A Review of the Soil Seedbank from a Weed Scientists Perspective
Abstract
:1. Introduction
2. Herbicide Resistant Weeds
3. Seedbank Dynamics
4. Management Implications
4.1. Mechanical Weed Management
4.2. Cultural Weed Management
4.2.1. Crop Rotation.
4.2.2. Crop Sequences.
4.2.3. Intercropping.
4.2.4. Additional Factors.
4.3. Chemical Weed Management
5. Economic Constraints
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buhler, D.D.; Hartzler, R.G.; Forcella, F. Implications of weed seedbank dynamics to weed management. Weed Sci. 1997, 45, 329–336. [Google Scholar] [CrossRef]
- Teo-Sherrell, C.P.A.; Mortensen, D.A.; Keaton, M.E. Fates of weed seeds in soil: A seeded core method of study. J. Appl. Ecol. 1996, 33, 1107–1113. [Google Scholar] [CrossRef]
- Kellman, M. Microdistribution of viable weed seed in two tropical soils. J. Biogeogr. 1978, 5, 291–300. [Google Scholar] [CrossRef]
- Forcella, F.; Eradat-Oskoui, K.; Wagner, W. Application of weed seedbank ecology to low-input crop management. Ecol. Appl. 1993, 3, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.M.; Bradley, K.W.; Frisvold, G.; Powles, S.B.; Burgos, N.R.; et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60, 31–62. [Google Scholar] [CrossRef]
- Owen, M.D.K.; Young, B.G.; Shaw, D.R.; Wilson, R.G.; Jordan, D.L.; Dixon, P.M.; Weller, S.C. Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives. Pest. Manag. Sci. 2011, 67, 747–757. [Google Scholar] [CrossRef]
- Owen, M.D.K. Weed resistance development and management in herbicide-tolerant crops: Experiences from the USA. J. Consum. Prot. Food Saf. 2011, 6, 585–589. [Google Scholar] [CrossRef]
- Owen, M.D.K. Weed species shifts in glyphosate-resistant crops. Pest. Manag. Sci. 2008, 64, 377–387. [Google Scholar] [CrossRef]
- Gibson, D.J.; Gage, K.L.; Matthews, J.L.; Young, B.G.; Owen, M.D.K.; Wilson, R.G.; Weller, S.C.; Shaw, D.R.; Jordan, D.L. The effect of weed management systems on weed species communities over 5 years in glyphosate-resistant cropping systems. Appl. Veg. Sci. 2013, 16, 676–687. [Google Scholar] [CrossRef]
- Young, B.G.; Gibson, D.J.; Gage, K.L.; Matthews, J.L.; Jordan, D.L.; Owen, M.D.K.; Shaw, D.R.; Weller, S.C.; Wilson, R.G. Agricultural weeds in glyphosate-resistant cropping systems in the United States. Weed Sci. 2013, 61, 85–97. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Herms, C.P.; Cardina, J.; Webster, T.M. Seedbank and emerged weed communities following adoption of glyphosate-resistant crops in a long-term tillage and rotation study. Weed Sci. 2009, 57, 261–270. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Gibson, D.J.; Gage, K.L.; Matthews, J.L.; Jordan, D.L.; Owen, M.D.K.; Shaw, D.R.; Weller, S.C.; Wilson, R.G.; Young, B.G. Seedbank and field emergence of weeds in glyphosate-resistant cropping systems in the United States. Weed Sci. 2015, 63, 425–439. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Korres, N.E.; Bagavathiannan, M.V. Weed Seedbank management: Revisiting how herbicides are evaluated. Weed Sci. 2018, 66, 415–417. [Google Scholar] [CrossRef]
- Walsh, M.J.; Broster, J.C.; Schwartz-Lazaro, L.M.; Norsworthy, J.K.; Davis, A.S.; Tidemann, B.D.; Beckie, H.J.; Lyon, D.J.; Soni, N.; Neve, P.; et al. Opportunities and challenges for harvest weed seed control in global cropping systems. Pest. Manag. Sci. 2018, 74, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Schwartz-Lazaro, L.M.; Green, J.K.; Norsworthy, J.K. Seed retention of Palmer amaranth (Amaranthus palmeri) and barnyardgrass (Echinochloa crus-galli) in soybean. Weed Technol. 2017, 31, 617–622. [Google Scholar] [CrossRef]
