CMV Seropositive Status Increases Heparanase SNPs Regulatory Activity, Risk of Acute GVHD and Yield of CD34+ Cell Mobilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. SNPs Analysis
2.3. Statistical Analysis
3. Results
3.1. Correlation between Enhancer and Insulator HPSE SNPs and CMV Seropositivity in Healthy Donors and Patients with Hematological Malignancies
3.2. Impact of CMV Infection on the Involvement of Heparanase SNPs in the Risk of Acute GVHD
3.3. Influence of CMV Serostatus on G-CSF-Mediated Peripheral Blood Stem Cell Mobilization
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlodavsky, I.; Ilan, N.; Sanderson, R.D. Forty Years of Basic and Translational Heparanase Research. Recent Adv. Cell. Mol. Aspects Angiotensin Recept. 2020, 1221, 3–59. [Google Scholar]
- Koganti, R.; Suryawanshi, R.; Shukla, D. Heparanase, cell signaling, and viral infections. Cell. Mol. Life Sci. 2020, 77, 5059–5077. [Google Scholar] [CrossRef] [PubMed]
- Agelidis, A.; Shukla, D. Heparanase, Heparan Sulfate and Viral Infection. Adv. Exp. Med. Biol. 2020, 1221, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Hadigal, S.; Koganti, R.; Yadavalli, T.; Agelidis, A.; Suryawanshi, R.; Shukla, D. Heparanase-Regulated Syndecan-1 Shedding Facilitates Herpes Simplex Virus 1 Egress. J. Virol. 2020, 94, e01672–e01719. [Google Scholar] [CrossRef]
- Hilgard, P. Heparan Sulfate Proteoglycans Initiate Dengue Virus Infection of Hepatocytes. Hepatology 2000, 32, 1069–1077. [Google Scholar] [CrossRef]
- Hallak, L.K.; Kwilas, S.A.; Peeples, M.E. Interaction Between Respiratory Syncytial Virus and Glycosaminoglycans, Including Heparan Sulfate. Methods Mol. Biol. 2007, 379, 15–34. [Google Scholar] [CrossRef]
- Jacquet, A.; Haumont, M.; Chellun, D.; Massaer, M.; Tufaro, F.; Bollen, A.; Jacobs, P. The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans. Virus Res. 1998, 53, 197–207. [Google Scholar] [CrossRef]
- Xu, Y.; Martinez, P.; Séron, K.; Luo, G.; Allain, F.; Dubuisson, J.; Belouzard, S. Characterization of Hepatitis C Virus Interaction with Heparan Sulfate Proteoglycans. J. Virol. 2015, 89, 3846–3858. [Google Scholar] [CrossRef] [Green Version]
- Connell, B.; Elortat-Jacob, H. Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition. Front. Immunol. 2013, 4, 385. [Google Scholar] [CrossRef] [Green Version]
- Ozbun, M.A. Extracellular events impacting human papillomavirus infections: Epithelial wounding to cell signaling involved in virus entry. Papillomavirus Res. 2019, 7, 188–192. [Google Scholar] [CrossRef]
