Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review
Abstract
:1. Introduction
1.1. Treatment of Acute and Chronic Liver Disease Is a Major Unmet Global Need
1.2. Pathophysiology of Liver Disease Is Very Complex
1.2.1. Three Basic Pathological Processes Contribute to the Development of Cirrhosis
1.2.2. Hepatocyte Injury Is the First Step
1.2.3. Inflammation and Cytokine Secretion Contributes to the Cascade of Liver Injury
1.2.4. Aberrant Tissue Repair Leads to Fibrosis
1.3. Cell Therapy Has the Potential to Address the Liver Disease Pathology
2. MSC-Derived Hepatocytes Show Benefit as Liver Therapies
2.1. MSCs Can Be Directed into the Hepatocyte Lineage
2.2. Evolution of mHep Differentiation from MSCs: In Vitro Characteristics to Therapeutic Utility
2.3. Therapeutic Use of mHeps
Starting Cell Type | Type of Differentiation | Length of Differentiation | Phenotypic Characteristics | Functional Characteristics | Model | Outcomes | Reference |
---|---|---|---|---|---|---|---|
MSCs NOS | 1-stage hepatic | 28 days | Up: KRT18, TO, AAT, HNF4A, Col II, aggrecan, ALB, CYP3A4 | ALB secretion, urea synthesis | Rat, partial Hx Direct implantation Harvest at 14 days | Engraftment (IHC) Histology: ALB, human nuclear antigen | Ong 2006 [39] |
Bone Marrow MSCs | 1-stage hepatic | 15 days | Up: KRT18, CX32, Hep par 1, PCK1, CK19, AFP, CX43, CYP3A4, TFN | Glycogen storage, urea synthesis | Pfp/Rag2 mice Partial Hx with propranolol to inhibit hep replication 106 cells intrasplenic at time of partial Hx Harvest at 7 days | Engraftment (periportal, IHC) | Aurich 2007 [40] |
ASC, hu | 1-stage hepatic | 15 days | Up: ALB, PCK, CD26 (PCR); ALB, PCK, CD26 (immunofluorescence) | Albumin secretion | Pfp/Rag2 mice Partial Hx with propranolol to inhibit hep replication 106 cells intrasplenic at time of partial Hx Harvest at 7 days | Engraftment measured by flow cytometry. 21–26% of liver cells positive for hu hepatocyte markers. | Aurich 2009 [41] |
Bone Marrow MSCs | 1-stage hepatic | 14 days | Up: CYP genes (1A1, 3A4), Glycogen storage, Western (PCK, CYP1A1, CYP3A4, GS) | Glycogen storage | Partial hepatectomy Pigs 108 cells IV right after surgery Harvest at 24 h | Decreased: AST, ALT (25–60% reduction), ammonia (60% reduction), lactate; thrombospondin, TGF beta, SMAD signaling No change: INR ICG Gene array measurements in liver and lung tissue Increased: ATIII expression | Nickel 2021 [45] |
Liver MSCs | In vivo | None | Up: CD73, CD90, CD44, CD29, CD105 (20%), ALB, AFP, KRT18 (15%), CK8 (11%), VIM, NES Off: CD34, CD45, CD14, CD117, CD133, CK19, ACTA2, NCAM, Stro-1, CYPs | ALB secretion, urea synthesis, CYP activity (after diff with HGF and FGF4) | SCID mice Acetaminophen IP 2 × 105 LSC IV Harvest at 7 or 30 days | Engraftment: HLA I stain | Herrera 2006 [36] |
