Gypsum and Coal-bed Methane Water Modify Growth Media Properties, Nutrient Uptake, and Essential Oil Profile of Lemongrass and Palmarosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Harvest and EO Extraction
2.3. Growth Medium and Distillation Waste Plant Tissue Analyses of Lemongrass and Palmarosa
2.4. Microbial Biomass and N Determination
2.5. Gas Chromatography-Mass Spectrophotometer (GC-MS) Analysis of the EO
2.6. Quantitative Analysis
2.7. Statistical Analyses
3. Results
3.1. Water Treatment: Lemongrass Experiment
3.2. Water Treatment: Palmarosa Experiment
3.3. Gypsum Amendment: Lemongrass Experiment
3.4. Gypsum Amendment: Palmarosa Experiment
4. Discussion
4.1. Lemongrass
4.2. Palmarosa
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration. Available online: http://www.eia.gov/dnav/ng/ng_prod_coalbed_s1_a.htm. (accessed on 16 June 2017).
- U.S. EPA. Available online: https://www.epa.gov/eg/coalbed-methane-extraction-industry#what-is-cbm (accessed on 4 June 2018).
- Glass, G.B. Coal geology in Wyoming. 1997. Available online: http://archives.datapages.com/data/wga/data/063/063001/61_wga0630061.htm (accessed on 16 June 2017).
- Healy, R.W.; Bartos, T.T.; Rice, C.A.; McKinley, M.P.; Smith, B.D. Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA. J. Hydrol. 2011, 403, 37–48. [Google Scholar] [CrossRef]
- Myers, T. Groundwater management and coal bed methane development in the Powder River Basin of Montana. J. Hydrol. 2009, 368, 178–193. [Google Scholar] [CrossRef]
- Alley, B.; Beebe, A.; Rodgers, J., Jr.; Castle, J.W. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere 2011, 85, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.R.; Vance, G.F.; Ganjegunte, G.K. Irrigation with coalbed natural gas co-produced water. Agric. Water Manage. 2008, 95, 1243–1252. [Google Scholar] [CrossRef]
- Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E. Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in Powder River Basin, Wyoming. Water Air Soil Pollut. 2005, 168, 33–57. [Google Scholar] [CrossRef]
- Ganjegunte, G.K.; King, L.A.; Vance, G.F. Cumulative soil chemistry changes from land application of saline-sodic waters. J. Environ. Qual. 2008, 37, S128–S138. [Google Scholar] [CrossRef]
- Burkhardt, A.; Gawde, A.; Cantrell, C.L.; Baxter, H.L.; Joyce, B.L.; Stewart, C.N., Jr.; Zheljazkov, V.D. Effects of produced water on soil characteristics, plant biomass, and secondary metabolites. J. Environ. Qual. 2015, 44, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, A.; Gawde, A.; Cantrell, C.L.; Zheljazkov, V.D. Effect of varying ratios of produced water and municipal water on soil characteristics, plant biomass, and secondary metabolites of Artemisia annua and Panicum virgatum. Ind. Crop Prod. 2015, 76, 987–994. [Google Scholar] [CrossRef]