- Goplen, J.J.; Sheaffer, C.C.; Becker, R.L.; Coulter, J.A.; Breitenbach, F.R.; Behnken, L.M.; Johnson, G.A.; Gunsolus, J.L. Giant ragweed (Ambrosia trifida) seed production and retention in soybean and field margins. Weed Technol. 2016, 30, 246–253. [Google Scholar] [CrossRef]
- Burton, N.R.; Beckie, H.J.; Willenborg, C.J.; Shirtliffe, S.J.; Schoenau, J.J.; Johnson, E.N. Evaluating seed shatter of economically important weed species. Weed Sci. 2016, 64, 673–682. [Google Scholar] [CrossRef]
- Walsh, M.J.; Powles, S.B. High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol. 2014, 28, 486–493. [Google Scholar] [CrossRef]
- Walsh, M.; Newman, P.; Powles, S. Targeting weed seeds in-crop: A new weed control paradigm for global agriculture. Weed Technol. 2013, 27, 431–436. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Norsworthy, J.K.; Smith, K.L.; Neve, P. Modeling the evolution of glyphosate resistance in barnyardgrass (Echinochloa crus-galli) in cotton-based production systems of the midsouthern United States. Weed Technol. 2013, 27, 475–487. [Google Scholar] [CrossRef]
- Neve, P.; Norsworthy, J.K.; Smith, K.L.; Zelaya, I. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res. 2011, 51, 99–112. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: www.weedscience.com (accessed on 2 April 2019).
- Owen, M.D.K.; Zelaya, I.A. Herbicide-resistant crops and weed resistance to herbicides. Pest. Manag. Sci. 2005, 61, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.D.K. Diverse approaches to herbicide-resistant weed management. Weed Sci. 2016, 64, 570–584. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mahajan, G.; Chauhan, B.S. Nonconventional weed management strategies for modern agriculture. Weed Sci. 2017, 63, 723–747. [Google Scholar] [CrossRef]
- Kniss, A.R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 2017, 8, 14865. [Google Scholar] [CrossRef] [Green Version]
- Mortenson, D.A.; Egan, J.F.; Maxwell, B.D.; Ryan, M.R.; Smith, R.G. Navigating a Critical Juncture for Sustainable Weed Management. BioScience 2012, 62, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Bagavathiannan, M.V.; Davis, A.S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest. Manag. Sci. 2018, 74, 2277–2286. [Google Scholar] [CrossRef]
- Nakka, S.; Godar, A.S.; Wani, P.S.; Thompson, C.R.; Peterson, D.E.; Roelofs, J.; Jugulam, M. Physiological and molecular characterization of hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor resistance in Palmer amaranth (Amaranthus palmeri S. Wats.). Front. Plant Sci. 2017, 8, 555. [Google Scholar] [CrossRef]
- Figueiredo, M.R.A.; Leibhart, L.J.; Reicher, Z.J.; Tranel, P.J.; Nissen, S.J.; Westra, P.; Bernards, M.L.; Kruger, G.R.; Gaines, T.A.; Jugulam, M. Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population. Pest. Manag. Sci. 2018, 74, 2356–2362. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant. Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef]
- Tranel, P.J.; University of Illinois, Urbana, IL, USA. Personal communication, 2019.
- Gaines, T.A. Metabolic resistance to herbicides: What we know and why it matters. AGRO webinar, 10 April 2019. Available online: https://www.agrodiv.org/videogallery/metabolic-resistance-to-herbicides- what-we-know-and-why-it-matters (accessed on 2 May 2019).
