growth regulators in green and brown algae. Planta 1968, 80, 34–42. [Google Scholar] [CrossRef]
- Gopala, R.P. Gibberellin-like behaviour of α-tocopherol in green gram Vigna radiata. Geobios 1984, 11, 21–25. [Google Scholar]
- Jensen, A. Tocopherol content of seaweed and seaweed meal. I. Analytical methods and distribution of tocopherols in benthic algae. J. Sci. Food Agric. 1969, 20, 449–453. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine bioactive substances (IPA extract) improve foliar iron uptake and water tolerance in potted Vitis vinifera plants. Adv. Hort. Sci. 2006, 20, 156–161. [Google Scholar]
- Genard, H.; Le Saos, J.; Billard, J.P.; Tremolieres, A.; Boucaud, J. Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiol. Biochem. 1991, 29, 421–427. [Google Scholar]
- Blunden, G.; Jenkins, T.; Liu, Y. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J. Appl. Physiol. 1997, 8, 535–543. [Google Scholar] [CrossRef]
- Naidu, B.P.; Jones, G.P.; Paleg, L.G.; Poljakoff-Mayber, A. Proline analogues in Melaleuca species: Response of Melaleuca lanceolata and M. uncinata to water stress and salinity. Aust. J. Plant Physiol. 1987, 14, 669–677. [Google Scholar] [CrossRef]
- Wachira, F.; Ogada, J. In vitro regeneration of Camellia sinensis (L.) O. Kuntze by somatic embryogenesis. Plant Cell Rep. 1995, 14, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Akula, A.; Akula, C.; Bateson, M. Betaine: A novel candidate for rapid induction of somatic embryogenesis in tea (Camellia sinensis [L.] O. Kuntze). Plant Growth Regul. 2000, 30, 241–246. [Google Scholar] [CrossRef]
- Hamana, K.; Matsuzaki, S.; Niitsu, M.; Samejima, K.; Nagashima, H. Polyamines of inicellular thermoacidophillic red alga, Cyanidium caldarium. Phytochemistry 1990, 29, 377–380. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Hirsch, R.; Hartung, W.; Gimmler, H. Abscisic acid content of algae under stress. Bot. Acta 1989, 102, 326–334. [Google Scholar] [CrossRef]
- Boyer, G.L.; Dougherty, S.S. Identification of abscisic acid in the seaweed Ascophyllum nodosum. Phytochemistry 1988, 27, 1521–1522. [Google Scholar] [CrossRef]
- Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.F.; Lindquist, E.A.; Kamisugi, Y.; et al. The Physcomitrella genome reveals evolutionary insight into the conquest of land by plants. Science 2008, 319, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect water plant status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.J. Plant Hormones. Biosynthesis, Signal Transduction, Action! 3rd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; p. 750. [Google Scholar]
- Berlyn, G.P.; Russo, R.O. The use of organic biostimulants to promote root growth. Belowground Ecol. 1990, 2, 12–13. [Google Scholar]
- Blunden, G.; Currie, M.; Mathe, J.; Hohmann, J.; Critchley, A.T. Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Nat. Prod. Commun. 2010, 5, 581–585. [Google Scholar] [PubMed]
- Craigie, J.; MacKinnon, S.; Walter, J. Liquid seaweed extracts identified using H NMR profiles. J. Appl. Phycol. 2008, 20, 665–671. [Google Scholar] [CrossRef]
- Rayirath, P.; Benkel, B.; Hodges, D.M.; Allan-Wojtas, P.; MacKinnon, S.; Critchley, A.; Prithiviraj, B. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 2009, 230, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Yabur, R.; Bashan, Y.; Hernandez-Carmona, G. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in waste water treatment and plant growth promotion. J. Appl. Phycol. 2007, 19, 43–53. [Google Scholar] [CrossRef]