- Poudyal, S.; Zheljazkov, V.D.; Cantrell, C.L.; Kelleners, T. Coal-bed methane water effects on dill and its essential oils. J. Environ. Qual. 2016, 45, 728–733. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Schlegel, V.; Jeliazkova, E.; Lowe, D. Effect of coal-bed methane water on spearmint and peppermint. J. Environ. Qual. 2013, 42, 1815–1821. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Cannon, J.B. Lemongrass productivity, oil content, and composition as a function of N, S, and harvest time. Agron. J. 2011, 103, 805–812. [Google Scholar] [CrossRef]
- Gawde, A.J.; Cantrell, C.L.; Zheljazkov, V.D. Dual extraction for secondary metabolites from Juniperus virginiana. Ind. Crop Prod. 2009, 30, 276–280. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of the Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Brown, J. Recommended Chemical Soil Test Procedures for the North Central Region; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Watson, M.E.; Brown, J.R. pH and lime requirement. In Recommended chemical soil test procedures for the north central region; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998; pp. 4.1–4.7. [Google Scholar]
- Whitney, D.A. Soil salinity. In Recommended Chemical Soil Test Procedures for the North Central Region.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998; pp. 13.1–13.2. [Google Scholar]
- Combs, S.; Nathan, M.V. Soil organic matter. In Recommended chemical soil test procedures for the north central region.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Warncke, D.; Brown, J.R. Potassium and other basic cations. In Recommended chemical soil test procedures for the north central region; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998; pp. 7.1–7.3. [Google Scholar]
- Montgomery, D.C. Design and analysis of experiments, 9th ed.; Wiley: New York, NY, USA, 2017. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 9.4 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Jackson, R.E.; Reddy, K.J. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming. Environ. Sci. Tech. 2007, 41, 5953–5959. [Google Scholar] [CrossRef]
- Arnold, R.N.; Smeal, D.; O’Neill, M.K.; Lombard, K.; Heyduck, R.; Henke, S.; Wirth, D.; Mankiewicz, D.; Wirtanen, R.; Katirgis, S.; et al. Using coal bed methane produced water from well sites for native and non-native grass stand establishment. Res. Report—Agricultural Experiment Station, New Mexico State University, Las Cruces. Available online: http://aces.nmsu.edu/pubs/research/livestock-range/RR771.pdf (accessed on 17 August 2015).
- Sintim, H.Y.; Zheljazkov, V.D.; Foley, M.E.; Evangelista, R.L. Coal-bed methane water: Effects on soil properties and camelina productivity. J. Environ. Qual. 2017, 46, 641–648. [Google Scholar] [CrossRef]
- Idrees, M.; Dar, T.A.; Naeem, M.; Aftab, T.; Khan, M.M.A.; Ali, A.; Uddin, M.; Varshney, L. Effects of gamma-irradiated sodium alginate on lemongrass: Field trials monitoring production of essential oil. Ind. Crop Prod. 2015, 63, 269–275. [Google Scholar] [CrossRef]
- Moncada, J.; Tamayo, J.A.; Cardona, C.A. Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies. Ind. Crop Prod. 2014, 54, 175–184. [Google Scholar] [CrossRef]
