Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions
Abstract
:1. Abiotic Stresses
2. Biostimulants
2.1. Classification of Biostimulants in Categories
2.2. Effect of Biostimulants on Chlorophyll Content, Photosynthesis and Growth in Vegetables
2.3. Biostimulants and Crop Tolerance to Abiotic Stresses
2.3.1. Biostimulants and Cold or Chilling Stress
2.3.2. Biostimulants and Heat Stress
2.3.3. Biostimulants and Salinity Stress
2.3.4. Biostimulants and Drought Stress
2.3.5. Biostimulants and Nutrient Deficiency
3. Conclusions and Future Prospects
- -
- improving nutrients and water use efficiency of crops;
- -
- enhancing tolerance against salinity, water stress, cold, high temperature, etc.;
- -
- increasing yield and quality of agricultural crops.
Author Contributions
Funding
Conflicts of Interest
References
- Verma, A. Abiotic Stress and Crop Improvement: Current Scenario. Adv. Plants Agric. Res. 2016, 4, 345–346. [Google Scholar]
- Boyer, J.S. Plant Productivity and Environment. Science (80-) 1982, 218, 443–448. [Google Scholar] [CrossRef] [PubMed]
- La Peña, R.D.; Hughes, J. Improving Vegetable Productivity in a Variable and Changing Climate. J. SAT Agric. Res. 2007, 4, 666–675. [Google Scholar]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management To cite this version: Review article. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 8 March 2019).
- FAO. The State of Food and Agriculture (SOFA). Available online: http://www.fao.org/3/a-i6030e.pdf (accessed on 8 March 2019).
- Mariani, L.; Ferrante, A. Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses—Drought, Salinity, Hypoxia, and Lodging. Horticulturae 2017, 3, 52. [Google Scholar] [CrossRef]
- Mou, B. Improvement of horticultural crops for abiotic stress tolerance: An introduction. HortScience 2011, 46, 1068–1069. [Google Scholar] [CrossRef]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mestre, T.C.; Mittler, R.; Rubio, F.; Garcia-Sanchez, F.; Martinez, V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 2014, 37, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. (Amst.) 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Fruit and Vegetables for Health Initiative. Available online: http://www.fao.org/3/a-i6807e.pdf (accessed on 8 March 2019).
- Rao, N.K.S.; Laxman, R.H.; Shivashankara, K.S. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In Abiotic Stress Physiology of Horticultural Crops; Rao, N.K.S., Shivashankara, K.S., Laxman, R.H., Eds.; Springer: New Delhi, India, 2016; pp. 3–7. ISBN 978-81-322-2723-6. [Google Scholar]
- Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.; Cervilla, L.M.; Blasco, B.; Rios, J.J.; Rosales, M.A.; Romero, L.; Ruiz, J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 2010, 178, 30–40. [Google Scholar] [CrossRef]
- Mittova, V.; Tal, M.; Volokita, M.; Guy, M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 2003, 26, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Abedi, T.; Pakniyat, H. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J. Genet. Plant Breed. 2010, 46, 27–34. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Shanker, A.K.; Shanker, C.; Maheswari, M. Crop Stress and Its Management: Perspectives and Strategies; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978–94–007–2219–4. [Google Scholar]
- Kusvuran, S.; Kiran, S.; Ellialtioglu, S.S. Antioxidant Enzyme Activities and Abiotic Stress Tolerance Relationship in Vegetable Crops. In Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives; InTechOpen: London, UK, 2016. [Google Scholar] [Green Version]
- You, J.; Chan, Z. ROS Regulation during Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef]
- Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35, 259–270. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.; Tognetti, V.B.; Vandepoele, K.; Gollery, M.; Shulaev, V.; Van Breusegem, F. ROS signaling: The new wave? Trends Plant Sci. 2011, 16, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Frei, M. Stressed food—The impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ. 2011, 141, 271–286. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Regulated Water Deficits Improve Phytochemical Concentration in Lettuce. J. Am. Soc. Hortic. Sci. 2019, 135, 223–229. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.R.; Bertin, N. Water shortage and quality of fleshy fruits-making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Zhou, G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci. 2015, 6, 701. [Google Scholar] [CrossRef]
- Bechtold, U.; Field, B. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 2018, 69, 2753–2758. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. (Amst.) 2010, 127, 162–171. [Google Scholar] [CrossRef]
- Al-Harbi, A.R.; Al-Omran, A.M.; Alharbi, K. Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 298–304. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Zhang, J.; Hou, X.L.; Wang, F.; Xiong, A.S. Transcriptomic, Proteomic, Metabolomic and Functional Genomic Approaches for the Study of Abiotic Stress in Vegetable Crops. Crit. Rev. Plant Sci. 2014, 33, 225–237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Shao, H.; Tang, X. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Front. Plant Sci. 2016, 7, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, P.; Jan, A.T.; Azam, M.; Haq, Q.M.R. Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Front. Life Sci. 2016, 9, 52–63. [Google Scholar] [CrossRef]
- Sade, N.; Del Mar Rubio-Wilhelmi, M.; Umnajkitikorn, K.; Blumwald, E. Stress-induced senescence and plant tolerance to abiotic stress. J. Exp. Bot. 2018, 69, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Prasad, M.N.V. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 146140634X. [Google Scholar]
- Shah, L.R.; Sharma, A.; Nabi, J.; Prasad, J. Breeding approaches for abiotic stress management in vegetable crops. J. Pharmacogn. Phytochem. 2018, 7, 1023–1028. [Google Scholar]
- Pérez-Clemente, R.M.; Gomez-Cadenas, A. In vitro Tissue Culture, a Tool for the Study and Breeding of Plants Subjected to Abiotic Stress Conditions. In Recent Advances in Plant In Vitro Culture; InTechOpen: London, UK, 2012; p. 13. [Google Scholar]
- Rai, M.K.; Kalia, R.K.; Singh, R.; Gangola, M.P.; Dhawan, A.K. Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environ. Exp. Bot. 2011, 71, 89–98. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4.1, 5. [Google Scholar] [CrossRef]
- Yamauchi, Y. Integrated Chemical Control of Abiotic Stress Tolerance Using Biostimulants. In Plant, Abiotic Stress and Responses to Climate Change; InTechOpen: London, UK, 2018; pp. 133–143. [Google Scholar]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. (Amst.) 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A Systematic Approach to Discover and Characterize Natural Plant Biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [PubMed]
- Traon, D.; Amat, L.; Zotz, F.; du Jardin, P. A Legal Framework for Plant Biostimulants and Agronomic Fertiliser Additives in the EU; Report for the European Commission; Enterprise & Industry Directorate—General: Brussels, Belgium, 2014; p. 133. [Google Scholar]
- Biostimulants Market Size Worth $4.14 Billion By 2025|CAGR: 10.2%. Available online: https://www.grandviewresearch.com/press-release/global-biostimulants-market (accessed on 8 March 2019 ).