- Mercier, L.; Laffite, C.; Borderies, G.; Briand, X.; Esquerre-Tugaye, M.T.; Fournier, J. The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol. 2011, 149, 43–51. [Google Scholar] [CrossRef]
- Nakamura, T.; Nagayama, K.; Uchida, K.; Tanaka, R. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicydis. Fish. Sci. 1996, 62, 923–926. [Google Scholar] [CrossRef]
- Wang, T.; Jonsdottir, R.; Olafsdottir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Andjelkovic, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Eckol Improves Growth, Enzyme Activities, and Secondary Metabolite Content in Maize (Zea mays cv. Border King). J. Plant Growth Regul. 2015, 34, 410–416. [Google Scholar] [CrossRef]
- Korasick, D.A.; Enders, T.A.; Strader, L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013, 64, 2541–2555. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K. Auxin metabolism and homeostasis during plant development. Development 2013, 140, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Peer, W.A.; Murphy, A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007, 12, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Du Toit, E.S.; Reinhardt, C.F.; Rimando, A.M.; Van der Kooy, F.; Meyer, J.J.M. The phenolic, 3,4-dihydroxybenzoic acid, is an endogenous regulator of rooting in Protea cynaroides. Plant Growth Regul. 2007, 52, 207–215. [Google Scholar] [CrossRef]
- De Klerk, G.J.; Guan, H.; Huisman, P.; Marinova, S. Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul. 2011, 63, 175–185. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.; Dobranszki, J.; Ross, S. Phloroglucinol in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 2013, 49, 1–16. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.; Thorpe, T. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 1996, 32, 272–289. [Google Scholar] [CrossRef]
- Wilson, P.J.; Van Staden, J. Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting—A review. Ann. Bot. 1990, 66, 479–490. [Google Scholar] [CrossRef]
- Aremu, A.O.; Nqobile, A.; Kannan, M.; Rengasamy, R.R.; Amoo, S.O.; Gruz, J.; Bĭba, O.; Šubrtová, M.; Pênčĭk, A.; Novák, O.; et al. Physiological role of phenolic biostimulants isolated from Brown seaweed Ecklonia maxima on plant growth and development. Planta 2015, 241, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Chibbar, R.N.; Schyluk, J.; Georges, F.; Mallard, C.S.; Constabel, F. Esterase isozymes as markers of somatic embryogenesis in cultured carrot cells. J. Plant Physiol. 1988, 133, 367–370. [Google Scholar] [CrossRef]
- Pedersen, S.; Andersen, S.B. Developmental expression of isoenzymes during embryiogenesis in barley anther culture. Plant Sci. 1993, 91, 75–86. [Google Scholar] [CrossRef]
- Krsnik-Rasol, M.; Cipcic, H.; Hagege, D. Isoesterases related to cell differentiation in plant tissue culture. Chem. Biol. Interact. 1999, 120, 587–592. [Google Scholar] [CrossRef]
- Balen, B.; Krsnik-Rasol, M.; Simeon-Rudolf, V. Isoenzymes of peroxidase and esterase related to morphogenesis in Mammillaria gracillis Pfeiff. tissue culture. J. Plant Physiol. 2003, 160, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances, in biophysico-chemical processes involving natural nonliving organic matter in environmental systems. In Fundamentals and Impact of Mineral-Organic-Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM), 3rd ed.; John Wiley: Hoboken, NJ, USA, 2009; pp. 305–339. [Google Scholar]