Liver MSCs | In vivo | None | See Herrera 2006 [36] | See Herrera 2006 [36] | SCID mice GalN/LPS IP Treatment 30 min post GalN/LPS 11 treatment groups, incl cells IV, IP, and intrahepatic, conditioned medium Harvest at 7 h and 3 days | Up: survival with LSC and CM, BRdU incorp Down: AST, ALT (30% reduction), NH4 (50% reduction), apoptotic nuclei Engraftment | Herrera 2013 [35] |
Liver MSCs | In vivo | None | Up: ALB, AFP, VIM, NES, OCT4, Nanog, CK8/18, SSEA4 SOX2, CD29, CD73 Off: ACTA2 Other: telomere length, gene array analysis and comp to BM MSCs | N/D | SCID mice NASH induced by MCDD diet 1.5 × 106 cells at weeks 1, 2, or 3 IV by tail vein Harvest at week 4 | Function improved, time-dependent: AST, ALT (reduced 30–50%), ALB, BUN (30% reduction at highest dose) Histology improved, time-dependent: fibrosis, PCNA Gene expression in liver, time-dependent: TGFB1, COL I, ACTA1, IL1B, INFG Gene expression in liver not improved, time-dependent: TNF alpha Function improved dose-dependent: AST (1 dose level), ALT, ALB (1 dose level), BUN (1 dose level) Histology improved, dose-dependent: fibrosis, CD45+ cells Histology not improved, dose-dependent: steatosis Engraftment: pos by alpha sat-ch17 | Bruno 2019 [42] |
ASC, hu | 2-stage endoderm/ hepatic | 13 days | Up: EPCAM, FOXA2, SOX17, ALB, ASGR1, Down: CD105 | Glycogen storage, LDL uptake, albumin secretion, urea synthesis, CYP3A4 activity | TK-NOG mice Direct implantation 2 × 106 cells Harvest at 2 months | Engraftment, ALB secretion, IHC | Xu 2014 [19] |
MSCs NOS | 4-stage endoderm/ hepatic | 16 days | Hepatocyte morphology, albumin synthesis, urea metabolism, and sequential mRNA expression and protein expression of the hepatocyte markers SOX17, FOXA2, HHEX, GATA4, HNF4A, AFP, ALB, and CK18 | Glycogen storage, LDL uptake, CYP activity, ICG uptake and release, albumin secretion | GalN IP Lewis rats 100 spheres Intrasplenic | Survival ALT (40% reduction) Immunohistochemistry for human markers Engraftment | Ramanathan 2015 [50] |
ASC, hu | 1-stage hepatic | 21–28 days | Up: AFP, ALB | LDL uptake, urea synthesis | CCI4 acute, IP NOD-SCID mice 1 × 106 cells IV, tail vein Transplant at 48 h post CCI4 Harvest at 3–10 days post-transplant | Engraftment (IF) | Seo 2005 [22] |
ASC, hu | 2-stage hepatic | 35 days | Up: ALB, AFP, TTR, TDO, CYP7A1, HNF4A (41 days) | Glycogen storage, LDL uptake, albumin secretion, ammonia clearance | CCI4 acute BALB/c nu-nu IV, tail vein Cells at 24 h, harvest at 48 h | Engraftment (IHC) Histology: ALB, human nuclear antigen detection | Banas 2007 [26] |
ASC, hu | 1-stage hepatic | 31 days | Up: ACTC, PDX-1, SOX1, AAT1, KRT18, CYP1B1, CYP3A4, glutamine synthase | Albumin secretion, Glycogen storage, CYP activity, urea synthesis | CCI4 chronic, 12 week NOD-SCID mice Transplant under kidney capsule Harvest at 7 days post-transplant | ALB improved, serum T bil reduced (35%), AAT synthesis, engraftment | Okura 2010 [44] |
ASC, hu | 3-stage endoderm/ hepatic | 28 days | Up: SOX17, CXCR4, AFP, ALB, AAT | ALB secretion, CYP3A4 activity, urea synthesis | Cl4 acute BALB/c nu-nu mice Transplanted under kidney capsule Cells at 4 h post CCI4 Harvest at 14 days post-transplant | Decreased: ALT, AST (25–40% reduction), T bil (25–70% reduction) Decreased NH4, increased urea Engrafted cells by IHC | Saito 2021 [43] |