- Schäfer, G.; Blumenthal, M.; Katz, A.A. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry. Viruses 2015, 7, 2592–2617. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, N.; Yadavalli, T.; Jaishankar, D.; Shukla, D. Emerging Roles of Heparanase in Viral Pathogenesis. Pathogens 2017, 6, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, M.A.F.V.; De Vries, A.A.F. Adenovirus: From foe to friend. Rev. Med. Virol. 2006, 16, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Khanna, M.; Ranasinghe, C.; Browne, A.M.; Li, J.-P.; Vlodavsky, I.; Parish, C.R. Is host heparanase required for the rapid spread of heparan sulfate binding viruses? Virology 2019, 529, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Agelidis, A.; Hadigal, S.R.; Jaishankar, D.; Shukla, D. Viral Activation of Heparanase Drives Pathogenesis of Herpes Simplex Virus-1. Cell Rep. 2017, 20, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surviladze, Z.; Sterkand, R.T.; Ozbun, M.A. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. J. Gen. Virol. 2015, 96, 2232–2241. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhu, Z.; Guo, Y.; Wang, X.; Yu, P.; Xiao, S.; Chen, Y.; Cao, Y.; Liu, X. Heparanase Upregulation Contributes to Porcine Reproductive and Respiratory Syndrome Virus Release. J. Virol. 2017, 91, e00625-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhabra, M.; Doherty, G.G.; See, N.W.; Gandhi, N.S.; Ferro, V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. Chem. Rec. 2021, 21, 3087–3101. [Google Scholar] [CrossRef]
- Buijsers, B.; Yanginlar, C.; de Nooijer, A.; Grondman, I.; Maciej-Hulme, M.L.; Jonkman, I.; Janssen, N.A.F.; Rother, N.; de Graaf, M.; Pickkers, P.; et al. Increased Plasma Heparanase Activity in COVID-19 Patients. Front. Immunol. 2020, 11, 575047. [Google Scholar] [CrossRef]
- Ostrovsky, O.; Grushchenko-Polaq, A.H.; Beider, K.; Mayorov, M.; Canaani, J.; Shimoni, A.; Vlodavsky, I.; Nagler, A. Identification of strong intron enhancer in the heparanase gene: Effect of functional rs4693608 variant on HPSE enhancer activity in hematological and solid malignancies. Oncogenesis 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Ostrovsky, O.; Baryakh, P.; Morgulis, Y.; Mayorov, M.; Bloom, N.; Beider, K.; Shimoni, A.; Vlodavsky, I.; Nagler, A. The HPSE Gene Insulator—A Novel Regulatory Element That Affects Heparanase Expression, Stem Cell Mobilization, and the Risk of Acute Graft versus Host Disease. Cells 2021, 10, 2523. [Google Scholar] [CrossRef] [PubMed]
- Forte, E.; Zhang, Z.; Thorp, E.B.; Hummel, M. Cytomegalovirus Latency and Reactivation: An Intricate Interplay with the Host Immune Response. Front. Cell. Infect. Microbiol. 2020, 10, 130. [Google Scholar] [CrossRef]
- Stern, L.; Withers, B.; Avdic, S.; Gottlieb, D.; Abendroth, A.; Blyth, E.; Slobedman, B. Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Front. Microbiol. 