- Thompson, K.; Grime, J.P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 1979, 67, 893–921. [Google Scholar] [CrossRef]
- Walck, J.L.; Baskins, J.M.; Baskins, C.C. An ecologically and evolutionarily meaningful definition of a persistent seed bank in Solidago. Am. J. Bot. 1996, 83, 78–79. [Google Scholar]
- Korres, N.E.; Norsworthy, J.K.; Young, B.G.; Reynolds, D.B.; Johnson, W.G.; Conley, S.P.; Smeda, R.J.; Mueller, T.C.; Spaunhorst, D.J.; Gage, K.L.; et al. Seedbank persistence of Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus) across diverse geographical regions in the United States. Weed Sci. 2018, 66, 446–456. [Google Scholar] [CrossRef]
- Liebman, M.; Mohler, C.L.; Staver, C.P. Ecological Management of Agricultural Weeds; Cambridge University Press: New York, NY, USA, 2001; p. 525. [Google Scholar]
- Davis, A.S.; Renner, K.A.; Gross, K.L. Weed seedbank and community shifts in a long-term cropping systems experiment. Weed Sci. 2005, 53, 296–306. [Google Scholar] [CrossRef]
- Honda, Y. Ecological correlations between the persistence of the soil seed bank and several plant traits, including seed dormancy. Plant Ecol. 2008, 196, 301–309. [Google Scholar] [CrossRef]
- Hulme, P.E. Post-dispersal seed predation and seed bank persistence. Seed Sci. Res. 1998, 8, 513–519. [Google Scholar] [CrossRef]
- Thompson, K.; Green, A.; Jewels, A.M. Seeds in soil and worm casts from a neutral grassland. Funct. Ecol. 1994, 8, 29–35. [Google Scholar] [CrossRef]
- Baker, H.G. Some aspects of the natural history of seed banks. In Ecology of Soil Seed Banks; Leck, M.A., Parker, T.V., Simpson, R.L., Eds.; Academic: New York, NY, USA, 1989; pp. 9–21. [Google Scholar]
- Conn, J.S.; Beattie, K.L.; Blanchard, A. Seed viability and dormancy of 17 weed species after 19.7 years of burial in Alaska. Weed Sci. 2006, 54, 464–470. [Google Scholar] [CrossRef]
- Telewski, F.W.; Zeevaart, J.A.D. The 120-yr period from Dr. Beal’s seed viability experiment. Am. J. Bot. 2002, 89, 1285–1288. [Google Scholar] [CrossRef]
- Toole, E.H.; Brown, E. Final results of the Duvel buried seed experiment. J. Agric. Res. 1946, 72, 201–210. [Google Scholar]
- Bararpour, M.T.; Oliver, L.R. Effect of tillage and interference on common cocklebur (Xanthium strumarium) and sicklepod (Senna obtusifolia) population, seed production, and seedbank. Weed Sci. 1998, 46, 424–431. [Google Scholar] [CrossRef]
- Boutsalis, P.; Powles, S.B. Seedbank characteristics of herbicide-resistant and susceptible Sisymbrium orientale. Weed Res. 1998, 38, 389–395. [Google Scholar] [CrossRef]
- Egley, G.H.; Williams, R.D. Decline of weed seeds and seedling emergence over five years as affected by soil disturbances. Weed Sci. 1990, 38, 504–510. [Google Scholar] [CrossRef]
- Burnside, O.C.; Wilson, R.G.; Weisberg, S.; Hubbard, K.G. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 1996, 44, 74–86. [Google Scholar] [CrossRef]
- Egley, G.H.; Chandler, J.M. Longevity of weed seeds after 50 years in the Stoneville 50-year buried-seed study. Weed Sci. 1983, 31, 264–270. [Google Scholar] [CrossRef]
- Jha, P.; Norsworthy, J.K.; Garcia, J. Depletion of an artificial seed bank of Palmer amaranth (Amaranthus palmeri) over four years of burial. Am. J. Plant Sci. 2014, 5, 1599–1606. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Webster, T.M.; Culpepper, A.S. Glyphosate resistance does not affect Palmer amaranth (Amaranthus palmeri) seedbank longevity. Weed Sci. 2013, 61, 283–288. [Google Scholar] [CrossRef]