ASC, hu | 3-stage endoderm/ hepatic | 13 days | Up: ALB, TOD2, FOXA2 | Glycogen storage, LDL uptake | CCI4 acute BALB/c nu-nu IV, tail vein Cells at 24 h, harvest at 48 h | Decreased: AST, ALT (50–60% reduction), urate, NH4 (40% reduction) Reduced steatosis No difference in necrosis | Banas 2009 [28] |
ASC, hu | 3-stage endoderm/ hepatic | 9 days | Up: FOXA2, SOX17, AAT, ALB, ASGR1, HNF4A, TAT, TTR, transferrin, KRT18, GJB1, AFP, 7 CYP genes | Up: ALB, urea synthesis, CYP1A2, CYP 2A1, CYP2E1 activity | CCI4 acute NPG mice 2 × 106 cells intrasplenic Harvest survivors on day 8 | Survival ALT, AST (magnitude unclear) ALB (rat) increased IF for ALB, AAT at day 8 | Xu 2015 [27] |
ASC, hu | 2-stage endoderm/ hepatic | 13 days | Up: AAT, AFP, ALB, AGT, PROS1 Down: KRT18 no chg.: HGF | Glycogen storage, LDL uptake, urea synthesis, HGF secretion, AAT secretion Co-culture with macrophages reduces inflammatory cytokines | CCI4 acute, IP C57bl mice 0.5–8 × 106 cells IP, tail vein, intrasplenic Transplant at 6 h post CCI4 Harvest at 18 h post-transplant | Improved: AST, ALT (30% reduction), GSH Inflammatory cytokines reduced | Schuur 2021 [45] |
Liver MSCs | None | N/A | On: CD73, CD90, CD105 (20%), ALB, vim, ACTA2 Off: KRT18 | Glycogen storage Negative for trilineage differentiation | Rag2−/−, IL2Rγ−/− male mice Partial hepatectomy 1 × 106 LSC intrasplenic Harvest at 1 or 7 days | Engraftment AST, ALT, bilirubin Regeneration rate (liver weight) Ki67-positive cells | Herrero 2017 [38] |
2.4. Clinical Experience with mHeps
2.5. Manufacturing mHEPs for Use in Clinical Trials
3. Discussion
3.1. Both Acute and Chronic Liver Failure Would Benefit from a Multi-Modal Therapy
3.2. There Is Evidence That Liver Failure Can Be Addressed by mHep Therapy
3.3. Areas of Strength in mHep Therapy
3.4. Knowledge Gaps and Alternative Strategies
3.5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Hirode, G.; Saab, S.; Wong, R.J. Trends in the burden of chronic liver disease among hospitalized US adults. JAMA Netw. Open 2020, 3, e201997. [Google Scholar] [CrossRef]
- Sepanlou, S.G.; Safiri, S.; Bisignano, C.; Ikuta, K.S.; Merat, S.; Saberifiroozi, M.; Poustchi, H.; Tsoi, D.; Colombara, D.V.; Abdoli, A.; et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990—2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef] [Green Version]
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 151–166. [Google Scholar] [CrossRef]
- Schuch, A.; Hoh, A.; Thimme, R. The role of natural killer cells and CD8+ T cells in hepatitis B virus infection. Front. Immunol. 2014, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.E.; Defendi, G.L. Acetaminophen Toxicity. Available online: https://emedicine.medscape.com/article/820200-overview (accessed on 19 May 2022).