2019, 10, 1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrovsky, O.; Shimoni, A.; Rand, A.; Vlodavsky, I.; Nagler, A. Genetic variations in the heparanase gene (HPSE) associate with increased risk of GVHD following allogeneic stem cell transplantation: Effect of discrepancy between recipients and donors. Blood 2010, 115, 2319–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrovsky, O.; Shimoni, A.; Baryakh, P.; Morgulis, Y.; Mayorov, M.; Beider, K.; Shteingauz, A.; Ilan, N.; Vlodavsky, I.; Nagler, A. Modification of heparanase gene expression in response to conditioning and LPS treatment: Strong correlation to rs4693608 SNP. J. Leukoc. Biol. 2014, 95, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Publicover, A.; Orchard, K.H.; Görlach, M.; Wang, L.; Schmitt, A.; Mani, J.; Tsirigotis, P.; Kuriakose, R.; Nagler, A. Biosimilar G-CSF Based Mobilization of Peripheral Blood Hematopoietic Stem Cells for Autologous and Allogeneic Stem Cell Transplantation. Theranostics 2014, 4, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.; Chou, C.; Li, H.; Hai, R.; Patterson, D.; Stolc, V.; Zhu, H.; Liu, F. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 2003, 100, 14223–14228. [Google Scholar] [CrossRef] [Green Version]
- Nauclér, C.S.; Geisler, J.; Vetvik, K. The emerging role of human cytomegalovirus infection in human carcinogenesis: A review of current evidence and potential therapeutic implications. Oncotarget 2019, 10, 4333–4347. [Google Scholar] [CrossRef]
- Compton, T.; Nowlin, D.M.; Cooper, N.R. Initiation of Human Cytomegalovirus Infection Requires Initial Interaction with Cell Surface Heparan Sulfate. Virology. 1993, 193, 834–841. [Google Scholar] [CrossRef]
- Mitra, D.; Hasan, M.H.; Bates, J.T.; Bierdeman, M.A.; Ederer, D.R.; Parmar, R.C.; Fassero, L.A.; Liang, Q.; Qiu, H.; Tiwari, V.; et al. The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. PLoS Pathog. 2021, 17, e1009803. [Google Scholar] [CrossRef]
- Luganini, A.; Terlizzi, M.E.; Gribaudo, G. Bioactive Molecules Released from Cells Infected with the Human Cytomegalovirus. Front. Microbiol. 2016, 7, 715. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, S.; Kumar, D.; Rouse, B.T. Herpesviruses: Harmonious Pathogens but Relevant Cofactors in Other Diseases? Front. Cell. Infect. Microbiol. 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Taher, C.; Frisk, G.; Fuentes, S.; Religa, P.; Costa, H.; Assinger, A.; Vetvik, K.K.; Bukholm, I.R.; Yaiw, K.-C.; Smedby, K.E.; et al. High Prevalence of Human Cytomegalovirus in Brain Metastases of Patients with Primary Breast and Colorectal Cancers. Transl. Oncol. 2014, 7, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Gannon, O.; Antonsson, A.; Bennett, I.; Saunders, N. Viral infections and breast cancer—A current perspective. Cancer Lett. 2018, 420, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Samanta, M.; Harkins, L.; Klemm, K.; Britt, W.J.; Cobbs, C.S. High Prevalence of Human Cytomegalovirus in Prostatic Intraepithelial Neoplasia and Prostatic Carcinoma. J. Urol. 2003, 170, 998–1002. [Google Scholar] [CrossRef]