- Steckel, L.E.; Sprague, C.L.; Stoller, E.W.; Wax, L.M.; Simmons, F.W. Tillage, cropping system, and soil depth effects on common waterhemp (Amaranthus rudis) seed-bank persistence. Weed Sci. 2007, 55, 235–239. [Google Scholar] [CrossRef]
- Burnside, O.C.; Fenster, C.R.; Evetts, L.L.; Mumm, R.F. Germination of exhumed weed seed in Nebraska. Weed Sci. 1981, 29, 577–586. [Google Scholar] [CrossRef]
- Kivilaan, A.; Bandurski, R.S. The one hundred year period for Dr Beal’s seed viability experiment. Am. J. Bot. 1981, 68, 1290–1292. [Google Scholar] [CrossRef]
- Quick, C.R. How long can a seed remain alive. In Seeds: The Yearbook of Agriculture 1961; U.S. Department of Agriculture: Washington, DC, USA, 1961; pp. 94–99. [Google Scholar]
- Vencill, W.K.; Nichols, R.L.; Webster, T.M.; Soteres, J.K.; Mallory-Smith, C.; Burgos, N.R.; Johnson, W.G.; McClelland, M.R. Herbicide resistance: Toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci. 2012, 60, 2–30. [Google Scholar] [CrossRef]
- Roberts, H.A. The changing population of viable weed seeds in an arable soil. Weed Res. 1968, 8, 253–256. [Google Scholar] [CrossRef]
- Schweizer, E.E.; Zimdahl, R.L. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 1984, 32, 76–83. [Google Scholar] [CrossRef]
- Burnside, O.C.; Moomaw, R.S.; Roeth, F.W.; Wicks, G.A.; Wilson, R.G. Weed seed demise in soil in weed-free corn (Zea mays) production across Nebraska. Weed Sci. 1986, 34, 248–251. [Google Scholar] [CrossRef]
- Williams, B.J.; Harvey, R.G. Influence of simulated seed rain on the seed bank of wild-proso millet. Weed Sci. 2002, 50, 340–343. [Google Scholar] [CrossRef]
- Swanton, C.J.; Booth, B.D. Management of weed seedbanks in the context of populations and communities. Weed Technol. 2004, 18, 1496–1502. [Google Scholar] [CrossRef]
- Jones, R.E.; Medd, R.W. Economic thresholds and the case for longer term approaches to population management of weeds. Weed Technol. 2000, 14, 337–350. [Google Scholar] [CrossRef]
- Norris, R.F. Weed fecundity: Current status and future needs. Crop Prot. 2007, 26, 182–188. [Google Scholar] [CrossRef]
- Ball, D.A. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 1992, 40, 654–659. [Google Scholar] [CrossRef]
- Ball, D.A.; Miller, S.D. Weed seed population response to tillage and herbicide use in three irrigated cropping sequences. Weed Sci. 1990, 38, 511–517. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Herms, C.P.; Cardina, J. Weed seedbank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci. 2006, 54, 263–273. [Google Scholar] [CrossRef]
- Clements, D.R.; Benott, D.L.; Murphy, S.D.; Swanton, C.J. Tillage effects on weed seed return and seedbank composition. Weed Sci. 1996, 44, 314–322. [Google Scholar] [CrossRef]
- Swanton, C.J.; Shrestha, A.; Knezevic, S.Z.; Roy, R.C.; Ball-Coelho, B.R. Influence of tillage type on vertical weed seedbank distribution in a sand soil. Can. J. Plant Sci. 2000, 80, 455–457. [Google Scholar] [CrossRef]
- Dyer, W.E. Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci. 1995, 43, 498–503. [Google Scholar] [CrossRef]
- Cardina, J.; Regnier, E.; Harrison, K. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 1991, 39, 186–194. [Google Scholar] [CrossRef]
- Feldman, S.R.; Alzugaray, C.; Torres, P.S.; Lewis, P. The effect of different tillage systems on the composition of the seedbank. Weed Res. 1997, 37, 71–76. [Google Scholar] [CrossRef]