- Sarma, A.; Sarma, T. Studies on the morphological characters and yields of oil and citral of certain lemongrass [Cymbopogon flexuosus (Steud) Wats] accessions grown under agro-climatic conditions of Northeast India. J. Essent. Oil Bear. Plants 2005, 8, 250–257. [Google Scholar] [CrossRef]
- Kulkarni, R.N.; Gopal, R.M.; Ramesh, S. The oil content and composition of new variants of Cymbopogon flexuosus. J. Essent. Oil Res. 1992, 4, 511–514. [Google Scholar] [CrossRef]
- Joyce, B.L.; Zheljazkov, V.D.; Sykes, R.; Cantrell, C.L.; Hamilton, C.; Mann, D.G.J.; Rodriguez, M.; Mielenz, J.R.; Astatkie, T.; Stewart, C.N., Jr. Ethanol and high-value terpene co-production from lignocellulosic biomass of Cymbopogon flexuosus and Cymbopogon martini. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Rajeswara Rao, B.R.; Rajput, D.K. Response of palmarosa (Cymbopogon martinii (Roxb.) Wats. var. motia Burk.) to foliar application of magnesium and micronutrients. Ind. Crop Prod. 2011, 33, 277–281. [Google Scholar]
- Rajeswara Rao, B.R.; Rajput, D.K.; Patel, R.P. Essential oil profiles of different parts of Palmarosa (Cymbopogon martinii (Roxb.) Wats. var. motia Burk.). J. Essent. Oil Res. 2009, 21, 519–521. [Google Scholar] [CrossRef]
- Chowdhury, J.U.; Yusuf, M.; Begum, J.; Mondello, L.; Previti, P.; Dugo, G. Studies on the Essential Oil Bearing Plants of Bangladesh. Part IV. Composition of the Leaf Oil of Three Cymbopogon species: C. flexuosus (Nees ex Steud.) Wats., C. nardus (L.) Rendle var. confertiflorus (Steud.) N. L. Bor and C. martinii (Roxb.) Wats. var. martinii. J. Essent. Oil Res. 1998, 10, 301–306. [Google Scholar] [CrossRef]
- Rajeswara Rao, B.R.; Kaul, P.N.; Syamasundar, K.V.; Ramesh, S. Chemical profiles of primary and secondary essential oils of palmarosa (Cymbopogon martinii (Roxb.) Wats var. motia Burk.). Ind. Crop Prod. 2005, 21, 121–127. [Google Scholar]
- Cannon, J.B.; Cantrell, C.L.; Astatkie, T.; Zheljazkov, V.D. Modification of yield and composition of essential oils by distillation time. Ind. Crop Prod. 2013, 41, 214–220. [Google Scholar] [CrossRef]
Selected Properties | Units | Coal-Bed Methane Water | Tap Water | Analytical Method |
---|---|---|---|---|
General parameters | ||||
pH | 8.3 | 7.6 | SM 4500HB | |
Electrical conductivity | dS/m | 2.0 | 0.12 | SM 2510B |
Total dissolved solids | mg/L | 1393.3 | 70 | SM 2540 |
Alkalinity, total (as CaCO3) | mg/L | 1157 | ND | SM 2320B |
Hardness (as CaCO3) | mg/L | 53.0 | 33 | SM 2340B |
Nitrogen, ammonia (as N) | mg/L | 1.6 | - | |
E. coli | MPN/100 mL | ND 1 | ND | SM 9223B |
Total coliform | MPN/100 mL | - 2 | ND | |
Sodium adsorption ratio | 32.6 | - | Calculation | |
Anions | ||||
Alkalinity, bicarbonate as HCO3− | mg/L | 1393 | ND | SM 2320B |
Alkalinity, carbonate as CO3−2 | mg/L | 19 | ND | SM 2320B |
Chloride | mg/L | 6 | - | EPA 300.0 |
Nitrate + Nitrite as N | mg/L | ND | ND | EPA 300.0 |
Sulfate | mg/L | 85 | 7 | EPA 300.0 |
Cations | ||||
Barium | mg/L | 0.4 | - | EPA 200.8 |