- Lepiller, Q.; Tripathy, M.K.; Di Martino, V.; Kantelip, B.; Herbein, G. Increased HCMV seroprevalence in patients with hepatocellilar carcinoma. Virol. J. 2011, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Wolmer-Solberg, N.; Baryawno, N.; Rahbar, A.; Fuchs, D.; Odeberg, J.; Taher, C.; Wilhelmi, V.; Milosevic, J.; Mohammad, A.-A.; Martinsson, T.; et al. Frequent detection of human cytomegalovirus in neuroblastoma: A novel therapeutic target? Int. J. Cancer 2013, 133, 2351–2361. [Google Scholar] [CrossRef]
- Cobbs, C.S. Cytomegalovirus and brain tumor. Curr. Opin. Oncol. 2013, 25, 682–688. [Google Scholar] [CrossRef]
- Rahbar, A.; Orrego, A.; Peredo, I.; Dzabic, M.; Wolmer-Solberg, N.; Strååt, K.; Stragliotto, G.; Söderberg-Nauclér, C. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J. Clin. Virol. 2013, 57, 36–42. [Google Scholar] [CrossRef]
- Carlson, J.W.; Radestad, A.F.; Soderberg-Naucler, C.; Rahbar, A. Human cytomegalovirus in high grade serous ovarian cancer possible implications for patients survival. Medicine 2018, 97, e9685. [Google Scholar] [CrossRef] [PubMed]
- Soroceanu, L.; Cobbs, C.S. Is HCMV a tumor promoter? Virus Res. 2011, 157, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Martínez, F.P.; Cruz, R.; Lu, F.; Plasschaert, R.; Deng, Z.; Rivera-Molina, Y.A.; Bartolomei, M.; Lieberman, P.M.; Tang, Q. CTCF Binding to the First Intron of the Major Immediate Early (MIE) Gene of Human Cytomegalovirus (HCMV) Negatively Regulates MIE Gene Expression and HCMV Replication. J. Virol. 2014, 88, 7389–7401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantoni, N.; Hirsch, H.H.; Khanna, N.; Gerull, S.; Buser, A.; Bucher, C.; Halter, J.; Heim, D.; Tichelli, A.; Gratwohl, A.; et al. Evidence for a Bidirectional Relationship between Cytomegalovirus Replication and acute Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2010, 16, 1309–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadigal, S.R.; Agelidis, A.; Karasneh, G.A.; Antoine, T.E.; Yakoub, A.M.; Ramani, V.C.; Djalilian, A.R.; Sanderson, R.D.; Shukla, D. Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat. Commun. 2015, 6, 6985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, J.; Miller, G.; Li, X.; Saxena, D. Virome and bacteriome: Two sides of the same coin. Curr. Opin. Virol. 2019, 37, 37–43. [Google Scholar] [CrossRef]
SNP | Genotypes and Alleles | CMV-Seropositive | CMV-Seronegative | p-Value | ||
---|---|---|---|---|---|---|
№ | Incidence (%) | № | Incidence (%) | |||
rs4693608 | AA | 81 | 27.6 | 48 | 36.1 | 0.15 |
AG | 146 | 49.8 | 54 | 40.6 | ||
GG | 66 | 22.5 | 31 | 23.3 | ||
A | 308 | 52.6 | 150 | 56.4 | 0.3 | |
G | 278 | 47.4 | 116 | 43.6 | ||
rs4693084 | GG | 175 | 64.6 | 78 | 64.5 | 1 |
GT | 87 | 32.1 | 39 | 32.2 | ||
TT | 9 | 3.3 | 4 | 3.3 | ||
G | 437 | 80.6 | 195 | 80.6 | 0.99 | |
T | 105 | 19.4 | 47 | 19.4 | ||
rs4426765 | AA | 143 | 52.6 | 73 | 60.8 | 0.25 |