- Ebic Welcomes Compromise Reached At Trilogue Meeting on Fertilising Products Regulation, First Step Towards Eu-Wide Market Creation for Biostimulants. Available online: http://www.biostimulants.eu/2018/11/ebic-welcomes-compromise-reached-at-trilogue-meeting-on-fertilising-products-regulation-first-step-towards-eu-wide-market-creation-for-biostimulants/ (accessed on 5 June 2019).
- Ep Approves Fpr: A Giant Leap for Biostimulants. Available online: http://www.biostimulants.eu/2019/03/ep-approves-fpr-a-giant-leap-for-biostimulants/ (accessed on 5 June 2019).
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. (Amst.) 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K.; et al. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato. Front. Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef]
- Bulgari, R.; Morgutti, S.; Cocetta, G.; Negrini, N.; Farris, S.; Calcante, A.; Spinardi, A.; Ferrari, E.; Mignani, I.; Oberti, R.; et al. Evaluation of Borage Extracts As Potential Biostimulant Using a Phenomic, Agronomic, Physiological, and Biochemical Approach. Front. Plant Sci. 2017, 8, 935. [Google Scholar] [CrossRef]
- Dalal, A.; Bourstein, R.; Haish, N.; Shenhar, I.; Wallach, R.; Moshelion, M.; Sciences, P.; Sciences, W. A High-Throughput Physiological Functional Phenotyping System for Time- and Cost-Effective Screening of Potential Biostimulants. bioRxiv 2019, 525592. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 305–340, ISBN 0470494948, 9780470494943. [Google Scholar]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant Biostimulant Regulatory Framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regul. 2018, 1–11. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Facanha, A.L.; Facanha, A.R. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. (Amst.) 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Scientia Agricola Plant biostimulants: Physiological responses induced by protein hydrolyzed-based. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Canellas, L.P.; Dobbss, L.B.; Oliveira, A.L.; Chagas, J.G.; Aguiar, N.O.; Rumjanek, V.M.; Novotny, E.H.; Olivares, F.L.; Spaccini, R.; Piccolo, A. Chemical properties of humic matter as related to induction of plant lateral roots. Eur. J. Soil Sci. 2012, 63, 315–324. [Google Scholar] [CrossRef]
- Trevisan, S.; Botton, A.; Vaccaro, S.; Vezzaro, A.; Quaggiotti, S.; Nardi, S. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ. Exp. Bot. 2011, 74, 45–55. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Reniero, F.; Rascio, N. Chemical and Biochemical Properties of Humic Substances Isolated from Forest Soils and Plant Growth. Soil Sci. Soc. Am. J. 2000, 64, 639. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Dobbss, L.B.; Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Peres, L.E.P.; Azevedo, M.; Spaccini, R.; Piccolo, A.; Façanha, A.R. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J. Agric. Food Chem. 2010, 58, 3681–3688. [Google Scholar] [CrossRef]
- Norrie, J.; Keathley, J.P. Benefits of Ascophyllum Nodosum Marine-Plant Extract Applications to ‘Thompson Seedless’ Grape Production. Acta Hortic. 2006, 243–248. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Spiewski, T.; Grabowska, A. The Effect of Seaweed Extracts on the Yield and Quality Parameters of Broccoli (Brassica oleracea var. cymosa L.) in Open Field Production. Acta Hortic. 2013, 1009, 83–90. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Hamza, B.B.; Suggars, A. Biostimulants: Myths and Realities. TurfGrass Trends 2001, 8, 6–10. [Google Scholar]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. (Amst.) 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Oancea, F.; Velea, S.; Mincea, C.; Ilie, L. Micro-algae based plant biostimulant and its effect on water stressed tomato plants. Rom. J. Plant Prot. 2013, VI, 104–117. [Google Scholar]
- Mógor, Á.F.; Ördög, V.; Lima, G.P.P.; Molnár, Z.; Mógor, G. Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J. Appl. Phycol. 2018, 30, 453–460. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. (Amst.) 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Cerdán, M.; Sánchez-Sánchez, A.; Oliver, M.; Juárez, M.; Sánchez-Andreu, J.J. Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Hortic. 2009, 830, 481–488. [Google Scholar] [CrossRef]
- Lisiecka, J. The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. ‘Elsanta’. Acta Sci. Pol. Hortorum Cultus 2011, 10, 31–40. [Google Scholar]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2012, 1009, 29–36. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. (Amst.) 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, S.; Manoli, A.; Quaggiotti, S. A Novel Biostimulant, Belonging to Protein Hydrolysates, Mitigates Abiotic Stress Effects on Maize Seedlings Grown in Hydroponics. Agronomy 2019, 9, 28. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. (Amst.) 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Turan, M.; Yildirim, E.; Kitir, N.; Unek, C.; Nikerel, E.; Ozdemir, B.S.; Güneş, A.; Mokhtari, N.E.P. Beneficial Role of Plant Growth-Promoting Bacteria in Vegetable Production Under Abiotic Stress. In Microbial Strategies for Vegetable Production; Zaidi, A., Khan, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 151–166. ISBN 978-3-319-54401-4. [Google Scholar]
- Xu, L.; Geelen, D. Developing Biostimulants from Agro-Food and Industrial By-Products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Schiavon, M.; Altissimo, A.; Franceschi, C.; Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 2011, 174, 496–503. [Google Scholar] [CrossRef]