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Gao, B.; Zakhari, S.; Nagy, L.E. Inflammation in alcoholic liver disease. Annu. Rev. Nutr. 2012, 32, 343–368. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yousaf, M.N.; Mehal, W.Z. Role of sterile inflammation in fatty liver diseases. Liver Res. 2018, 2, 21–29. [Google Scholar] [CrossRef]
- Usunier, B.; Benderitter, M.; Tamarat, R.; Chapel, A. Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells Int. 2014, 2014, 340257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thursz, M.R.; Richardson, P.; Allison, M.; Austin, A.; Bowers, M.; Day, C.P.; Downs, N.; Gleeson, D.; Macgilchrist, A.; Grant, A.; et al. Prednisolone or pentoxifylline for alcoholic hepatitis. N. Engl. J. Med. 2015, 372, 1619–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrasek, J.; Bala, S.; Csak, T.; Lippai, D.; Kodys, K.; Menashy, V.; Barrieau, M.; Min, S.-Y.; Kurt-Jones, E.A.; Szabo, G. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Investig. 2012, 122, 3476–3489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogduijn, M.J.; Lombardo, E. Mesenchymal stromal cells anno 2019: Dawn of the therapeutic era? Concise review. Stem Cells Transl. Med. 2019, 8, 1126–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, A.; Puppi, J.; Hughes, R.D.; Mitry, R.R. Human hepatocyte transplantation: Current experience and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 288–298. [Google Scholar] [CrossRef]
- Rhim, J.A.; Sandgren, E.P.; Degen, J.L.; Palmiter, R.D.; Brinster, R.L. Replacement of diseased mouse liver by hepatic cell transplantation. Science 1994, 263, 1149–1152. [Google Scholar] [CrossRef] [PubMed]
- Galipeau, J.; Sensébé, L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018, 22, 824–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Nishimura, T.; Zheng, M.; Wu, M.; Su, H.; Sato, N.; Lee, G.; Michie, S.; Glenn, J.; Peltz, G. Enabling autologous human liver regeneration with differentiated adipocyte stem cells. Cell Transplant. 2014, 23, 1573–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, R.E.; Reyes, M.; Koodie, L.; Jiang, Y.; Blackstad, M.; Lund, T.; Lenvik, T.; Johnson, S.; Hu, W.-S.; Verfaillie, C.M. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Investig. 2002, 109, 1291–1302. [Google Scholar] [CrossRef]
- Ortiz, L.A.; DuTreil, M.; Fattman, C.; Pandey, A.C.; Torres, G.; Go, K.; Phinney, D.G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA 2007, 104, 11002–11007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, M.J.; Suh, S.Y.; Bae, Y.C.; Jung, J.S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 2005, 328, 258–264. [Google Scholar] [CrossRef]
- Snykers, S.; Vanhaecke, T.; Papeleu, P.; Luttun, A.; Jiang, Y.; Heyden, Y.V.; Verfaillie, C.; Rogiers, V. Sequential exposure to cytokines reflecting embryogenesis: The key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells. Toxicol. Sci. 2006, 94, 330–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lysy, P.A.; Smets, F.; Najimi, M.; Sokal, E.M. Leukemia inhibitory factor contributes to hepatocyte-like differentiation of human bone marrow mesenchymal stem cells. Differ. Res. Biol. Divers. 2008, 76, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Campard, D.; Lysy, P.A.; Najimi, M.; Sokal, E.M. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 2008, 134, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Quinn, G.; Okochi, H.; Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007, 46, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Liu, J.; Deng, J.; Chen, X.; Wang, Y.; Xu, P.; Cheng, L.; Fu, Y.; Cheng, F.; Yao, Y.; et al. Rapid and high-efficiency generation of mature functional hepatocyte-like cells from adipose-derived stem cells by a three-step protocol. Stem Cell Res. Ther. 2015, 6, 193. [Google Scholar] [CrossRef] [Green Version]
- Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Osaki, M.; Kato, T.; Okochi, H.; Ochiya, T. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J. Gastroenterol. Hepatol. 2009, 24, 70–77. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, A.C.; Verma, A.; Kehoe, D.E.; Jing, D.; Murrell, J.R.; Der, K.A.; Aysola, M.; Rapiejko, P.J.; Punreddy, S.; Rook, M.S. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem. Eng. J. 2016, 108, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sensebé, L.; Bourin, P.; Tarte, K. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum. Gene Ther. 2011, 22, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Jossen, V.; van den Bos, C.; Eibl, R.; Eibl, D. Manufacturing human mesenchymal stem cells at clinical scale: Process and regulatory challenges. Appl. Microbiol. Biotechnol. 2018, 102, 3981–3994. [Google Scholar] [CrossRef] [Green Version]
- Olsen, T.R.; Ng, K.S.; Lock, L.T.; Ahsan, T.; Rowley, J.A. Peak MSC—Are we there yet? Front. Med. 2018, 5, 178. [Google Scholar] [CrossRef]
- Herrera, M.B.; Fonsato, V.; Bruno, S.; Grange, C.; Gilbo, N.; Romagnoli, R.; Tetta, C.; Camussi, G. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 2013, 57, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.B.; Bruno, S.; Buttiglieri, S.; Tetta, C.; Gatti, S.; Deregibus, M.C.; Bussolati, B.; Camussi, G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006, 24, 2840–2850. [Google Scholar] [CrossRef] [PubMed]
- Scheers, I.; Maerckx, C.; Khuu, D.N.; Marcelle, S.; Decottignies, A.; Najimi, M.; Sokal, E. Adult-derived human liver progenitor cells in long-term culture maintain appropriate gatekeeper mechanisms against transformation. Cell Transpl. 2012, 21, 2241–2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, A.; Prigent, J.; Lombard, C.; Rosseels, V.; Daujat-Chavanieu, M.; Breckpot, K.; Najimi, M.; Deblandre, G.; Sokal, E.M. Adult-derived human liver stem/progenitor cells infused 3 days postsurgery improve liver regeneration in a mouse model of extended hepatectomy. Cell Transpl. 2017, 26, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.-Y.; Dai, H.; Leong, K.W. Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials 2006, 27, 4087–4097. [Google Scholar] [CrossRef] [PubMed]
- Aurich, I.; Mueller, L.P.; Aurich, H.; Luetzkendorf, J.; Tisljar, K.; Dollinger, M.M.; Schormann, W.; Walldorf, J.; Hengstler, J.G.; Fleig, W.E.; et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 2007, 56, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Aurich, H.; Sgodda, M.; Kaltwasser, P.; Vetter, M.; Weise, A.; Liehr, T.; Brulport, M.; Hengstler, J.G.; Dollinger, M.M.; Fleig, W.E.; et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 2009, 58, 570–581. [Google Scholar] [CrossRef]
- Bruno, S.; Sanchez, M.B.H.; Pasquino, C.; Tapparo, M.; Cedrino, M.; Tetta, C.; Camussi, G. Human liver-derived stem cells improve fibrosis and inflammation associated with nonalcoholic steatohepatitis. Stem Cells Int. 2019, 2019, 6351091. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Ikemoto, T.; Tokuda, K.; Miyazaki, K.; Yamada, S.; Imura, S.; Miyake, M.; Morine, Y.; Oyadomari, S.; Shimada, M. Effective three-dimensional culture of hepatocyte-like cells generated from human adipose-derived mesenchymal stem cells. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Okura, H.; Komoda, H.; Saga, A.; Kakuta-Yamamoto, A.; Hamada, Y.; Fumimoto, Y.; Lee, C.M.; Ichinose, A.; Sawa, Y.; Matsuyama, A. Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Eng. Part C Methods 2010, 16, 761–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuur, E.; Bogliotti, Y.; Roest, M.V. Effects of a novel cell therapy in mice with chemically induced acute liver injury using hepatocyte-like cells derived from adipose stromal cells reduces liver damage and inflammation. In Proceedings of the Liver Meeting, Hoboken, NJ, USA, 12–15 November 2021. [Google Scholar]