- Popay, A.I.; Cox, T.I.; Ingle, A.; Kerr, R. Effects of soil disturbances on weed seedling emergence and its long-term decline. Weed Res. 1994, 34, 403–412. [Google Scholar] [CrossRef]
- Zanin, G.; Otto, S.; Riello, L.; Borin, M. Ecological interpretation of weed flora dynamics under different tillage systems. Agric. Ecosyst. Envrion. 1997, 66, 177–188. [Google Scholar] [CrossRef]
- Hossain, M.; Begum, M. Soil weed seed bank: Importance and management for sustainable crop production. J. Bangladesh Agric. Univ. 2016, 13, 221–228. [Google Scholar] [CrossRef]
- Blubaugh, C.K.; Kaplan, I. Tillage compromises weed seed predator activity across developmental stages. Biol. Cont. 2015, 81, 76–82. [Google Scholar] [CrossRef]
- Landis, D.A.; Menalled, F.D.; Costamagna, A.C.; Wilkinson, T.K. Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes. Weed Sci. 2005, 53, 902–908. [Google Scholar] [CrossRef]
- Schwartz-Lazaro, L.M.; Norsworthy, J.K.; Walsh, M.J.; Bagavathiannan, M.V. Efficacy of the integrated Harrington Seed Destructor on weeds of soybean and rice production systems in the Southern United States. Crop Sci. 2017, 57, 2812–2818. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Korres, N.E.; Walsh, M.J.; Powles, S.B. Integrating herbicide programs with harvest weed seed control and other fall management practices for the control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Weed Sci. 2016, 64, 540–550. [Google Scholar] [CrossRef]
- Anderson, R.L. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 2005, 97, 1579–1583. [Google Scholar] [CrossRef]
- Garrison, A.J.; Miller, A.D.; Ryan, M.R.; Roxburgh, S.H.; Shea, K. Stacked crop rotations exploit weed-weed competition for sustainable weed management. Weed Sci. 2014, 62, 166–176. [Google Scholar] [CrossRef]
- Leibman, M.; Davis, A.S. Managing weed in organic farming systems: An ecological approach. In Organic Farming: The Ecological System; Francis, C., Ed.; American Society of Agronomy: Madison, WI, USA, 2009; pp. 173–196. [Google Scholar]
- Leighty, C.E. Crop rotation. In Year-book of Agriculture: Soils and Men; U.S. Government Printing Office: Washington, DC, USA, 1938; pp. 406–430. [Google Scholar]
- Anderson, R.L. Sequencing crops to minimize selection pressure for weeds in the Central Great Plains. Weed Technol. 2004, 18, 157–164. [Google Scholar] [CrossRef]
- Anderson, R.L. An ecological approach to strengthen weed management in the semiarid Great Plains. Adv. Agron. 2003, 80, 33–62. [Google Scholar]
- Mertens, S.K.; van den Bosch, F.; Heesterbeek, J.A.P. Weed populations and crop rotations: Exploring dynamics of a structured system. Ecol. Appl. 2002, 12, 1125–1141. [Google Scholar] [CrossRef]
- Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Lieban, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 2012, 7, e47149. [Google Scholar] [CrossRef]
- Westerman, P.R.; Liebman, M.; Menalled, F.D.; Heggenstaller, A.H.; Hartzler, R.G.; Dixon, P.M. Are many little hammers effective? Velvetleaf population dynamics in two- and four-year crop rotation systems. Weed Sci. 2005, 53, 382–392. [Google Scholar] [CrossRef]
- Doucet, C.; Weaver, S.E.; Hamill, A.S.; Zhang, J. Separating the effects of crop rotation from weed management on weed density and diversity. Weed Sci. 1999, 47, 729–735. [Google Scholar] [CrossRef]
- Anderson, R.L. A 2-year small grain interval reduces need for herbicides in no-till soybean. Weed Technol. 2009, 23, 398–403. [Google Scholar] [CrossRef]