- Juárez-Maldonado, A.; Ortega-Ortíz, H.; Morales-Díaz, A.; González-Morales, S.; Morelos-Moreno, Á.; Cabrera-De la Fuente, M.; Sandoval-Rangel, A.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Nanoparticles and Nanomaterials as Plant Biostimulants. Int. J. Mol. Sci. 2019, 20, 162. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Li, T. Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress. Biol. Trace Elem. Res. 2013, 156, 323–328. [Google Scholar] [CrossRef]
- Kiapour, H.; Moaveni, P.; Habibi, D.; Sani, B. Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.). Int. J. Agron. Agric. Res 2015, 6, 138–150. [Google Scholar]
- Lei, Z.; Mingyu, S.; Xiao, W.; Chao, L.; Chunxiang, Q.; Liang, C.; Hao, H.; Xiaoqing, L.; Fashui, H. Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation. Biol. Trace Elem. Res. 2008, 121, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N. Nano-titanium Dioxide (Nano-TiO2) Mitigates NaCl Stress by Enhancing Antioxidative Enzymes and Accumulation of Compatible Solutes in Tomato (Lycopersicon esculentum Mill.). J. Plant Sci. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.M.; Akladious, S.A. Application of carrot root extract induced salinity tolerance in cowpea (Vigna sinensis L.) seedlings. Pak. J. Bot. 2013, 45, 795–806. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Ferrante, A. Application of Biostimulants in Floating System for Improving Rocket Quality. J. Food Agric. Environ. 2005, 3, 86. [Google Scholar]
- Vernieri, P.; Borghesi, E.; Tognoni, F.; Serra, G.; Ferrante, A.; Piaggesi, A. Use of biostimulants for reducing nutrient solution concentration in floating system. Acta Hortic. 2006, 718, 477–484. [Google Scholar] [CrossRef]
- Bulgari, R.; Podetta, N.; Cocetta, G.; Piaggesi, A.; Ferrante, A. The effect of a complete fertilizer for leafy vegetables production in family and urban gardens. Bulg. J. Agric. Sci. 2014, 20, 1361–1367. [Google Scholar]
- Shehata, S.M.; Abou El-Yazied, A. Effect of Foliar Spraying with Amino Acids and Seaweed Extract on Growth Chemical Constitutes, Yield and its Quality of Celeriac Plant Effect of Bio-stimulants on Yield and Quality of Head Lettuce Grown Under Two Sources of Nitrogen View project. Eur. J. Sci. Res. 2011, 58, 257–265. [Google Scholar]
- Yildirim, E.; Karlidag, H.; Turan, M.; Dursun, A.; Goktepe, F. Promotion of Broccoli by Plant Growth Promoting Rhizobacteria. HortScience 2011, 46, 932–936. [Google Scholar] [CrossRef]
- Narendra Babu, A.; Jogaiah, S.; Ito, S.; Kestur Nagaraj, A.; Tran, L.-S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 2015, 231, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Karlidag, H.; Yildirim, E.; Turan, M.; Pehluvan, M.; Donmez, F. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa). HortScience 2013, 48, 563–567. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, K.D. Plant Growth Promoting Rhizobacteria Effect on Antioxidant Status, Photosynthesis, Mineral Uptake and growth of lettuce under soil salinity. Res. J. Agric. Biol. Sci. 2005, 1, 210–215. [Google Scholar]
- Fasciglione, G.; Casanovas, E.M.; Yommi, A.; Sueldo, R.J.; Barassi, C.A. Azospirillum improves lettuce growth and transplant under saline conditions. J. Sci. Food Agric. 2012, 92, 2518–2523. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Pendota, S.C.; Van Staden, J. Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol—A biologically active phenolic molecule from brown seaweed. New Biotechnol. 2016, 33, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Mona, M.A. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar] [CrossRef]
- Abou-Sreea, A.I.; Matter, F.M. Using moringa leaf extract as biostimulant and giberrellic acid for enhancing fennel (Foeniculum vulgare var. azoricum Mill.) Growth and oil yield. Acta Sci. Intellectus 2016, 2410, 9738. [Google Scholar]
- Abdel-Rahman, S.S.A.; Abdel-Kader, A.A.S. Response of Fennel (Foeniculum vulgare, Mill) plants to foliar application of moringa leaf extract and benzyladenine (BA). S. Afr. J. Bot. 2019. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, S.; Shah, S.M. Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato. Int. J. Biosci. 2019, 14, 309–316. [Google Scholar]
- Luziatelli, F.; Ficca, A.G.; Colla, G.; Baldassarre Švecová, E.; Ruzzi, M. Foliar Application of Vegetal-Derived Bioactive Compounds Stimulates the Growth of Beneficial Bacteria and Enhances Microbiome Biodiversity in Lettuce. Front. Plant Sci. 2019, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Mattner, S.W.; Wite, D.; Riches, D.A.; Porter, I.J.; Arioli, T. The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol. Agric. Hortic. 2013, 29, 258–270. [Google Scholar] [CrossRef]
- Paradiković, N.; Vinković, T.; Vinković Vrček, I.; Žuntar, I.; Bojić, M.; Medić-Šarić, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Petrozza, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Piaggesi, A. An evaluation of tomato plant root development and Morpho- Physiological response treated with VIVA® by image analysis. Acta Hortic. 2013, 1009, 155–160. [Google Scholar] [CrossRef]
- Petrozza, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Piaggesi, A. Evaluation of the Effect of RADIFARM® treatment on the Morpho—Physiological characteristics of root systems via image analysis. Acta Hortic. 2013, 1009, 149–154. [Google Scholar] [CrossRef]
- Kumar, S.; Chinnannan, K.; Thamilarasan, S.K.; Seralathan, M.; Shanmuganathan, R.; Padikasan, I.A. Enzymatically hydrolysed sago bagasse improves physiological, biochemical and molecular attributes of Solanum lycopersicum. Biocatal. Agric. Biotechnol. 2019, 17, 499–506. [Google Scholar] [CrossRef]
- Kunicki, E.; Grabowska, A.; Sękara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef]