- Oboh, G.; Puntel, R.L.; Rocha, J.B.T. Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain-in vitro. Food Chem. 2007, 102, 178–185. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U.; Świeca, M.; Jakubczyk, A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem. 2014, 148, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Karolewski, P.; Jagodziński, A.M. Udział węgla w związkach obronnych przed czynnikami biotycznymi u roślin drzewiastych. Sylwan 2013, 157, 831–841. [Google Scholar]
- Czerwińska, E.; Szparaga, A. Antibacterial and antifungal activity of plant extracts. Rocznik Ochrona Środowiska 2015, 17, 209–229. [Google Scholar]
- Stevens, M.T.; Lindroth, R.L. Induced resistance in the interminate growth of aspen (Populus tremuloides). Oecologia 2005, 145, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Depo, K.; Erlichowska, B.; Deszcz, E. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legum. Res. 2018. [Google Scholar] [CrossRef]
- Lakhdar, A.; Iannelli, M.A.; Debez, A.; Massacci, A.; Jedidi, N.; Abdelly, C. Effect of municipal solid waste compost and sewage sludge use on wheat (Triticum durum): Growth, heavy metal accumulation, and antioxidant activity. J. Sci. Food Agric. 2010, 90, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; Martim, S.A.; Navarro, E.C.; Pérez-Alfocea, F.; Hernandez, T.; Garcia, C.; Aguiar, N.O.; Canellas, L.P. Root growth promoting by humic acids from composted and non-composted urban organic wastes. Plant Soil 2012, 353, 209–220. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pavarini, D.P.; Pavarini, S.P.; Niehues, M.; Lopes, N.P. Exogenous influences on plant secondary metabolite levels. Anim. Feed Sci. Technol. 2012, 176, 5–16. [Google Scholar] [CrossRef]
- Moyo, M.; Amoo, S.O.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Doležal, K.; Van Staden, J. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures. Plant Sci. 2014, 227, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; San Francisco, S.; Baigorri, R.; Cruz, F.; et al. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract:microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of Spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Azcona, I.; Pascual, I.; Aguirreolea, J.; Fuentes, M.; García-Mina, J.M.; Sánchez-Díaz, M. Growth and development of pepper are affected by humic substances derived from composted sludge. J. Plant Nutr. Soil Sci. 2011, 174, 916–924. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J. Food Agric. Environ. 2003, 1, 22–27. [Google Scholar]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Świeca, M.; Sȩczyk, Ł.; Gawlik-Dziki, U. Elicitation and precursor feeding as tools for the improvement of the phenolic content and antioxidant activity of lentil sprouts. Food Chem. 2014, 161, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U.; Szychowski, K.A.; Świeca, M. Potential in vitro antioxidant, anti-inflammatory, antidiabetic, and anticancer effect of arachidonic acid-elicited basil leaves. J. Funct. Foods 2017, 36, 290–299. [Google Scholar] [CrossRef]
- Raina, K.; Rajamanickam, S.; Deep, G.; Singh, M.; Agarwal, R.; Agarwal, C. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Mol. Cancer Ther. 2008, 7, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Wen, P.F.; Kong, W.F.; Pan, Q.H.; Zhan, J.C.; Li, J.M.; Wan, S.B.; Huang, W.D. Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol. Technol. 2006, 40, 64–72. [Google Scholar] [CrossRef]
- Polo, J.; Mata, P. Evaluation of a biostimulant (Pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering, and yield of gold cherry tomatoes grown under low stress ambient field conditions. Front. Plant Sci. 2018, 8, 2261. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Saveetha, K.; Zhang, J.; Ji, X.; Chris, K.; Bernhard, B.; Mark, D.H.; Alan, T.C.; David, H.; Balakrishnan, P. Transcriptional and metabolomics analysis of Ascophyllum nodosum mediatel freezing tolerance in Arabidopsis thaliana. BMC Genom. 2012, 13, 643. [Google Scholar] [CrossRef] [PubMed]