AC | 110 | 40.4 | 42 | 35 | ||
CC | 19 | 7 | 5 | 4.2 | ||
A | 396 | 72.8 | 188 | 78.3 | 0.1 | |
C | 148 | 27.2 | 52 | 21.7 | ||
rs28649799 | AA | 224 | 82 | 95 | 79.2 | 0.7 |
AG | 48 | 17.6 | 24 | 20 | ||
GG | 1 | 0.4 | 1 | 0.8 | ||
A | 496 | 90.8 | 214 | 89.2 | 0.46 | |
G | 50 | 9.2 | 26 | 10.8 | ||
rs4364254 | TT | 120 | 41.5 | 67 | 51.1 | 0.041 |
TC | 130 | 45 | 56 | 42.7 | ||
CC | 39 | 13.5 | 8 | 6.1 | ||
T | 370 | 64 | 190 | 72.5 | 0.015 | |
C | 208 | 36 | 72 | 27.5 |
Group | Genotypes | CMV-Seropositive | CMV-Seronegative | Statistical Analysis | ||
---|---|---|---|---|---|---|
№ | Incidence (%) | № | Incidence (%) | |||
A | AA-TT-AA | 48 | 17.7 | 29 | 24 | χ2 = 7.37 p = 0.025 |
AA-TT-AC | 10 | 3.7 | 7 | 5.8 | ||
AA-TC-AA | 3 | 1.1 | 1 | 0.8 | ||
AA-TC-AC | 16 | 5.9 | 5 | 4.1 | ||
AA-TC-CC | 1 | 0.4 | 1 | 0.8 | ||
AA-CC-CC | 1 | 0.4 | 0 | 0 | ||
AG-TT-AA | 43 | 15.9 | 25 | 20.7 | ||
AG-TT-AC | 2 | 0.7 | 0 | 0 | ||
AG-TC-AA | 26 | 9.6 | 11 | 9.1 | ||
150 | 55.4 | 79 | 65.3 | |||
B | AG-TC-AC | 43 | 15.9 | 13 | 10.7 | |
AG-TC-CC | 4 | 1.5 | 0 | 0 | ||
AG-CC-AC | 10 | 3.7 | 1 | 0.8 | ||
AG-CC-CC | 7 | 2.6 | 1 | 0.8 | ||
AG-CC-AA | 2 | 0.7 | 0 | 0 | ||
66 | 24.4 | 15 | 12.4 | |||
C | GG-TT-AA | 11 | 4.1 | 3 | 2.5 | |
GG-TT-AC | 1 | 0.4 | 1 | 0.8 | ||
GG-TC-AA | 9 | 3.3 | 5 | 4.1 | ||
GG-TC-AC | 20 | 7.4 | 12 | 9.9 | ||
GG-TC-CC | 0 | 0 | 1 | 0.8 | ||
GG-CC-AA | 1 | 0.4 | 1 | 0.8 | ||
GG-CC-AC | 7 | 2.6 | 2 | 1.6 | ||
GG-CC-CC | 6 | 2.2 | 2 | 1.6 | ||
55 | 20.3 | 27 | 22.3 |
SNP | Genotypes | CMV-Seropositive | CMV-Seronegative | p-Value | ||
---|---|---|---|---|---|---|
№ | Incidence (%) | № | Incidence (%) | |||
rs4693608 | AA | 45 | 26 | 10 | 43.5 | 0.29 |
AG | 92 | 53.2 | 8 | 34.8 | ||
GG | 36 | 20.8 | 5 | 21.7 | ||
A | 182 | 52.6 | 28 | 60.9 | 0.17 | |
G | 164 | 47.4 | 18 | 39.1 | ||
rs4693084 | GG | 103 | 62.4 | 16 | 69.6 | 0.55 |
GT | 55 | 33.3 | 7 | 30.4 | ||
TT | 7 | 4.2 | 0 | 0 | ||
G | 261 | 79.1 | 39 | 84.8 | 0.37 | |
T | 69 | 20.9 | 7 | 15.2 | ||
rs4426765 | AA | 82 | 49.1 | 16 | 72.7 | 0.078 |
AC | 70 | 41.9 | 6 | 27.3 | ||
CC | 15 | 9 | 0 | 0 | ||
A | 234 | 70.1 | 38 | 86.4 | 0.024 | |
C | 100 | 29.9 | 6 | 13.6 | ||
rs28649799 | AA | 129 | 77.2 | 19 | 86.4 | 0.61 |
AG | 37 | 22.2 | 3 | 13.6 | ||
GG | 1 | 0.6 | 0 | 0 | ||
A | 295 | 88.3 | 41 | 93.2 | 0.34 | |
G | 39 | 11.7 | 3 | 6.8 | ||
rs4364254 | TT | 62 | 35.8 | 17 | 73.9 | 0.002 |
TC | 91 | 52.6 | 4 | 17.4 | ||
CC | 20 | 11.6 | 2 | 8.7 | ||
T | 215 | 62.1 | 38 | 82.6 | 0.006 | |
C | 131 | 37.9 | 8 | 17.4 |
SNP | Genotype and Alleles | ALL | MDS | MM | NHL | p-Value to CMV-Seropositive Controls | p-Value to CMV-Seronegative Controls | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
№ | Incidence (%) | № | Incidence (%) | № | Incidence (%) | № | Incidence (%) | ||||
rs4693608 | AA | 11 | 22 | 22 | 39.3 | 9 | 30 | 17 | 30.4 | ALL: 0.66; 0.64 | ALL: 0.12; 0.27 |