- Schreiber, M.M. Influence of tillage, crop rotation, and weed management on giant foxtail (Seteria faberi) population dynamics and corn yield. Weed Sci. 1992, 40, 645–653. [Google Scholar] [CrossRef]
- Légère, A.; Samson, N. Relative influence of crop rotation, tillage, and weed management on weed associations in spring barley cropping systems. Weed Sci. 1999, 47, 112–122. [Google Scholar] [CrossRef]
- Leuschen, W.E.; Anderson, R.N. Longevity of velvetleaf (Abutilon theophrasti) seeds in soil under agricultural practices. Weed Sci. 1980, 28, 341–346. [Google Scholar] [CrossRef]
- Derksen, D.A.; Lafond, G.P.; Thomas, A.G.; Loeppky, H.A. Impact of agronomic practices on weed communities: Tillage systems. Weed Sci. 1993, 41, 409–417. [Google Scholar] [CrossRef]
- Mendalled, F.D.; Gross, K.L.; Hammond, M. Weed aboveground and seedbank community responses to agricultural management systems. Ecol. Appl. 2001, 11, 1586–1601. [Google Scholar] [CrossRef]
- Murphy, S.D.; Clements, D.R.; Belaoussoff, S.; Kevan, P.G.; Swanton, C.J. Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Sci. 2006, 54, 69–77. [Google Scholar] [CrossRef]
- Anderson, R.L. A changing perspective with weed management in semi-arid cropping systems. Ann. Arid Zone 2007, 46, 1–15. [Google Scholar]
- Anderson, R.L. Crop sequence and no-till reduce seedling emergence of common sunflower (Helianthus annus) in following years. Weed Technol. 2007, 21, 355–358. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Bastianns, L.; Paolini, R.; Baumann, D.T. Focus on ecological weed management: What is hindering adoption? Weed Res. 2008, 48, 481–491. [Google Scholar] [CrossRef]
- Venterea, R.T.; Baker, J.M.; Dolan, M.S.; Spokas, K.A. Carbon and nitrogen storage are greater under biennial tillage in a Minnesota corn-soybean rotation. SSSA J. 2006, 70, 1752–1762. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Teasdale, J.R.; Curran, W.S.; Reberg-Horton, C.S.; Spargo, J.T.; Wells, M.S.; Keene, C.L.; Moyer, J.W. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the Eastern United States. Weed Technol. 2013, 27, 193–203. [Google Scholar] [CrossRef]
- Schroeder, J.; Barrett, M.; Shaw, D.R.; Asmus, A.B.; Coble, H.; Ervin, D.; Jussaume, R.A.; Owen, M.D.K.; Burke, I.; Creech, C.F.; et al. Managing Wicked Herbicide-Resistance: Lessons from the Field. Weed Technol. 2018, 32, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.; Grundy, A.S. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Steckel, L.E.; Sprague, C.L.; Stoller, E.W.; Wax, L.M. Temperature effects on germination of nine Amaranthus species. Weed Sci. 2004, 52, 217–221. [Google Scholar] [CrossRef]
- Forcella, F.; Wilson, R.G.; Kremer, R.J.; Cardina, J.; Anderson, R.L. Weed seed bank emergence across the corn belt. Weed Sci. 1997, 45, 67–76. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 2010, 105, 221–262. [Google Scholar]
- Zimdahl, R.L. Fundamentals of Weed Science, 4th ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Winkle, M.E.; Leavitt, J.R.C.; Burnside, O.C. Effects of weed density on herbicide absorption and bioactivity. Weed Sci. 1981, 29, 405–409. [Google Scholar]
- Taylor, K.L.; Hartzler, R.G. Effect of seed bank augmentation on herbicide efficacy. Weed Technol. 2000, 14, 261–267. [Google Scholar] [CrossRef]
- Sparks, O.C.; Barrentine, J.L.; Burgos, N.R.; McClelland, M.R. Effect of Palmer amaranth (Amaranthus palmeri) seedbank density on the performance of pendimehalin and fluometuron. In Summaries of Arkansas Cotton Research, AAES Research Series 521; Bourland, F.M., Ed.; University of Arkansas: Fayetteville, AR, USA, 2003; pp. 167–172. [Google Scholar]