- Pokluda, R.; Sękara, A.; Jezdinský, A.; Kalisz, A.; Neugebauerová, J.; Grabowska, A. The physiological status and stress biomarker concentration of Coriandrum sativum L. plants subjected to chilling are modified by biostimulant application. Biol. Agric. Hortic. 2016, 32, 258–268. [Google Scholar] [CrossRef]
- Le Mire, G.; Nguyen, M.L.; Fassotte, B.; du Jardin, P.; Verheggen, F.; Delaplace, P.; Jijakli, M.H. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 299–313. [Google Scholar]
- Cao, K.; Yu, J.; Xu, D.; Ai, K.; Bao, E.; Zou, Z. Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. BMC Plant Biol. 2018, 18, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Nieves-Cordones, M.; Lopez-Delacalle, M.; Rodenas, R.; Mestre, T.; Garcia-Sanchez, F.; Rubio, F.; Nortes, P.; Mittler, R.; Rivero, R. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules 2018, 23, 535. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Akbar, A.; Askari, S.H.; Iqbal, M.; Rasheed, R.; Hussain, I. Recent Advances in Abiotic Stress Tolerance of Plants through Chemical Priming: An Overview. In Advances in Seed Priming; Rakshit, A., Singh, H.B., Eds.; Springer: Singapore, 2018; pp. 51–79. ISBN 978-981-13-0032-5. [Google Scholar]
- Subramanian, P.; Kim, K.; Krishnamoorthy, R.; Mageswari, A.; Selvakumar, G.; Sa, T. Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (solanum lycopersicum Mill.) under low temperatures. PLoS ONE 2016, 11, e0161592. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, P.; Mageswari, A.; Kim, K.; Lee, Y.; Sa, T. Psychrotolerant Endophytic Pseudomonas sp. Strains OB155 and OS261 Induced Chilling Resistance in Tomato Plants (Solanum lycopersicum Mill.) by Activation of Their Antioxidant Capacity. Mol. Plant-Microbe Interact. 2015, 28, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Marfà, O.; Cáceres, R.; Polo, J.; Ródenas, J. Animal protein hydrolysate as a biostimulant for transplanted strawberry plants subjected to cold stress. Acta Hortic. 2009, 842, 315–318. [Google Scholar] [CrossRef]
- Polo, J.; Barroso, R.; Ródenas, J.; Azcón-Bieto, J.; Cáceres, R.; Marfà, O. Porcine hemoglobin hydrolysate as a biostimulant for lettuce plants subjected to conditions of thermal stress. Horttechnology 2006, 16, 483–487. [Google Scholar] [CrossRef]
- Korkmaz, A.; Korkmaz, Y.; Demirkiran, A.R. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 2010, 67, 495–501. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Fujit, M. Extreme Temperature Responses, Oxidative Stress and Antioxidant Defense in Plants. In Abiotic Stress—Plant Responses and Applications in Agriculture; InTechOpen: London, UK, 2013; pp. 169–205. [Google Scholar]
- Camejo, D.; Rodríguez, P.; Morales, M.A.; Dell’Amico, J.M.; Torrecillas, A.; Alarcón, J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005, 162, 281–289. [Google Scholar] [CrossRef]
- Ogweno, J.O.; Song, X.S.; Shi, K.; Hu, W.H.; Mao, W.H.; Zhou, Y.H.; Yu, J.Q.; Nogués, S. Brassinosteroids Alleviate Heat-Induced Inhibition of Photosynthesis by Increasing Carboxylation Efficiency and Enhancing Antioxidant Systems in Lycopersicon esculentum. J. Plant Growth Regul. 2008, 27, 49–57. [Google Scholar] [CrossRef]
- El-Bassiony, A.M.; Ghoname, A.A.; El-Awadi, M.E.; Fawzy, Z.F.; Gruda, N. Ameliorative Effects of Brassinosteroids on Growth and Productivity of Snap Beans Grown Under High Temperature. Gesunde Pflanz. 2012, 64, 175–182. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ. Exp. Bot. 2015, 112, 44–54. [Google Scholar] [CrossRef]
- Yang, J.D.; Yun, J.Y.; Zhang, T.H.; Zhao, H.L. Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs. Bot. Stud. 2006, 47, 129–136. [Google Scholar]
- Kumar, S.; Kaur, R.; Kaur, N.; Bhandhari, K.; Kaushal, N.; Gupta, K.; Bains, T.S.; Nayyar, H. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol. Plant. 2011, 33, 2091. [Google Scholar] [CrossRef]
- Kaushal, N.; Gupta, K.; Bhandhari, K.; Kumar, S.; Thakur, P.; Nayyar, H. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol. Mol. Biol. Plants 2011, 17, 203–213. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushal, N.; Nayyar, H.; Gaur, P. Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol. Plant. 2012, 34, 1651–1658. [Google Scholar] [CrossRef]
- Viégas, R.A.; da Silveira, J.A.G.; Lima, A.R.D., Jr.; Queiroz, J.E.; Fausto, M.J.M. Effects of NaCl-salinity on growth and inorganic solute accumulation in young cashew plants. Rev. Bras. Eng. Agrícola Ambient. 2006, 5, 216–222. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Leonardi, C.; Bie, Z. Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. (Amst.) 2010, 127, 147–155. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; D’Anna, F. Effect of salt stress in lettuce cultivation. Acta Hortic. 2003, 609, 371–375. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Sakar, E. Response of two leafy vegetables grown at high salinity to supplementary potassium and phosphorus during different growth stages. J. Plant Nutr. 2002, 25, 2663–2676. [Google Scholar] [CrossRef]
- Taïbi, K.; Taïbi, F.; Ait Abderrahim, L.; Ennajah, A.; Belkhodja, M.; Mulet, J.M. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 2016, 105, 306–312. [Google Scholar] [CrossRef]
- Yarsi, G.; Sivaci, A.; Dasgan, H.Y.; Altuntas, O.; Binzet, R.; Akhoundnejad, Y. Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted galia C8 melon cultivar. Pak. J. Bot. 2017, 49, 421–426. [Google Scholar]
- Munns, R.; Termaat, A. Whole-plant responses to salinity. Aust. J. Plant Physiol. 1986, 13, 143–160. [Google Scholar] [CrossRef]
- Blaylock, A.D. Soil Salinity, Salt Tolerance, and Growth Potential of Horticultural and Landscape Plants; B-988; University of Wyoming, Cooperative Extension Service: Laramie, WY, USA, 1994. [Google Scholar]
- Maas, E.V.; Grattan, S.R. Crop yields as affected by salinity. Agronomy 1999, 38, 55–110. [Google Scholar]