AG | 28 | 56 | 22 | 39.3 | 17 | 56.7 | 27 | 48.2 | MDS: 0.2; 0.22 | MDS: 0.91; 0.65 | |
GG | 11 | 22 | 12 | 21.4 | 4 | 13.3 | 12 | 21.4 | MM: 0.51; 0.39 | MM: 0.24; 0.78 | |
NHL: 0.92; 0.71 | NHL: 0.62; 0.73 | ||||||||||
A | 50 | 50 | 66 | 58.9 | 35 | 58.3 | 61 | 54.5 | |||
G | 50 | 50 | 46 | 41.1 | 25 | 41.7 | 51 | 45.5 | |||
rs4693084 | GG | 28 | 58.3 | 41 | 75.9 | 16 | 59.3 | 35 | 64.8 | ALL: 0.25; 0.21 | ALL: 0.36; 0.26 |
GT | 16 | 33.3 | 10 | 18.5 | 9 | 33.3 | 15 | 27.8 | MDS: 0.12; 0.27 | MDS: 0.16; 0.3 | |
TT | 4 | 8.3 | 3 | 5.6 | 2 | 7.4 | 4 | 7.4 | MM: 0.54; 0.41 | MM: 0.6; 0.44 | |
NHL: 0.34; 0.65 | NHL: 0.45; 0.69 | ||||||||||
G | 72 | 75 | 92 | 85.2 | 41 | 75.9 | 85 | 78.7 | |||
T | 24 | 25 | 16 | 14.8 | 13 | 24.1 | 23 | 21.3 | |||
rs4426765 | AA | 23 | 46.9 | 38 | 70.4 | 21 | 72.4 | 31 | 56.4 | ALL: 0.034; 0.086 | ALL: 0.008; 0.007 |
AC | 17 | 34.7 | 10 | 18.5 | 7 | 24.1 | 20 | 36.4 | MDS: 0.009; 0.14 | MDS: 0.034; 0.79 | |
CC | 9 | 18.4 | 6 | 11.1 | 1 | 3.4 | 4 | 7.3 | MM: 0.12; 0.054 | MM: 0.51; 0.3 | |
NHL: 0.85; 0.71 | NHL: 0.65; 0.43 | ||||||||||
A | 63 | 64.3 | 86 | 79.6 | 49 | 84.5 | 82 | 74.5 | |||
C | 35 | 35.7 | 22 | 20.4 | 9 | 15.5 | 28 | 25.5 | |||
rs28649799 | AA | 42 | 85.7 | 49 | 89.1 | 23 | 79.3 | 50 | 89.3 | ALL: 0.27; 0.75 | ALL: 0.41; 0.75 |
AG | 6 | 12.2 | 6 | 10.9 | 4 | 13.8 | 5 | 8.9 | MDS: 0.43; 0.21 | MDS: 0.26; 0.21 | |
GG | 1 | 2 | 0 | 0 | 2 | 6.9 | 1 | 1.8 | MM: 0.003; 0.26 | MM: 0.09; 0.26 | |
NHL: 0.14; 0.32 | NHL: 0.16; 0.32 | ||||||||||
A | 90 | 91.8 | 104 | 94.5 | 50 | 86.2 | 105 | 93.75 | |||
G | 8 | 8.2 | 6 | 5.5 | 8 | 13.8 | 7 | 6.25 | |||
rs4364254 | TT | 20 | 40 | 33 | 58.9 | 19 | 65.5 | 30 | 52.6 | ALL: 0.89; 0.7 | ALL: 0.084; 0.052 |
TC | 22 | 44 | 19 | 33.9 | 6 | 20.7 | 21 | 36.8 | MDS: 0.049; 0.015 | MDS: 0.53; 0.5 | |
CC | 8 | 16 | 4 | 7.1 | 4 | 13.8 | 6 | 10.5 | MM: 0.029; 0.071 | MM: 0.056; 0.6 | |
NHL: 0.3; 0.15 | NHL: 0.5; 0.77 | ||||||||||
T | 62 | 62 | 85 | 75.9 | 44 | 75.9 | 81 | 71.1 | |||
C | 38 | 38 | 27 | 24.1 | 14 | 24.1 | 33 | 28.9 |
Group of Analysis | Genotype or Status | Cumulative Incidence, (95%CI),% | χ2, p-Value |
---|---|---|---|
Patient CMV status | positive | 39.7(35.3–44.7) | 4.7 |
negative | 24.1(15.0–38.7) | 0.03 | |
Donor CMV status | positive | 37.8(32.6–43.8) | 0.49 |
negative | 40.7(33.2–49.9) | 0.48 | |
Patient-Donor Pairs | positive-positive | 39.6(33.7–46.5) | |
positive-negative | 42.7(33.9–53.8) | 6.4 | |
negative-positive | 24.0(11.9–48.2) | 0.095 | |
negative-negative | 19.1(7.9–46.0) | ||
Seropositive CMV patients | rs4693608: | ||
AA | 49.6(41.2–59.7) | 9.4 | |
AG | 39.7(33.5–47.0) | 0.0091 | |
GG | 25.6(17.7–37.0) | ||
enhancer-insulator: | |||
N-HR | 51.8(44.2–60.6) | 16.9 | |
N-MR | 36.7(30.1–44.7) | 0.00022 | |
N-LR | 22.5(15.0–33.8) | ||
Discrepancy: | |||