Calcium | mg/L | 9 | 9 | EPA 200.7 |
Magnesium | mg/L | 8 | 2 | EPA 200.7 |
Sodium | mg/L | 545 | 9 | EPA 200.7 |
Zinc | mg/L | 0.01 | - | EPA 200.7 |
Cation/Anion—Milliequivalents | ||||
Hydroxide as OH | meq/L | ND | - | SM 1030E |
Chloride | meq/L | 0.18 | - | SM 1030E |
Fluoride | meq/L | ND | - | SM 1030E |
Nitrate + Nitrite as N | meq/L | ND | - | SM 1030E |
Sulfate | meq/L | 1.76 | - | SM 1030E |
Calcium | meq/L | 0.44 | - | SM 1030E |
Magnesium | meq/L | 0.61 | - | SM 1030E |
Sodium | meq/L | 23.70 | - | SM 1030E |
Radiochemistry | ||||
Gross Beta (dissolved) | pCi/L | 2 | SM 7110B | |
Radium 226 (dissolved) | pCi/L | 0.2 ± 0.1 | - | Ra-05 |
Dissolved Metals/Metalloids | ||||
Boron | mg/L | 0.2 | - | EPA 200.7 |
Response Variable | Lemongrass | Palmarosa | ||||
---|---|---|---|---|---|---|
Source of Variation | Source of Variation | |||||
Water | Gypsum | Water*Gypsum | Water | Gypsum | Water*Gypsum | |
Height | 0.101 | 0.184 | 0.760 | 0.042 | 0.441 | 0.139 |
FW | 0.001 1 | 0.060 | 0.698 | 0.045 | 0.696 | 0.461 |
Oil yield | 0.075 | 0.721 | 0.964 | 0.263 | 0.700 | 0.422 |
Oil content | 0.642 | 0.543 | 0.959 | 0.608 | 0.515 | 0.355 |
6-Methyl-5-Hypten-2-one | 0.607 | 0.945 | 0.815 | - | - | - |
Beta-Caryophyllene | 0.197 | 0.534 | 0.051 | 0.163 | 0.043 | 0.396 |
Geranial | 0.628 | 0.936 | 0.116 | - | - | - |
Geraniol | 0.647 | 0.525 | 0.174 | 0.015 | 0.952 | 0.453 |
Geranyl Acetate | 0.681 | 0.002 | 0.031 | 0.007 | 0.770 | 0.673 |
Isogeranial | 0.597 | 0.761 | 0.463 | - | - | - |
Isoneral | 0.097 | 0.562 | 0.653 | - | - | - |
Linalool | - | - | - | 0.240 | 0.566 | 0.485 |
Neral | 0.499 | 0.396 | 0.160 | - | - | - |
Trans-Ocimene | - | - | - | 0.588 | 0.671 | 0.633 |
Soil DOC | 0.001 | 0.487 | 0.292 | 0.001 | 0.993 | 0.214 |
Soil DON | 0.223 | 0.545 | 0.100 | 0.055 | 0.238 | 0.626 |
Response Variable | Lemongrass | Palmarosa | ||||
---|---|---|---|---|---|---|
Source of Variation | Source of Variation | |||||
Water | Gypsum | Water*Gypsum | Water | Gypsum | Water*Gypsum | |
Growth medium | ||||||
pH | 0.001 | 0.001 | 0.005 1 | 0.000 | 0.044 | 0.002 |
Soluble salts | 0.209 | 0.460 | 0.257 | 0.309 | 0.011 | 0.493 |
P | 0.001 | 0.043 | 0.004 | 0.048 | 0.030 | 0.194 |
Nitrate | 0.129 | 0.679 | 0.825 | 0.742 | 0.563 | 0.913 |
B | 0.587 | 0.004 | 0.068 | 0.000 | 0.001 | 0.016 |
Ca | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.047 |
Cu | 0.001 | 0.001 | 0.002 | 0.003 | 0.063 | 0.039 |
Fe | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
K | 0.911 | 0.060 | 0.576 | 0.649 | 0.112 | 0.626 |
Mg | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Mn | 0.001 | 0.235 | 0.004 | 0.003 | 0.002 | 0.021 |
Na | 0.001 | 0.001 | 0.001 | 0.001 | 0.035 | 0.220 |
S | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 |
Zn | 0.033 | 0.734 | 0.083 | 0.768 | 0.611 | 0.028 |
Plant tissue from distillation waste | ||||||
P | 0.002 | 0.222 | 0.017 | 0.006 | 0.812 | 0.212 |
N | 0.049 | 0.118 | 0.413 | 0.729 | 0.940 | 0.197 |
B | 0.264 | 0.756 | 0.414 | 0.637 | 0.200 | 0.851 |