- Shaheen, S.; Naseer, S.; Ashraf, M.; Akram, N.A. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J. Plant Interact. 2013, 8, 85–96. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Responses of Spinach to Salinity and Nutrient Deficiency in Growth, Physiology, and Nutritional Value. J. Am. Soc. Hortic. Sci. 2016, 141, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Bano, S.; Ashraf, M.; Akram, N.A.; Al-Qurainy, F. Regulation in some vital physiological attributes and antioxidative defense system in carrot (Daucus carota L.) under saline stress. J. Appl. Bot. Food Qual. Angew. Bot. 2012, 85, 105. [Google Scholar]
- Agastian, P.; Kingsley, S.J.; Vivekanandan, M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 2000, 38, 287–290. [Google Scholar] [CrossRef]
- Sayyad-Amin, P.; Jahansooz, M.R.; Borzouei, A.; Ajili, F. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J. Biol. Phys. 2016, 42, 601–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moud, A.M.; Maghsoudi, K. Salt Stress Effects on Respiration and Growth of Germinated Seeds of Different Wheat (Triticum aestivum L.) Cultivars. World J. Agric. Sci. 2008, 4, 351–358. [Google Scholar]
- Flores, P.; Botella, M.Á.; Cerdá, A.; Martínez, V. Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can. J. Bot. 2004, 82, 207–213. [Google Scholar] [CrossRef]
- Breusegem, F. Van Reactive oxygen species in plant cell death. Plant Physiol. 2006, 141, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, R.; Trivellini, A.; Ferrante, A. Effects of Two Doses of Organic Extract-Based Biostimulant on Greenhouse Lettuce Grown Under Increasing NaCl Concentrations. Front. Plant Sci. 2019, 9, 1870. [Google Scholar] [CrossRef]
- Barassi, C.A.; Ayrault, G.; Creus, C.M.; Sueldo, R.J.; Sobrero, M.T. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci. Hortic. (Amst.) 2006, 109, 8–14. [Google Scholar] [CrossRef]
- Fasciglione, G.; Casanovas, E.M.; Quillehauquy, V.; Yommi, A.K.; Goñi, M.G.; Roura, S.I.; Barassi, C.A. Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci. Hortic. (Amst.) 2015, 195, 154–162. [Google Scholar] [CrossRef]
- Del Amor, F.M.; Cuadra-Crespo, P. Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct. Plant Biol. 2012, 39, 82–90. [Google Scholar] [CrossRef]
- Hamaoui, B.; Abbadi, J.M.; Burdman, S.; Rashid, A.; Sarig, S.; Okon, Y. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum ) and faba beans (Vicia faba ) under different growth conditions. Agronomie 2003, 21, 553–560. [Google Scholar] [CrossRef]
- Del Pilar Cordovilla, M.; Berrido, S.I.; Ligero, F.; Lluch, C. Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba plant growth under salt stress. J. Plant Physiol. 1999, 154, 127–131. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004, 166, 525–530. [Google Scholar] [CrossRef]
- Yildirim, E.; Taylor, A.G.; Spittler, T.D. Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci. Hortic. (Amst.) 2006, 111, 1–6. [Google Scholar] [CrossRef]
- Mesut Çimrin, K.; Türkmen, Ö.; Turan, M.; Tuncer, B. Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr. J. Biotechnol. 2010, 9, 5845–5851. [Google Scholar]
- Aydin, A.; Kant, C.; Turan, M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 2012, 7, 1073–1086. [Google Scholar] [CrossRef]
- Demir, K.; Günes, A.; Inal, A.; Alpaslan, M. Effects of Humic Acids on the Yield and Mineral Nutrition of Cucumber (Cucumis Sativus, L.) Grown with Different Salinity Levels. Acta Hortic. 1999, 492, 95–104. [Google Scholar] [CrossRef]
- Guinan, K.J.; Sujeeth, N.; Copeland, R.B.; Jones, P.W.; O’Brien, N.M.; Sharma, H.S.S.; Prouteau, P.F.J.; O’Sullivan, J.T. Discrete Roles for Extracts of Ascophyllum Nodosum in Enhancing Plant Growth and Tolerance To Abiotic and Biotic Stresses. Acta Hortic. 2013, 1009, 127–135. [Google Scholar] [CrossRef]
- Ross, R.; Holden, D. Commercial extracts of the brown seaweed Ascophyllum nodosum enhance growth and yield of strawberries. HortScience 2010, 45, S141. [Google Scholar]
- EL Arroussi, H.; Benhima, R.; Elbaouchi, A.; Sijilmassi, B.; EL Mernissi, N.; Aafsar, A.; Meftah-Kadmiri, I.; Bendaou, N.; Smouni, A. Dunaliella salina exopolysaccharides: A promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J. Appl. Phycol. 2018, 30, 2929–2941. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Srivastava, A.K.; Saber, H.; Alwaleed, E.A.; Tran, L.S.P. Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.M.; Varma, B.; Howladar, S.M. Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Sci. Hortic. (Amst.) 2013, 162, 63–70. [Google Scholar] [CrossRef]
- Semida, W.M.; Rady, M.M. Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci. Hortic. (Amst.) 2014, 168, 210–217. [Google Scholar] [CrossRef]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. (Amst.) 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Howladar, S.M. A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol. Environ. Saf. 2014, 100, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rady, M.M.; Desoky, E.S.M.; Elrys, A.S.; Boghdady, M.S. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S. Afr. J. Bot. 2019, 121, 294–305. [Google Scholar] [CrossRef]
- Semida, W.M.; Abd El-Mageed, T.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. J. Hortic. Sci. Biotechnol. 2019, 1–11. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Kałuzewicz, A.; Krzesiński, W.; Spizewski, T.; Zaworska, A. Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 197–202. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. (Amst.) 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Petrozza, A.; Santaniello, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Paparelli, E.; Piaggesi, A.; Perata, P.; Cellini, F. Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach. Sci. Hortic. (Amst.) 2014, 174, 185–192. [Google Scholar] [CrossRef]