D1 | 58.9(47.4–73.3) | 15.6 | |
D2 | 41.1(35.0–48.3) | 0.00042 | |
D3 | 22.5(15.0–33.8) | ||
Seronegative CMV patients | rs4693608: | ||
AA | 23.1(8.6–62.3) | 0.16 | |
AG | 22.2(11.0–45.0) | 0.92 | |
GG | 27.3(10.4–71.6) | ||
enhancer-insulator: | |||
N-HR | 16.7(5.3–46.8) | 3.5 | |
N-MR | 34.8(19.9–60.9) | 0.17 | |
N-LR | 10.0(1.6–64.2) | ||
Discrepancy: | |||
D1 | 28.6(8.9–92.2) | 1.3 | |
D2 | 25.8(14.2–46.8) | 0.52 | |
D3 | 10.0(1.6–64.2) | ||
Seropositive-seropositive patient-donor CMV pairs | rs4693608: | ||
AA | 52.3(41.5–66.0) | 6.38 | |
AG | 36.5(28.4–46.8) | 0.04 | |
GG | 27.3(16.8–44.2) | ||
enhancer-insulator: | |||
N-HR | 51.3(41.4–63.5) | 10.3 | |
N-MR | 36.0(27.3–47.4) | 0.0057 | |
N-LR | 20.9(11.7–37.4) | ||
Discrepancy: | |||
D1 | 51.5(37.0–71.7) | 6.9 | |
D2 | 41.1(32.9–51.3) | 0.032 | |
D3 | 20.9(11.7–37.4) | ||
Seropositive-seronegative patient-donor CMV pairs | rs4693608: | ||
AA | 47.8(31.2–73.3) | 2.03 | |
AG | 46.8(34.5–63.5) | 0.36 | |
GG | 28.6(14.5–56.2) | ||
enhancer-insulator: | |||
N-HR | 53.3(38.2–74.5) | 2.58 | |
N-MR | 46.0(32.4–65.2) | 0.28 | |
N-LR | 26.1(13.1–51.9) | ||
Discrepancy: | |||
D1 | 58.3(36.2–94.1) | 2.93 | |
D2 | 48.9(36.5–65.5) | 0.23 | |
D3 | 26.1(13.1–51.9) | ||
Seronegative-seronegative and seronegative-seropositive patient-donor CMV pairs | rs4693608: | ||
AA | 27.3(10.4–71.6) | 1.67 | |
AG | 13.0(4.5–37.5) | 0.43 | |
GG | 30.0(11.6–77.3) | ||
enhancer-insulator: | |||
N-HR | 18.8(9.4–41.7) | 1.02 | |
N-MR | 26.3(12.4–55.8) | 0.6 | |
N-LR | 11.1(1.8–70.5) | ||
Discrepancy: | |||
D1 | 28.6(8.9–92.2) | 0.74 | |
D2 | 19.2(8.8–42.3) | 0.69 | |
D3 | 11.1(1.8–70.5) |
SNPs | Parameters | CMV-Seropositive | CMV-Seronegative | ||||||
---|---|---|---|---|---|---|---|---|---|
Genotype | Median (Range) | Comparisons to Carriers | p-Value | Genotype | Median (Range) | Comparisons to Carriers | p-Value | ||
rs4693608 | CD34+ × 106 total yield | AA (48) | 828.9 | AA to GG | 0.013 | AA (25) | 753.9 | AA to GG | 0.55 |
(718.2–930.0) | (518.0–1008.0) | ||||||||
AG (72) | 711.4 | AA to others | 0.022 | AG (20) | 878 | AA to others | 0.73 | ||
(623.7–784.7) | (634.0–1062.0) | ||||||||
GG (38) | 629.2 | GG to others | 0.052 | GG (12) | 781.3 | GG to others | 0.39 | ||
(502.5–729.4) | (365.8–1184.0) | ||||||||
% CD34+ | AA (47) | 0.9 | AA to GG | 0.022 | AA (25) | 0.86 | AA to GG | 0.88 | |
(0.77–1.02) | (0.65–1.12) | ||||||||
AG (72) | 0.73 | AA to others | 0.007 | AG (20) | 1.05 | AA to others | 0.34 | ||
(0.7–0.81) | (0.85–1.34) | ||||||||
GG (37) | 0.74 | GG to others | 0.23 | GG (12) | 0.82 | GG to others | 0.5 | ||
(0.6–0.85) | (0.65–1.18) | ||||||||
rs28649799 | CD34+ × 106 total yield | AA (121) | 735.7 | AA to AG | 0.089 | AA (39) | 786.5 | AA to AG | 0.3 |
(659.7–784.7) | (542.8–882.8) | ||||||||
AG (21) | 854 | AG (10) | 1020.7 | ||||||
(648.0–1143.1) | (368.9–1485.7) | ||||||||