- Nickel, S.; Vlaic, S.; Christ, M.; Schubert, K.; Henschler, R.; Tautenhahn, F.; Burger, C.; Kühne, H.; Erler, S.; Roth, A.; et al. Mesenchymal stromal cells mitigate liver damage after extended resection in the pig by modulating thrombospondin-1/TGF-β. Npj. Regen. Med. 2021, 6, 84. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Rezvani, M.; Harbell, J.W.; Mattis, A.N.; Wolfe, A.; Benet, L.Z.; Willenbring, H.; Ding, S. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 2014, 508, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Touboul, T.; Hannan, N.R.; Corbineau, S.; Martinez, A.; Martinet, C.; Branchereau, S.; Mainot, S.; Strick-Marchand, H.; Pedersen, R.; Di Santo, J.; et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 2010, 51, 1754–1765. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kawai, K.; Mitsui, T.; Taniguchi, K.; Monnai, M.; Wakui, M.; Ito, M.; Suematsu, M.; Peltz, G.; Nakamura, M.; et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem. Biophys. Res. Commun. 2011, 405, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, R.; Pettinato, G.; Beeston, J.T.; Lee, D.D.; Wen, X.; Mangino, M.J.; Fisher, R.A. Transplantation of human stem cell-derived hepatocytes in an animal model of acute liver failure. Surgery 2015, 158, 349–359. [Google Scholar] [CrossRef]
- Winkler, S.; Hempel, M.; Brückner, S.; Tautenhahn, H.M.; Kaufmann, R.; Christ, B. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells. Int. J. Mol. Sci. 2016, 17, 1099. [Google Scholar] [CrossRef] [Green Version]
- Stéphenne, X.; Najimi, M.; Sibille, C.; Nassogne, M.C.; Smets, F.; Sokal, E.M. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 2006, 130, 1317–1323. [Google Scholar] [CrossRef]
- Sokal, E.M.; Stéphenne, X.; Ottolenghi, C.; Jazouli, N.; Clapuyt, P.; Lacaille, F.; Najimi, M.; de Lonlay, P.; Smets, F. Liver engraftment and repopulation by in vitro expanded adult derived human liver stem cells in a child with ornithine carbamoyltransferase deficiency. In JIMD Reports—Case and Research Reports; Zschocke, J., Gibson, K., Brown, G., Morava, E., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 13, pp. 65–72. [Google Scholar] [CrossRef] [Green Version]
- Spada, M.; Porta, F.; Righi, D.; Gazzera, C.; Tandoi, F.; Ferrero, I.; Fagioli, F.; Sanchez, M.B.H.; Calvo, P.L.; Biamino, E.; et al. Intrahepatic administration of human liver stem cells in infants with inherited neonatal-onset hyperammonemia: A phase I study. Stem Cell Rev. Rep. 2019, 16, 186–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smets, F.; Dobbelaere, D.; McKiernan, P.; Dionisi-Vici, C.; Broué, P.; Jacquemin, E.; Lopes, A.I.; Gonçalves, I.; Mandel, H.; Pawlowska, J.; et al. Phase I/II trial of liver derived mesenchymal stem cells in pediatric liver based metabolic disorders. Transplantation 2019, 103, 1903–1915. [Google Scholar] [CrossRef] [PubMed]
- Nevens, F.; Gustot, T.; Laterre, P.-F.; Lasser, L.L.; Haralampiev, L.E.; Vargas, V.; Lyubomirova, D.; Albillos, A.; Najimi, M.; Michel, S.; et al. A phase II study of human allogeneic liver-derived progenitor cell therapy for acute-on-chronic liver failure and acute decompensation. JHEP Rep. 2021, 3, 100291. [Google Scholar] [CrossRef] [PubMed]
- Robb, K.P.; Fitzgerald, J.C.; Barry, F.; Viswanathan, S. Mesenchymal stromal cell therapy: Progress in manufacturing and assessments of potency. Cytotherapy 2019, 21, 289–306. [Google Scholar] [CrossRef]