- Romero, A.M.; Vega, D.; Correa, O.S. Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl. Soil Ecol. 2014, 82, 38–43. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Vardharajula, S.; Shrivastava, M.; SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016, 184, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Verma, J.P. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Shaharoona, B.; Mahmood, T. Inoculation with Pseudomonas spp. Containing ACC-Deaminase Partially Eliminates the Effects of Drought Stress on Growth, Yield, and Ripening of Pea (Pisum sativum L.). Pedosphere 2008, 18, 611–620. [Google Scholar] [CrossRef]
- Heidari, M.; Golpayegani, A. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J. Saudi Soc. Agric. Sci. 2012, 11, 57–61. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The Use of Biostimulants for Enhancing Nutrient Uptake. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2015; Volume 130, pp. 141–174. ISBN 9780128021378. [Google Scholar]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant applications in low input horticultural cultivation systems. Italus Hortus 2019, 25, 27–36. [Google Scholar]
- Koleška, I.; Hasanagić, D.; Todorović, V.; Murtić, S.; Klokić, I.; Paradiković, N.; Kukavica, B. Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. J. Plant Interact. 2017, 12, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Anjum, K.; Ahmed, M.; Baber, J.K.; Alizai, M.A.; Ahmed, N.; Tareen, M.H. Response of Garlic Bulb Yield To Bio-Stimulant (Bio-Cozyme ) Under Calcareous Soil. Life Sci. Int. J. 2014, 8, 3058–3062. [Google Scholar]
- Papenfus, H.B.; Kulkarni, M.G.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Sci. Hortic. (Amst.) 2013, 151, 142–146. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. (Amst.) 2010, 125, 263–269. [Google Scholar] [CrossRef]
- Cerdán, M.; Sánchez-Sánchez, A.; Jordá, J.D.; Juárez, M.; Sánchez-Andreu, J. Effect of commercial amino acids on iron nutrition of tomato plants grown under lime-induced iron deficiency. J. Plant Nutr. Soil Sci. 2013, 176, 859–866. [Google Scholar] [CrossRef]
- Miflin, B.J.; Lea, P.J. The pathway of nitrogen assimilation in plants. Phytochemistry 1976, 15, 873–885. [Google Scholar] [CrossRef]
- Porra, R.J. Invited Review Recent Progress in Porphyrin and Chlorophyll Biosynthesis. Regulation 1997, 65, 492–516. [Google Scholar]
- Paradiković, N.; Vinković, T.; Vinković Vrček, I.; Tkalec, M. Natural biostimulants reduce the incidence of BER in sweet yellow pepper plants (Capsicum annuum L.). Agric. Food Sci. 2013, 22, 307–317. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 2004, 42, 565–572. [Google Scholar] [CrossRef] [PubMed]
ABIOTIC STRESS | SEVERITY AND TIME OF E×POUSURE | BIOSTIMULANT PRODUCT OR SUBSTANCES WITH A BIOSTIMULANT EFFECT | DOSE | APPLICATION METHODS AND NUMBER OF TREATMENTS | CROP | BENEFICIAL EFFECTS | REFERENCE |
---|---|---|---|---|---|---|---|
Chilling or cold stress | 6 °C for 6 days | Asahi SL (Sodium para-nitrophenolate, sodium ortho-nitrophenolate, sodium 5-nitroguaiacolate) / Goëmar Goteo (Composition (w/v): organic substances 1.3–2.4%, phosphorus (P2O5). 24.8%, potassium (K2O) .4.75%) | 0.1% | Foliar spray (3×) | Coriandrum sativum L. | ↓electrolyte leakage ↑Chlorophyll a and carotenoids ↑Fv/Fm ↑E ↑gs ↓Ci | [124] |
10, 12 °C for 7 days / 15 °C for 7, 10 days | Flavobacterium glaciei, Pseudomonas frederiksbergensis, Pseudomonas vancouverensis | - | Seed inoculation | Solanum lycopersicum | ↑shoot height ↑root length ↑biomass accumulation ↓electrolyte leakage ↓lipid peroxidation ↑proline accumulation ↑SOD, CAT, APX, POD, GR activity | [129,130] | |
−6 °C for 5 nights | Pepton 85/16 (enzymatic hydrolysates obtained from animal haemoglobin. L-α amino acids (84.83%) and free amino acids (16.52%), organic-nitrogen content (12%), mineral-nitrogen content (1.4%), potassium content (4.45%), iron content (4061 ppm), very low heavy-metal content) | 2 L ha−1, 4 L ha−1 | Injection into the soil (5×) | Fragaria × ananassa | ↑new roots ↑flowering ↑fruit weight | [131] | |
−3 °C for 4 h | Pepton 85/16 | 0.4, 0.8, 1.6 g L−1 | Soil application (1×) | Lactuca sativa L. | ↑fresh and dry weight ↑SLA ↑RGR | [132] | |
4 °C for 8 days or nights /6 °C for 8 days only to the roots | Terra-Sorb® Foliar (Free amino acids (ASP, SER, GLU, GLY, HIS, ARG, THR, ALA, PRO, CIS, TYR, VAL, MET, LYS, ILE, LEU, PHE, TRP) 9,3% (w/w), Total amino acids 12% (w/w), Total nitrogen (N) 2,1% (w/w), Organic Nitrogen (N) 2,1% (w/w), Boron (B) 0,02% (w/w), Manganese (Mn) 0,05% (w/w), Zinc (Zn) 0,07% (w/w), Organic matter 14,8% (w/w)) | 3 mL L−1 | Foliar spray (3×) | Lactuca sativa L. var. capitata | ↑roots fresh weight ↑green cover % | [84] | |
3 °C for 48 h | 5-aminolevulinic acid | 0, 1, 10, 25, 50 ppm (15 mL for seed soaking and 25 mL for soil drench) | Seed soaking/ foliar spray/soil drench (1×) | Capsicum annuum | ↓visual injuring ↑chlorophyll ↑RWC ↑gs ↓membrane permeability ↑shoot and root mass ↑SOD activity | [133] | |
Drought stress | Occlusion of xylem vessels | Azospirillum brasilense (BNM65) | - | Seed inoculation | Solanum lycopersicum | ↑height plants ↑dry weight ↑xylem vessel area | [189] |
No irrigation for 5 days | Megafol® (Composition (w/v): total nitrogen (N) 3.0% (36.6 g L−1); organic nitrogen (N) 1.0% (12.2 g L−1); ureic nitrogen (N) 2.0% (24.4 g L−1); potassium oxide (K2O) soluble in water 8.0% (97.6 g); organic carbon (C) of biological origin 9.0% (109.8 g L−1)) | 2 mL L−1 | Foliar spray (1×) | Solanum lycopersicum | ↑leaf area ↑RLWC | [188] | |
50% ET | Ascophyllum nodosum | 0.50% | Foliar spray and drench | Spinacia oleracea | ↑RLWC ↑leaf area ↑fresh and dry weight ↑SLA ↑gas exchange | [186] | |