Ca | 0.001 | 0.523 | 0.399 | 0.046 | 0.003 | 0.321 |
Cu | 0.958 | 0.265 | 0.195 | 0.905 | 0.540 | 0.642 |
Fe | 0.829 | 0.256 | 0.023 | 0.381 | 0.074 | 0.933 |
K | 0.116 | 0.075 | 0.494 | 0.842 | 0.022 | 0.574 |
Mg | 0.012 | 0.324 | 0.212 | 0.261 | 0.005 | 0.114 |
Mn | 0.113 | 0.001 | 0.273 | 0.058 | 0.101 | 0.524 |
Na | 0.001 | 0.695 | 0.466 | 0.001 | 0.021 | 0.109 |
S | 0.023 | 0.745 | 0.191 | 0.013 | 0.002 | 0.611 |
Zn | 0.074 | 0.004 | 0.026 | 0.469 | 0.638 | 0.671 |
Water | Oil Yield g | FW g | Isoneral % | DOC | Plant Tissue | ||||
---|---|---|---|---|---|---|---|---|---|
µg/g OD Soil | N % | S % | Ca % | Mg % | Na % | ||||
CBM | 0.98 b1 | 379 b | 1.34 b | 1938 a | 2.10 b | 0.203 b | 0.404 b | 0.388 b | 0.639 a |
Tap | 1.19 a | 470 a | 1.39 a | 841 b | 2.21 a | 0.257 a | 0.646 a | 0.452 a | 0.081 b |
W | Height cm | FW g | Geraniol % | Geranyl Acetate % | DOC µg/g OD Soil | DON µg/g OD Soil | Growth Medium | Plant Tissue | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P mg/kg | Na mg/kg | P % | S % | Ca % | Mn mg/kg | Na % | |||||||
C | 146 b1 | 489 b | 89 a | 5.67 b | 1214 a | 1772 a | 4.78 a | 891 a | 0.22 a | 0.36 a | 0.50 b | 159 a | 0.25 a |
T | 169 a | 558 a | 85 b | 9.47 a | 707 b | 1232 b | 3.26 b | 137 b | 0.17 b | 0.29 b | 0.62 a | 124 b | 0.03 b |
Gypsum kg ha−1 | FW g | K in Growth Medium mg/kg | K in Plant Tissue % | Mn in Plant Tissue mg/kg |
---|---|---|---|---|
0 | 445 a1 | 19.3 b | 0.897 b | 122 b |
500 | 441 a | 33.0 ab | 0.933 ab | 120 b |
1500 | 431 ab | 31.2 ab | 1.050 ab | 175 a |
4500 | 381 b | 37.3 a | 1.179 a | 208 a |
Wat | Gyp kg ha−1 | pH | P mg/kg | B mg/kg | Ca mg/kg | Cu mg/kg | Fe mg/kg | Mg mg/kg | Mn mg/kg | Na mg/kg | S mg/kg | Zn mg/kg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CBM | 0 | 9.06 a1 | 6.3 bcd | 0.077 a | 26 f | 0.070 a | 0.73 a | 10 e | 0.13 abc | 598 b | 220 c | 0.047 ab |
CBM | 500 | 8.38 b | 3.3 cd | 0.045 ab | 89 ef | 0.033 b | 0.21 b | 32 de | 0.03 bc | 866 a | 510 b | 0.027 b |
CBM | 1500 | 8.31 b | 1.7 d | 0.024 b | 306 d | 0.023 b | 0.19 bc | 80 bc | 0.02 c | 911 a | 892 a | 0.040 ab |
CBM | 4500 | 7.88 b | 2.5 cd | 0.032 b | 431 c | 0.020 b | 0.06 c | 72 bc | 0.01 c | 665 b | 842 a | 0.045 ab |
Tap | 0 | 5.66 c | 7.0 bcd | 0.047 ab | 136 e | 0.030 b | 0.11 bc | 53 cd | 0.06 abc | 78 c | 135 c | 0.040 ab |
Tap | 500 | 5.56 c | 9.0 ab | 0.042 ab | 490 bc | 0.023 b | 0.10 bc | 128 a | 0.23 a | 109 c | 539 b | 0.060 a |
Tap | 1500 | 5.63 c | 7.4 bc | 0.033 b | 580 ab | 0.017 b | 0.11 bc | 118 a | 0.11 abc | 112 c | 638 b | 0.050 ab |
Tap | 4500 | 5.47 c | 14.8 a | 0.044 ab | 598 a | 0.017 b | 0.11 bc | 97 ab | 0.18 ab | 102 c | 632 b | 0.057 ab |
Water | Gypsum kg ha−1 | Geranyl Acetate % | Beta-Caryophyllene % | Plant tissue | ||
---|---|---|---|---|---|---|
P % | Zn mg/kg | Fe mg/kg | ||||
CBM | 0 | 0.86 c1 | 1.05 ab | 0.210 a | 24 b | 65 ab |
CBM | 500 | 0.89 bc | 1.15 ab | 0.200 a | 26 b | 44 b |
CBM | 1500 | 2.46 abc | 1.28 ab | 0.195 a | 29 ab | 48 ab |