- Pettinato, G.; Ramanathan, R.; Fisher, R.A.; Mangino, M.J.; Zhang, N.; Wen, X. Scalable differentiation of human iPSCs in a multicellular spheroid-based 3D culture into hepatocyte-like cells through direct Wnt/β-catenin pathway inhibition. Sci. Rep. 2016, 6, 32888. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, C.; Dever, D.P.; Davis, T.H.; Camarena, J.; Srifa, W.; Zhang, Y.; Paikari, A.; Chang, A.K.; Porteus, M.H.; et al. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019, 47, 7955–7972. [Google Scholar] [CrossRef]
- Woolbright, B.L.; Jaeschke, H. The impact of sterile inflammation in acute liver injury. J. Clin. Transl. Res. 2017, 3, 170–188. [Google Scholar] [CrossRef] [Green Version]
- Stavely, R.; Nurgali, K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl. Med. 2020, 9, 985–1006. [Google Scholar] [CrossRef]
- Soliman, H.; Theret, M.; Scott, W.; Hill, L.; Underhill, T.M.; Hinz, B.; Rossi, F.M. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell 2021, 28, 1690–1707. [Google Scholar] [CrossRef]
- Schnabel, L.V.; Abratte, C.M.; Schimenti, J.C.; Felippe, M.J.B.; Cassano, J.M.; Southard, T.L.; Cross, J.A.; Fortier, L.A. Induced pluripotent stem cells have similar immunogenic and more potent immunomodulatory properties compared with bone marrow-derived stromal cells in vitro. Regen. Med. 2014, 9, 621–635. [Google Scholar] [CrossRef] [Green Version]
- Campos, G.; Schmidt-Heck, W.; De Smedt, J.; Widera, A.; Ghallab, A.; Pütter, L.; González, D.; Edlund, K.; Cadenas, C.; Marchan, R.; et al. Inflammation-associated suppression of metabolic gene networks in acute and chronic liver disease. Arch. Toxicol. 2020, 94, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Saha, B. Alcohol’s effect on host defense. Alcohol Res. Curr. Rev. 2015, 37, 159–170. [Google Scholar]
- Brunt, E.M. Alcoholic and nonalcoholic steatohepatitis. Clin. Liver Dis. 2002, 6, 399–420. [Google Scholar] [CrossRef]
- Zhu, X.-Q.; Pan, X.-H.; Yao, L.; Li, W.; Cui, J.; Wang, G.; Mrsny, R.J.; Hoffman, A.R.; Hu, J.-F. Converting skin fibroblasts into hepatic-like cells by transient programming. J. Cell. Biochem. 2016, 117, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Bogliotti, Y.; Vander_Roest, M.; Schuur, E. Novel hybrid phenotypes of adipose stromal cell-derived hepatocyte-like cells demonstrate improved immunomodulatory capabilities in vitro and increased effectiveness against liver injury in vivo. Cytotherapy 2022, 24, S81–S82. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, H.-S.; Hong, I.-S. Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int. 2019, 2019, 5126156. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhao, L.; Li, L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res. Ther. 2019, 10, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krampera, M.; Blanc, K.L. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021, 28, 1708–1725. [Google Scholar] [CrossRef]
- Yang, X.; Meng, Y.; Han, Z.; Ye, F.; Wei, L.; Zong, C. Mesenchymal stem cell therapy for liver disease: Full of chances and challenges. Cell Biosci. 2020, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Noronha, N.C.; Mizukami, A.; Caliári-Oliveira, C.; Cominal, J.G.; Rocha, J.L.M.; Covas, D.T.; Swiech, K.; Malmegrim, K.C.R. Correction to: Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019, 10, 131. [Google Scholar] [CrossRef] [Green Version]
Number of Stages | Key Components per Stage | Key Characteristics | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|
1 | Stage 1: HGF, FGF, DMSO, OSM | Express KRT18, ALB, AFP, HNF1 alpha, GATA4, FOXA2 Glycogen storage, urea synthesis | Simplicity | Length of differentiation | Schwartz 2002 [20], Seo 2019 [21] 2005 [22] |