No irrigation until symptoms of wilting appear | Pseudomonas spp. (P. putida P. fluorescens) | - | Seed inoculation | Pisum sativum | ↑grain yield ↑root growth ↑shoot length ↑number of pods per plant ↑chlorophyll | [192] | |
No irrigation for 12 days | Achromobacter piechaudii (ARV8) | - | Seedling inoculation | Solanum lycopersicum | ↑fresh and dry weight of seedling ↑plant growth ↓ethylene | [168] | |
No irrigation for 12 days | Achromobacter piechaudii (ARV8) | - | Seedling inoculation | Capsicum annuum | ↑ fresh and dry weight of seedling ↑plant growth | [168] | |
No irrigation for 7 days | Ascophyllum nodosum | 0.33% | Foliar spray (2×) | Solanum lycopersicum | ↑RWC ↑plant growth ↑foliar density ↑chlorophyll ↓lipid peroxidation ↑proline ↑soluble sugars | [187] | |
No irrigation for 2 days | Ascophyllum nodosum + amino acids | - | Soil application (1×)/ foliar spray (3×) | Brassica oleracea var. italica | ↑Pn ↑gs ↑chlorophyll | [185] | |
40, 70% field capacity | Gibbrellic acid and titanium dioxide | 250, 500 ppm (GA3) 0.01, 0.03% (titanium nanoparticles) | Stems and foliar spray (2×) | Ocimum basilicum | ↑CAT activity ↓lipid peroxidation ↑LRWC | [95] | |
No irrigation | VIVA® | - | 2× | Solanum lycopersicum | ↑plant biomass ↑roots biomass | [120] | |
60, 40% field capacity | Pseudomonades, Bacillus lentus, Azospirillum brasilens | - | Seed inoculation | Ocimum basilicum | ↑CAT, GPX activity ↑chlorophyll | [193] | |
60, 40% ET | Moringa leaf extract | 3% | Foliar spray (2×) | Cucurbita pepo | ↑growth ↑HI ↑WUE ↑Fv/Fm ↑PI ↑soluble sugars ↑free proline ↓electrolyte leakage ↑membrane stability | [114] | |
Heat stress | 35 °C | Nano-TiO2 | 0.05, 0.1, 0.2 g L−1 | Foliar spray (1×) | Solanum lycopersicum | ↑gs ↑E ↑ Pn | [94] |
40/30 °C for 8 days | Brassinosteroids | 0.01, 0.1, and 1.0 mg L−1 | Foliar spray (1×) | Solanum lycopersicum | ↑antioxidant enzyme activities ↓H2O2 ↓MDA ↑shoot weight | [138] | |
35.2 °C (Tmax) | Brassinosteroids | 25, 50, 100 ppm | Foliar spray (2×) | Phaseolus vulgaris | ↑plant length ↑number of leaves, branches and shoots per plant ↑fresh and dry weight ↑pod weight ↑N, P, K in bean pods | [139] | |
45 °C for 90 min | Nitric oxide | 150 µM | Immersion of leaf disks | Phaseolus radiatus | ↑Fm ↓electrolyte leakage | [141] | |
35/25 40/30 45/35 °C | Ascorbic acid | 50 µM | In a nutrient solution | Phaseolus radiatus | ↑% germination ↑seedling growth ↓electrolyte leakage ↑TTC reduction ability ↑RLWC ↓MDA ↓H2O2 ↑antioxidant activity ↑ascorbic acid ↑GSH ↑proline | [142] | |
35/25 40/30 45/35 °C | Proline | 5, 10, 15 µM | In a nutrient solution | Cicer arietinum | ↑% germination ↑shoot and root length ↓electrolyte leakage ↑chlorophyll ↑RLWC ↓lipid peroxidation ↓H2O2 ↑GSH ↑proline | [143] | |
35/25 40/30 45/35 °C for 10 days | Abscisic acid | 2.5 µM | In a nutrient solution | Cicer arietinum | ↑shoot length ↑osmolytes ↑chlorophyll ↑cellular oxidizing ability | [144] | |
42 °C for 48 h | Glutathione | 0.5 mM | - | Vigna radiata L. | ↑RLWC ↑chlorophyll ↑proline ↓MDA ↓ H2O2 ↓O2- ↓LOX activity ↑ascorbate ↓GSSG | [140] | |
Heat and salt stress | 35 °C and 75 mM NaCl for 15 days | Melatonin | 100 µM | Foliar spray (5×) | Solanum lycopersicum | ↑biomass ↑Pn ↑gs ↑E ↑chlorophyll a ↑carotenoids ↑Fv/Fm ↑efficiency of PSII ↑ETR ↑antioxidant capacity ↓H2O2 ↓lipid peroxidation ↓protein oxidation | [127] |
Iron deficiency | - | Actiwave® (Ascophyllum nodosum)(Composition (w/v): total nitrogen (N) 3.0% (38.7 g L−1); organic nitrogen (N) 1.0% (12.9 g L−1); ureic nitrogen (N) 2.0% (25.8 g L−1); potassium oxide (K2O) soluble in water 7.0% (90.3 g L−1); organic carbon (C) of biological origin 12% (154.8 g L−1); iron (Fe) soluble in water 0.5% (6.45 g L−1); iron (Fe) chelated by ethylenediaminedi (2-hydroxy-5-sulfophenylacetic) acid (EDDHSA) 0.5% (6.45 g L−1); zinc (Zn) soluble in water 0.08% (1.03 g L−1); zinc (Zn) chelated by Ethylenediaminetetraacetic acid (EDTA) 0.08% (1.03 g L−1)) | 10 mL in 20 mL tap water | In a nutrient solution | Fragaria ananassa | ↑vegetative growth ↑chlorophyll ↑stomatal density ↑photosynthetic rate ↑ fruit production ↑berry weight | [199] |
- | Amino acids | 0.1, 0.2 mL L−1 / 0.2, 0.7 mL L−1 | Root application/foliar spray (4×) | Solanum lycopersicum | ↑plant growth ↑root and leaf ferrum chelate reductase activity ↑chlorophyll ↑leaf Fe ↑Fe2:Fe ratio | [200] | |
Reduced NPK | NPK reduced of 40% | VIVA® (Composition (w/v): total nitrogen (N) 3.0% (37.2 g L−1); organic nitrogen (N) 1.0% (12.4 g L−1); ureic nitrogen (N) 2.0% (24.8 g L−1); potassium oxide (K2O) soluble in water 8.0% (99.2 g L−1); organic carbon (C) of biological origin 8.0% (99.2 g L−1); iron (Fe) soluble in water 0.02% (0.25 g L−1); iron (Fe) chelated by EDDHSA 0.02% (0.25 g L−1)) | 10.5 mL /plant | Foliar spray | Solanum lycopersicum | ↑yield ↑ascorbic acid ↑lycopene ↑chlorophyll ↑carotenoids | [196] |
NPK deprivation | Kelpak (Ecklonia maxima, containing polyamine, cytokinins and auxins, putrescine, spermine ) | 0.40% | In a nutrient solution (twice per week for 8 weeks) | Abelmoschus esculentus | ↑number of leaves ↑number of roots ↑stem thickness ↑shoot weight ↑root weight ↑leaf area | [198] | |
NPK reduced of 50% | Bio-Cozyme (concentrated micro-biological biostimulant and soil inoculants. Total Nitrogen (N) 0.20%, Soluble Potash (KO) 5.00%, Magnesium (Mg) 1.40%, Boron (B) 0.20%, Copper (Cu) 0.50%, Iron (Fe) 3.00%, Manganese (Mn)1.00%, Molybdenum (Mo) 0.0.25%, Zinc (Zn) 2.00%, Humic Acid, humates & derivatives 8.00%, Vitamins, E, C, B Complex, organic acids, natural sugars carbohydrates, amino acids 1.40%) | 2 kg ha−1 | Foliar application (4×) | Allium sativum | ↑bulb yield ↑plant height ↑NPK in leaves | [197] | |