CBM | 4500 | 3.31 a | 1.84 a | 0.187 a | 38 a | 68 a |
Tap | 0 | 1.41 abc | 1.54 ab | 0.177 ab | 29 ab | 51 ab |
Tap | 500 | 2.02 abc | 0.83 ab | 0.170 ab | 33 ab | 58 ab |
Tap | 1500 | 2.72 ab | 1.23 ab | 0.137 ab | 33 ab | 62 ab |
Tap | 4500 | 1.83 abc | 0.77 b | 0.110 b | 32 ab | 56 ab |
Gyp kg ha−1 | Beta-Caryophyllene % | Growth Medium | Plant Tissue | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Soluble Salts mg/kg | P mg/kg | Na mg/kg | K % | S % | Ca % | Mg % | Fe mg/kg | Na % | ||
0 | 1.35 a1 | 1.17 b | 6.25 a | 312 b | 0.989 ab | 0.290 b | 0.440 b | 0.605 a | 50 ab | 0.158 ab |
500 | 0.64 b | 1.51 b | 4.22 ab | 404 ab | 0.855 b | 0.257 b | 0.503 b | 0.472 ab | 63 a | 0.082 ab |
1500 | 0.63 b | 1.92 ab | 2.84 b | 444 a | 0.815 b | 0.335 ab | 0.515 b | 0.412 b | 43 b | 0.184 a |
4500 | 0.95 ab | 3.17 a | 3.17 ab | 443 a | 1.012 a | 0.427 a | 0.773 a | 0.405 b | 47 ab | 0.060 b |
Water | Gypsum kg ha−1 | pH | B mg/kg | Ca mg/kg | Cu mg/kg | Fe mg/kg | Mg mg/kg | Mn mg/kg | S mg/kg | Zn mg/kg |
---|---|---|---|---|---|---|---|---|---|---|
CBM | 0 | 8.98 a1 | 0.098 a | 32 e | 0.097 a | 0.845 a | 12 d | 0.223 a | 224 cd | 0.067 a |
CBM | 500 | 8.42 ab | 0.064 b | 69 de | 0.047 ab | 0.393 b | 24 d | 0.113 ab | 590 b | 0.037 ab |
CBM | 1500 | 8.11 b | 0.050 bc | 317 c | 0.043 ab | 0.223 bc | 74 bc | 0.047 b | 1040 a | 0.040 ab |
CBM | 4500 | 7.85 b | 0.046 bc | 408 b | 0.023 b | 0.207 bc | 74 bc | 0.043 b | 1102 a | 0.037 ab |
Tap | 0 | 5.58 c | 0.034 bc | 139 d | 0.020 b | 0.113 c | 69 c | 0.067 b | 119 d | 0.033 b |
Tap | 500 | 5.65 c | 0.024 c | 281 c | 0.020 b | 0.127 c | 109 abc | 0.053 b | 344 c | 0.047 ab |
Tap | 1500 | 5.73 c | 0.020 c | 465 b | 0.023 b | 0.113 c | 111 ab | 0.040 b | 577 b | 0.040 ab |
Tap | 4500 | 5.83 c | 0.031 bc | 599 a | 0.023 b | 0.190 c | 129 a | 0.023 b | 695 b | 0.053 ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheljazkov, V.D.; Astatkie, T.; Norton, U.; Jeliazkova, E.A. Gypsum and Coal-bed Methane Water Modify Growth Media Properties, Nutrient Uptake, and Essential Oil Profile of Lemongrass and Palmarosa. Agronomy 2019, 9, 282. https://doi.org/10.3390/agronomy9060282
Zheljazkov VD, Astatkie T, Norton U, Jeliazkova EA. Gypsum and Coal-bed Methane Water Modify Growth Media Properties, Nutrient Uptake, and Essential Oil Profile of Lemongrass and Palmarosa. Agronomy. 2019; 9(6):282. https://doi.org/10.3390/agronomy9060282
Chicago/Turabian StyleZheljazkov, Valtcho D., Tess Astatkie, Urszula Norton, and Ekaterina A. Jeliazkova. 2019. "Gypsum and Coal-bed Methane Water Modify Growth Media Properties, Nutrient Uptake, and Essential Oil Profile of Lemongrass and Palmarosa" Agronomy 9, no. 6: 282. https://doi.org/10.3390/agronomy9060282
APA StyleZheljazkov, V. D., Astatkie, T., Norton, U., & Jeliazkova, E. A. (2019). Gypsum and Coal-bed Methane Water Modify Growth Media Properties, Nutrient Uptake, and Essential Oil Profile of Lemongrass and Palmarosa. Agronomy, 9(6), 282. https://doi.org/10.3390/agronomy9060282