2 | Stage 1: FGF Stage 2: HGF, ITS, dexamethasone | Express KRT18, ALB, AFP, HNF1 alpha, HNF-3b Glycogen storage, urea synthesis | Efficiency of differentiation | Complexity | Snykers 2006 [23] |
2 | Stage 1: HGF, ITS, FGF Stage 2: OSM/LIF, ITS, dexamethasone | Express ALB, TDO2, AAT, TAT, CK8, CK19, AFP, CX32, G6P Glycogen storage, urea synthesis | Simplicity | Length of differentiation | Lysy 2008 [24] |
3 | Stage 1: EGF, FGF Stage 2: HGF, FGF, ITS, nicotinamide Stage 3: OSM, nicotinamide, dexamethasone, ITS | Express ALB, TDO, AAT, AFP, CNX32 Glycogen storage, urea synthesis | Efficiency of differentiation | Length of differentiation | Campard 2008 [25] |
3 | Stage 1: WNT pathway activator, FGF Stage 2: HGF, FGF, OSM, ITS, dexamethasone, nicotinamide Stage 3: Nicotinamide, dexamethasone | Express ALB, TOD2, FOXA2, Sox17, AAT, ALB, ASGR1, HNF4A, TAT, TTR, transferrin, KRT18, GJB1, AFP, 7 CYP genes Glycogen storage, urea synthesis, CYP activity, albumin secretion | Rapid differentiation, efficiency of differentiation | High complexity | 2007 [26], Xu 2015 [27], Banas 2009 [28] |
3 | Stage 1: WNT pathway activator, FGF, activin Stage 2: HGF, FGF, OSM, ITS, dexamethasone | Express ALB, TOD2, FOXA2, SOX17, AAT, ALB, ASGR1, HNF4A, KRT18, AFP Glycogen storage, urea synthesis, albumin secretion | Rapid differentiation, efficiency of differentiation, scalability | Moderate complexity | Xu 2014 [19] |
Cell Type | Study Design | Outcomes | Reference |
---|---|---|---|
Liver MSCs | Hu Phase I clinical study: 3 pts.: inherited neonatal hyperammonemia Dose level 1: 1.25 × 105 cells per gm liver (pt. 1) Dose level 2: 2.5 × 105 cells per gm liver (pts. 2 and 3) ROA direct injection into liver parenchyma No immunosuppression | No treatment-related AEs- Stable disease until transplant No immune response to cells | Spada 2019 [54] |
Liver MSCs | Hu case report 3.5 y.o. female Argininosuccinate lyase deficiency 11 cell infusions with male cells Portal vein ROA 1 × 109 cells per dose | Ammonia levels improved (50% reduction) Psychomotor evaluation improved Cytogenetics on biopsies (12% hepatocyte replacement at 12 months) ASL activity in biopsies increased to normal levels | Stéphenne 2006 [52] |
Liver MSCs | Hu case report 3 y.o. female Ornithine transcarbamylase deficiency 11 cell infusions with cells from multiple donors Portal vein ROA ~2 × 108–7 × 108 cells per dose | Engraftment: 3–5% Ammonia level changes suggestive of improvement | Sokal 2013 [53] |
Liver MSCs | Hu Phase I/II Hu Pediatric patients with urea cycle disorders and Crigler–Najjar syndrome | Safety and tolerability of treatment confirmed Evidence of improvements in ureagenesis observed | Smets 2019 [55] |
Liver MSCs | Hu Phase II clinical study ACLF and AD 24 pts. 6 × 105–5 × 106 cells/kg IV ROA | Safety: no serious treatment-related AEs; other AEs as expected for this patient population. First 2 pts. had bleeding issues, so dose lowered for remaining pts. Systemic inflammation improved in group over study Liver function improved in group over study | Nevens 2021 [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogliotti, Y.; Vander Roest, M.; Mattis, A.N.; Gish, R.G.; Peltz, G.; Anwyl, R.; Kivlighn, S.; Schuur, E.R. Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review. Cells 2022, 11, 1998. https://doi.org/10.3390/cells11131998
Bogliotti Y, Vander Roest M, Mattis AN, Gish RG, Peltz G, Anwyl R, Kivlighn S, Schuur ER. Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review. Cells. 2022; 11(13):1998. https://doi.org/10.3390/cells11131998
Chicago/Turabian StyleBogliotti, Yanina, Mark Vander Roest, Aras N. Mattis, Robert G. Gish, Gary Peltz, Robin Anwyl, Salah Kivlighn, and Eric R. Schuur. 2022. "Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review" Cells 11, no. 13: 1998. https://doi.org/10.3390/cells11131998