- Biesaga-Kościelniak, J.; Kościelniak, J.; Filek, M.; Marcińska, I.; Krekule, J.; Machackova, I.; Kuboń, M. The effect of plant growth regulators and their interaction with electric current on winter wheat development. Acta Physiol. Plant 2010, 32, 987–995. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Tommaso, D.D.; Piaggesi, A.; Warrior, P. A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [PubMed]
Biostimulant | Number of Sprays and Plant Developmental Stages in Which the Biostimulants were Applied | Concentration | Volume of Wrking Solution/Working Pressure | Date of Spraying | ||
---|---|---|---|---|---|---|
2014 | 2015 | 2016 | ||||
Kelpak SL | Single spraying BBCH 13-15 (LSS) | 0.7% | 300 l·ha−1/ 0.30 MPa | June 21 | June 20 | June 7 |
Double spraying BBCH 13-15, BBCH 61 (LDS) | 0.7% | June 21, July 5 | June 20, July 3 | June 7, June 23 | ||
Single spraying BBCH 13-15 (HSS) | 1.0% | June 21 | June 20 | June 7 | ||
Double spraying BBCH 13-15, BBCH 61 (HDS) | 1.0% | June 21, July 5 | June 20, July 3 | June 7, June 23 |
Month | Year | Average from 2002 to 2013 | ||||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | ||||||
T (°C) Average (min/max) | Rainfall (mm) | T (°C) Average (min/max) | Rainfall (mm) | T (°C) Average (min/max) | Rainfall (mm) | T (°C) | Rainfall (mm) | |
IV | 9.4 (−6.0/22.7) | 36.5 | 8.2 (−1.7/24.3) | 30.1 | 9.2 (−1.2/22.6) | 68.4 | 8.5 | 41.2 |
V | 13.7 (0.5/27.7) | 208.3 | 12.7 (1.5/24.9) | 108.6 | 13.8 (2.6/26.7) | 61.3 | 12.7 | 63.4 |
VI | 16.1 (6.7/28.9) | 67.1 | 17.4 (6.6/30.5) | 14.1 | 18.1 (4.2/31.5) | 97.1 | 17.7 | 68.6 |
VII | 20.3 (10.0/31.0) | 104.2 | 19.6 (8.4/33.4) | 59.2 | 19.5 (8.8/31.2) | 107.6 | 18.9 | 79.1 |
VIII | 18.2 (6.3/34.0) | 115.4 | 21.6 (5.6/35.5) | 23.4 | 18.2 (7.1/30.7) | 95.3 | 19.4 | 71.8 |
IX | 13.7 (3.7/25.8) | 89.4 | 15.1 (4.2/34.5) | 137.6 | 15.2 (1.6/28.7) | 41.2 | 14.1 | 69.2 |
Average/Total | 15.1 | 620.9 | 15.8 | 373.0 | 17.1 | 470.9 | 15.2 | 393.3 |
Parameters | Ecklonia maxima Treatment | Season | Average from 2014 to 2016 | ||
---|---|---|---|---|---|
2014 | 2015 | 2016 | |||
Plant height (cm) | C | 85.4a | 81.9a | 88.1a | 85.1a |
LSS | 114.9b | 107.7b | 112.6b | 111.7b | |
LDS | 117.5b | 108.0b | 117.0b | 114.1b | |
HSS | 118.8b | 106.4b | 120.0b | 115.0b | |
HDS | 114.9b | 108.0b | 114.4b | 112.4b | |
AS | 110.3b | 102.4a | 110.3b | ||
Number of internodes in the main shoot | C | 11.2a | 10.1a | 9.6a | 10.3a |
LSS | 10.4a | 8.6a | 10.2a | 9.7a | |
LDS | 9.9a | 9.3a | 9.0a | 9.4a | |
HSS | 10.0a | 9.8a | 10.3a | 10.0a | |
HDS | 9.9a | 8.8a | 11.1a | 9.9a | |
AS | 10.3b | 9.3a | 10.0ab | ||
Location height of the first pod (cm) | C | 12.5a | 11.1a | 11.7a | 11.7a |
LSS | 13.0a | 14.2a | 12.2a | 13.2ab | |
LDS | 13.8a | 14.0a | 13.3a | 13.7b | |
HSS | 12.0a | 12.5a | 12.2a | 12.2ab | |
HDS | 13.0a | 12.7a | 13.3a | 13.0ab | |
AS | 12.8a | 12.9a | 12.5a | ||
Number of pods (per plant) | C | 15.2a | 14.7a | 16.3a | 15.4a |
LSS | 20.9b | 22.5cd | 21.0b | 21.5bc | |
LDS | 22.4b | 23.4d | 21.5b | 22.4c | |
HSS | 19.9b | 21.4bc | 21.1b | 20.8b | |
HDS | 20.4b | 20.3b | 20.8b | 20.5b | |
AS | 19.8a | 20.4a | 20.1a |
Parameters | Kelpak |
---|---|
Plant height (cm) | 28.2 |
Number of nodes in the main shoot | −0.5 |
Location height of the first pod (cm) | 1.3 |
Number of pods (per plant) | 5.9 |