Salt stress | 30, 50, 80 mol m−3 NaCl for 30 days / 40, 80, 120 mol m−3 NaCl | Azospirillum brasilense | - | Seed inoculation | Lactuca sativa | ↑germination % ↑total fresh and dry weight ↑biomass partition ↑plantlets number ↑plantlets dry weight ↑total leaf fresh weight ↑leaf area ↑leaves number ↑chlorophyll ↑root dry weigh ↑ascorbic acid ↑plant survival after transplant | [163,164] |
40, 80, 120 mM NaCl | Azospirillum brasilense/Pantoea dispersa | - | Inoculation | Capsicum annuum | ↑plant dry weight ↑K+:Na+ratio ↑gs ↑relative growth rate ↑net assimilation rate ↓ Cl- accumulation ↑NO3- concentration ↑CO2 assimilation | [165] | |
714 mg⋅L–1 NaCl | Azospirillum brasilense (ATCC 29,729) | - | Soil inoculation | Cicer arietinum | ↑nodule formation ↑shoot dry weight | [166] | |
100 mmol L−1 NaCl | Rhizobium leguminosarum (GRA19–GRL19) | - | Seedling inoculation | Vicia faba / Pisum sativum | ↑plant growth | [167] | |
50, 100 mM NaCl | Bacillus species, Bacillus pumilis, Trichoderma harzannum, Paenibacillus azotoformans and polymyxa | - | Seed treatment/ watering | Cucurbita pepo | ↑fresh weight ↑potassium uptake ↓sodium uptake ↑ K+:Na+ ratio | [169] | |
30, 60, 120 mM (NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, MgSO4) for 60 days | Humic acid | 0.05, 0.1% | Soil application | Phaseolus vulgaris | ↑plant nitrate, nitrogen and phosphorus ↓soil electricity conductivity ↓proline ↓electrolyte leakage ↑plant root and shoot dry weight | [171] | |
- | Acadian (Ascophyllum nodosum) | - | Soil application | Fragaria ananassa | ↑yield ↑growth ↑root length ↑surface area, volume and number of tips ↑numbers of crowns | [174] | |
80 mM NaCl | Super Fifty® (Ascophyllum nodosum) | 0.4, 1, 2.5, 10 mL L−1 | In the nutrient solution | Lactuca sativa | ↑root, stem, total plant weight | [173] | |
25 mM NaCl | Protein hydrolysates | 2.5 mL L−1 | Foliar spray/soil application | Lactuca sativa | ↑fresh yield ↑dry biomass ↑root dry weight ↑plant nitrogen metabolism ↑Fv/Fm ↓oxidative stress ↑osmolytes ↑glucosynolates | [85] | |
0.8, 1.3, and 1.8 dS/m NaCl | Retrosal® (organic mix with high concentration of carboxylic acids, containing calcium oxide (CaO) 8.0% (w/w) soluble in water and 1.4% complexed by ammonium ligninsulfonate, Zinc (Zn) 0.2% (w/w) soluble in water and 0.2% (w/w) chelated by EDTA.) | 0.1 or 0.2 mL/plant | Soil application (4×) | Lactuca sativa | ↑fresh weight ↑chlorophyll Pn ↑ gas exchange ↓proline ↓ABA | [162] | |
43, 207 mM NaCl for 7 weeks | Achromobacter piechaudii | - | Seedling inoculation | Solanum lycopersicum | ↑fresh and dry weights of tomato seedlings ↓ethylene ↑uptake phosphorous and potassium ↑WUE | [204] | |
200 mM NaCl | Nano-TiO2 | 5, 10, 20 and 40 mg L−1 | Foliar spray | Solanum lycopersicum | activities of carbonic anhydrase, nitrate reductase, SOD and POX ↑proline ↑glycinebetaine ↑growth ↑yield | [97] | |
28, 56 mmol kg−1 | Ascophyllum nodosum | 1, 2 g kg−1 | Soil application | Cucumis sativus | ↑fruit yield ↑Pn | [172] | |
7.15, 7.2 dSm−1 | Licorice root extract | 0.50% | Seed soaking /foliar spray | Phaseolus vulgaris | ↑plant growth ↑yield ↑RWC ↑chlorophylls ↑free proline ↑total soluble carbohydrates ↑total soluble sugars ↑nutrients ↑selenium ↑K+:Na+ ratio ↑membrane stability index ↑activities of all enzymatic antioxidants ↓electrolyte leakage ↓MDA ↓Na+ ↓H2O2 ↓O2- | [181] | |
100 mM NaCl | Propolis and maize grain extract | 1, 2% | Soaking seed | Phaseolus vulgaris | ↑% germination ↑seedling growth ↑cell membrane stability index ↑RWC ↑free proline ↑total free amino acids ↑total soluble sugars ↑indole-3-acetic acid ↑gibberellic acid ↑activity of the antioxidant system ↓lipid peroxidation ↓electrolyte leakage ↓ABA | [178] | |
6.23–6.28 dS m−1 | Salycilic acid and Moringa oleifera | 0.30% | Seed soaking /foliar spray | Phaseolus vulgaris | ↑shoot length ↑number and area of leaves ↑ plant dry weight ↑RWC ↑chlorophyll ↑carotenoid ↑total soluble sugars ↑free proline ↑ascorbic acid ↑N, P, K and Ca, ↑ratios of K/Na and Ca/Na ↑green pod and dry seed yields | [179] | |
100 mM NaCl | Moringa oleifera | crude extract | Soaking seed | Phaseolus vulgaris | ↑shoot and root lengths ↑plant dry mass ↑total soluble sugars ↑proline ↑K+, Na+ and Cl− ↑ascorbic acid ↑total glutathione ↓MDA ↓ H2O2 ↓O2- ↑SOD, APX, GR | [177,180] | |
50, 150 mM NaCl | Sargassum muticum and Jania rubens | 1% | Foliar spray (2×) | Cicer arietinum | ↑plant growth ↑chlorophyll ↑carotenoid ↑soluble sugars ↑phenols ↓Na+ ↑ K+ ↓H2O2 ↑CAT, SOD, POD, APX activity ↓MDA | [176] | |
3, 6 g L−1 | Dunaliella salina exopolysaccharides | 0.1 g L−1 | Foliar spray (2×) | Solanum lycopersicum | ↑chlorophyll ↑protein ↓proline | [175] | |
8.81 dS m−1 | Bee-honey based biostimulant | 25–50 g L−1 | Foliar spray | Allium cepa | ↑biomass ↑bulb yield ↑WUE ↑photosynthetic pigments ↑osmoprotectants ↑membrane stability index ↑RWC ↑enzymatic and non-enzymatic antioxidants | [182] | |
8 mM NaCl | phosphorus / humic acid | 50, 100, 150 mg kg−1 (P)/750, 1500 mg kg−1 (humic acid) | Soil application | Capsicum annuum | ↑fresh and dry weight of shoot and root ↓membrane damage ↑nutrient uptake | [170] | |
UV-stress | 300–340nm illumination for 15 min | Nano-anatase | 0.25% | Soaking seed and foliar spray | Spinacia oleracea | ↓O2 ↓H2O2 ↓MDA ↑ SOD, CAT, APX, GPX activity | [96] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. https://doi.org/10.3390/agronomy9060306
Bulgari R, Franzoni G, Ferrante A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy. 2019; 9(6):306. https://doi.org/10.3390/agronomy9060306
Chicago/Turabian StyleBulgari, Roberta, Giulia Franzoni, and Antonio Ferrante. 2019. "Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions" Agronomy 9, no. 6: 306. https://doi.org/10.3390/agronomy9060306
APA StyleBulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306