% CD34+ | AA (120) | 0.76 | AA to AG | 0.031 | AA (39) | 0.88 | AA to AG | 0.32 | |
(0.72–0.83) | (0.66–1.12) | ||||||||
AG (21) | 0.97 | AG (10) | 1 | ||||||
(0.7–1.14) | (0.57–1.7) |
Parameters | Total | CMV-Seropositive | CMV-Seronegative | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Median (Range) | Comparisons to Carriers | p-Value | Genotype | Median (Range) | Comparisons to Carriers | p-Value | Genotype | Median (Range) | Comparisons to Carriers | p-Value | |
CD34+ × 106 total yield | AA-AA (68) | 786.6 (678.3–874.4) | AA-AA to AA-GG | 0.074 | AA-AA (45) | 812.5 (718.2–930.0) | AA-AA to AA-GG | 0.032 | AA-AA (20) | 733.5 (517.6–1129.2) | AA-AA to AA-GG | 0.39 |
AA-AG (68) | 723.5 (634.0–789.2) | AA-AA to others | 0.17 | AA-AG (52) | 701.6 (549.4–774.9) | AA-AA to others | 0.021 | AA-AG (12) | 836 (545.9–1022.8) | AA-AA to others | 0.97 | |
AA-GG (34) | 643.9 (492.3–772.9) | AA-GG to others | 0.086 | AA-GG (24) | 561.9 (466.1–729.4) | AA-GG to others | 0.091 | AA-GG (7) | 772.9 (329.7–1196.6) | AA-GG to others | 0.37 | |
%CD34+ | AA-AA (67) | 0.88 (0.77–0.99) | AA-AA to AA-GG | 0.029 | AA-AA (44) | 0.89 (0.76–1.02) | AA-AA to AA-GG | 0.021 | AA-AA (20) | 0.86 (0.65–1.16) | AA-AA to AA-GG | 0.41 |
AA-AG (68) | 0.75 (0.69–0.81) | AA-AA to others | 0.013 | AA-AG (52) | 0.73 (0.6–0.77) | AA-AA to others | 0.003 | AA-AG (12) | 1.11 (0.62–1.38) | AA-AA to others | 0.71 | |
AA-GG (34) | 0.74 (0.58–0.84) | AA-GG to others | 0.15 | AA-GG (24) | 0.69 (0.45–0.83) | AA-GG to others | 0.18 | AA-GG (7) | 0.74 (0.27–1.29) | AA-GG to others | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrovsky, O.; Beider, K.; Morgulis, Y.; Bloom, N.; Cid-Arregui, A.; Shimoni, A.; Vlodavsky, I.; Nagler, A. CMV Seropositive Status Increases Heparanase SNPs Regulatory Activity, Risk of Acute GVHD and Yield of CD34+ Cell Mobilization. Cells 2021, 10, 3489. https://doi.org/10.3390/cells10123489
Ostrovsky O, Beider K, Morgulis Y, Bloom N, Cid-Arregui A, Shimoni A, Vlodavsky I, Nagler A. CMV Seropositive Status Increases Heparanase SNPs Regulatory Activity, Risk of Acute GVHD and Yield of CD34+ Cell Mobilization. Cells. 2021; 10(12):3489. https://doi.org/10.3390/cells10123489
Chicago/Turabian StyleOstrovsky, Olga, Katia Beider, Yan Morgulis, Nira Bloom, Angel Cid-Arregui, Avichai Shimoni, Israel Vlodavsky, and Arnon Nagler. 2021. "CMV Seropositive Status Increases Heparanase SNPs Regulatory Activity, Risk of Acute GVHD and Yield of CD34+ Cell Mobilization" Cells 10, no. 12: 3489. https://doi.org/10.3390/cells10123489
APA StyleOstrovsky, O., Beider, K., Morgulis, Y., Bloom, N., Cid-Arregui, A., Shimoni, A., Vlodavsky, I., & Nagler, A. (2021). CMV Seropositive Status Increases Heparanase SNPs Regulatory Activity, Risk of Acute GVHD and Yield of CD34+ Cell Mobilization. Cells, 10(12), 3489. https://doi.org/10.3390/cells10123489