Number of seeds (per m−2) | 622 |
Seed yield (t ha−1) | 0.824 |
1000 seed weight (g 1000−1) | −10.7 |
Total protein (% DM) | 0.35 |
Total fat (% DM) | −1.56 |
Total phenols (mg g−1 DM) | 2.53 |
Total flavonoids (mg g−1 DM) | 1.23 |
Anthocyanins (mg g−1 DM) | 0.01 |
Reducing power (mg TE g−1 DM) | 0.15 |
Parameters | Ecklonia maxima Treatment | Season | Average from 2014 to 2016 | ||
---|---|---|---|---|---|
2014 | 2015 | 2016 | |||
Number of seeds (per m-2) | C | 1793a | 1581a | 1907a | 1760a |
LSS | 2255b | 2210b | 2337b | 2267b | |
LDS | 2340b | 2376bc | 2406bc | 2374b | |
HSS | 2344b | 2350b | 2401bc | 2365b | |
HDS | 2466c | 2528c | 2576c | 2524c | |
AS | 2240a | 2209a | 2326b | ||
Seed yield (t ha-1) | C | 3.267a | 2.664a | 3.262a | 3.064a |
LSS | 3.677b | 3.636b | 3.767b | 3.693b | |
LDS | 3.805b | 3.876b | 3.852bc | 3.844b | |
HSS | 3.758b | 3.874b | 3.907bc | 3.846b | |
HDS | 4.137c | 4.171c | 4.198c | 4.169c | |
AS | 3.729a | 3.644a | 3.797b | ||
1000 seed weight (g) | C | 182.2b | 168.5a | 171.0b | 173.9b |
LSS | 163.1a | 164.6a | 161.2a | 162.9a | |
LDS | 162.6a | 163.2a | 160.1a | 161.9a | |
HSS | 160.3a | 164.9a | 162.7a | 162.3a | |
HDS | 167.8a | 165.0a | 163.1a | 165.3a | |
AS | 167.2b | 165.2ab | 163.6a | ||
Total protein (% DM) | C | 36.8a | 46.5d | 35.9a | 39.7a |
LSS | 37.7b | 45.7c | 38.6d | 40.7a | |
LDS | 37.7b | 47.4e | 36.3b | 40.5a | |
HSS | 38.0b | 42.7b | 38.9d | 39.9a | |
HDS | 39.1c | 40.9a | 38.1c | 39.4a | |
AS | 37.9b | 44.6c | 37.6a | ||
Total fat (% DM) | C | 17.5d | 15.0d | 16.6c | 16.4b |
LSS | 14.5a | 15.5e | 14.5a | 14.8a | |
LDS | 15.4b | 12.8a | 15.1b | 14.4a | |
HSS | 15.5b | 13.8c | 15.1b | 14.8a | |
HDS | 15.7c | 13.3b | 16.4c | 15.2ab | |
AS | 15.7c | 14.1a | 15.5b |
Parameters | Ecklonia maxima Treatment | Season | AA | ||
---|---|---|---|---|---|
2014 | 2015 | 2016 | |||
Total phenols (mg g−1 DM) | C | 5.77a | 4.50a | 5.77b | 5.35a |
LSS | 7.36b | 5.85e | 7.74c | 6.98a | |
LDS | 8.56c | 4.70b | 8.40d | 7.22a | |
HSS | 15.02d | 5.05c | 15.20e | 11.76b | |
HDS | 5.78a | 5.26d | 5.54a | 5.53a | |
AS | 8.50b | 5.07a | 8.53b | ||
Total flavonoids (mg g−1 DM) | C | 1.99a | 1.44a | 1.99a | 1.81a |
LSS | 1.87a | 1.92c | 1.92a | 1.90a | |
LDS | 2.64b | 1.84b | 2.59b | 2.36a | |
HSS | 5.10d | 2.93e | 5.15d | 4.39b | |
HDS | 4.18c | 2.08d | 4.21c | 3.49b | |
AS | 3.16b | 2.04a | 3.17b | ||
Anthocyanins (mg g−1 DM) | C | 0.00a | 0.00a | 0.00a | 0.000a |
LSS | 0.00a | 0.00a | 0.00a | 0.000a | |
LDS | 0.00a | 0.02b | 0.00a | 0.007a | |
HSS | 0.00a | 0.04c | 0.00a | 0.013ab | |
HDS | 0.04b | 0.00a | 0.05b | 0.030b | |
AS | 0.008a | 0.012b | 0.010ab | ||
Reducing power (mg TE g−1 DM) | C | 0.15a | 0.10 | 0.15a | 0.13a |
LSS | 0.30bc | 0.22 | 0.33c | 0.28b | |
LDS | 0.21ab | 0.14 | 0.28b | 0.21ab | |
HSS | 0.45d | 0.08 | 0.42e | 0.31b | |
HDS | 0.38cd | 0.16 | 0.37d | 0.30b | |
AS | 0.30b | 0.14a | 0.31b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy 2019, 9, 93. https://doi.org/10.3390/agronomy9020093
Kocira S, Szparaga A, Kuboń M, Czerwińska E, Piskier T. Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy. 2019; 9(2):93. https://doi.org/10.3390/agronomy9020093
Chicago/Turabian StyleKocira, Sławomir, Agnieszka Szparaga, Maciej Kuboń, Ewa Czerwińska, and Tomasz Piskier. 2019. "Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract" Agronomy 9, no. 2: 93. https://doi.org/10.3390/agronomy9020093
APA StyleKocira, S., Szparaga, A., Kuboń, M., Czerwińska, E., & Piskier, T. (2019). Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy, 9(2), 93. https://doi.org/10.3390/agronomy9020093