- Dieleman, J.A.; Mortensen, D.A.; Martin, A.R. Influence of velvetleaf (Abutilon theophrasti) and common sunflower (Helianthus annuus) density variation on weed management outcomes. Weed Sci. 1999, 47, 81–89. [Google Scholar] [CrossRef]
- Bennett, A.C.; Shaw, D.R. Effect of preharvest desiccants on weed seed production and viability. Weed Technol. 2000, 14, 530–538. [Google Scholar] [CrossRef]
- Brewer, C.E.; Oliver, L.R. Reducing weed seed rain with late-season glyphosate applications. Weed Technol. 2007, 21, 753–758. [Google Scholar]
- Clay, P.A.; Griffin, J.L. Weed seed production and seedling emergence responses to late-season glyphosate applications. Weed Sci. 2000, 48, 481–486. [Google Scholar] [CrossRef]
- Hartzler, R.G.; Battles, B.A. Reduced fitness of velvetleaf (Abutilon theophrasti) surviving glyphosate. Weed Technol. 2001, 15, 492–496. [Google Scholar] [CrossRef]
- Jha, P.; Norsworthy, J.K. Influence of late-season herbicide applications on control, fecundity, and progeny fitness of glyphosate-resistant palmer amaranth (Amaranthus palmeri) biotypes from Arkansas. Weed Technol. 2012, 26, 807–812. [Google Scholar] [CrossRef]
- Walker, E.R.; Oliver, L.R. Weed seed production as influenced by glyphosate applications at flowering across a weed complex. Weed Technol. 2008, 22, 318–325. [Google Scholar] [CrossRef]
- Riar, D.S.; Norsworthy, J.K.; Steckel, L.E.; Stephenson, D.O.I.V.; Eubank, T.W.; Scott, R.C. Assessment of weed management practices and problem weeds in the Midsouth United States—Soybean: A consultant’s perspective. Weed Technol. 2013, 27, 612–622. [Google Scholar] [CrossRef]
- Schwartz-Lazao, L.M.; Norsworthy, J.K.; Steckel, L.E.; Stephenson, D.O.; Bish, M.D.; Bradley, K.W.; Bond, J.A. A Midsouthern Consultant’s Survey on Weed Management Practices in Soybean. Weed Technol. 2018, 32, 116–125. [Google Scholar] [CrossRef]
- USDA-NASS. USDA National Agricultural Statistics Service. 2018. Available online: https://www.nass.usda.gov/index.php (accessed on 15 April 2019).
- Carpenter, J.E.; Gianessi, L.P. Economic impacts of glyphosate-resistant weeds. In Glyphosate Resistance in Crops and Weeds: History, Development, and Management; Nandula, V., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 297–312. [Google Scholar]
- Weirich, J.W.; Shaw, D.R.; Owen, M.D.; Dixon, P.M.; Weller, S.C.; Young, B.G.; Wilson, R.G.; Jordan, D.L. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 5: Effects of glyphosate-based weed management programs on farm-level profitability. Pest. Manag. Sci. 2011, 67, 781–784. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwartz-Lazaro, L.M.; Copes, J.T. A Review of the Soil Seedbank from a Weed Scientists Perspective. Agronomy 2019, 9, 369. https://doi.org/10.3390/agronomy9070369
Schwartz-Lazaro LM, Copes JT. A Review of the Soil Seedbank from a Weed Scientists Perspective. Agronomy. 2019; 9(7):369. https://doi.org/10.3390/agronomy9070369
Chicago/Turabian StyleSchwartz-Lazaro, Lauren M., and Josh T. Copes. 2019. "A Review of the Soil Seedbank from a Weed Scientists Perspective" Agronomy 9, no. 7: 369. https://doi.org/10.3390/agronomy9070369
APA StyleSchwartz-Lazaro, L. M., & Copes, J. T. (2019). A Review of the Soil Seedbank from a Weed Scientists Perspective. Agronomy, 9(7), 369. https://doi.org/10.3390/agronomy9070369