Hashimoto Encephalopathy—Still More Questions than Answers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Data Extraction
2.3. Qualitive Analysis and Synthesis
3. Results
3.1. Thyroid and Brain
3.2. Hashimoto’s Thyroiditis
3.3. Hashimoto Encephalopathy
3.3.1. Epidemiology
3.3.2. Pathogenesis
Autoantibodies against the Amino (NH2)-Terminal of α-Enolase (aNAE)
3.3.3. Clinical Manifestations
3.3.4. Criteria for Diagnosis
3.3.5. Diagnostic Findings
3.3.6. Differential Diagnosis
3.3.7. Treatment and Prognosis
4. Controversies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADE | acute disseminated encephalomyelitis |
AMPAR1/2 | a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor 1 and 2 |
ANA | antinuclear antibodies |
aNAE | the amino (NH2)-terminal of α-enolase |
APS | autoimmune polyendocrine syndromes |
BDNF | brain-derived neurotrophic factor |
Caspr2 | contactin-associated protein 2 |
CNS | central nervous system |
EEG | electroencephalography |
EP | evoked potentials |
ERP | event-related potentials |
GABAAR | gamma-aminobutyric acid A receptor |
HE | Hashimoto encephalopathy |
HT | Hashimoto’s thyroiditis |
TGAb | anti-thyroglobulin antibodies |
TPOAb | anti-thyroid peroxidase antibodies |
TSHRAb | TSH receptor blocking or stimulating antibodies |
CIDP | chronic inflammatory demyelinating polyradiculoneuropathy |
IgG4-RD | IgG4-related disease |
IVIg | intravenous immunoglobulin |
mI/Cr | myo-inositol/creatine |
MRI | magnetic resonance imaging |
MRS | magnetic resonance spectroscopy |
MRS | magnetic resonance spectroscopy |
NAA/Cr | N-acetylaspartate/creatine |
NAIM | nonvasculitic autoimmune inflammatory meningoencephalitis |
NMDAR | N-methyl-D-aspartate receptor |
SPECT | single photon emission computed tomography |
SREAT | steroid-responsive encephalopathy associated with autoimmune thyroiditis |
TGA | transient global amnesia |
References
- Carta, M.G.; Hardoy, M.C.; Carpiniello, B.; Murru, A.; Marci, A.R.; Carbone, F.; Deiana, L.; Cadeddu, M.; Mariotti, S. A case control study on psychiatric disorders in Hashimoto disease and Euthyroid Goitre: Not only depressive but also anxiety disorders are associated with thyroid autoimmunity. Clin. Pract. Epidemiol. Ment. Health 2005, 1, 23. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.Y.; Rowland, L.P.; Utiger, R.D. Hashimoto encephalopathy: Syndrome or myth? Arch. Neurol. 2003, 60, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Dardano, A.; Bazzzichi, L.; Bombardieri, S.; Monzani, F. Symptoms in euthyroid Hashimoto’s thyroiditis: Is there a role for autoimmunity itself? Thyroid 2012, 22, 334–335. [Google Scholar] [CrossRef]
- Weetman, A.P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Invest. 2021, 44, 883–890. [Google Scholar] [CrossRef]
- Grani, G.; Carbotta, G.; Nesca, A.; D’Alessandri, M.; Vitale, M.; Del Sordo, M.; Fumarola, A. A comprehensive score to diagnose Hashimoto’s thyroiditis: A proposal. Endocrine 2015, 49, 361–365. [Google Scholar] [CrossRef]
- Brain, L.; Jellinek, E.H.; Ball, K. Hashimoto’s disease and encephalopathy. Lancet 1966, 2, 512–514. [Google Scholar] [CrossRef]
- Laurent, C.; Capron, J.; Quillerou, B. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT): Characteristics, treatment and outcome in 251 cases from the literature. Autoimmun. Rev. 2016, 15, 1129–1133. [Google Scholar] [CrossRef]
- Chiarello, P.; Talarico, V.; Nicoletti, A.; Rodio, B.; Arcuri, P.P.; Bosco, D.; Gigliotti, F.; Galati, M.C.; Raiola, G. Hashimoto encephalopathy: A case report and a short revision of current literature. Acta Biomed. 2020, 91, e2020087. [Google Scholar]
- Tamagno, G.; Federspil, G.; Murialdo, G. Clinical and diagnostic aspects of encephalopathy associated with autoimmune thyroid disease (or Hashimoto’s encephalopathy). Intern. Emerg. Med. 2006, 1, 15–23. [Google Scholar] [CrossRef]
- Caselli, R.J.; Boeve, B.F.; Scheithauer, B.W.; O’Duffy, J.D.; Hunder, G.G. Nonvasculitic autoimmune inflammatory meningoencephalitis (NAIM): A reversible form of encephalopathy. Neurology 1999, 53, 1579–1581. [Google Scholar] [CrossRef]
- Ahmed, O.M.; El-Gareib, A.W.; El-Bakry, A.M.; Abd El-Tawab, S.M.; Ahmed, R.G. Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci. 2008, 26, 147–209. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J. Thyroid hormones and brain development. Vitam. Horm. 2005, 71, 95–122. [Google Scholar]
- Horn, S.; Heuer, H. Thyroid hormone action during brain development: More questions than answers. Mol. Cell. Endocrinol. 2010, 315, 19–26. [Google Scholar] [CrossRef]
- Nunez, J.; Celi, F.S.; Ng, L.; Forrest, D. Multigenic control of thyroid hormone functions in the nervous system. Mol. Cell. Endocrinol. 2008, 287, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 2008, 20, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Sui, L.; Walker, M.J.; Anderson, W.; Thomas, S.; Smoller, S.N.; Schon, J.P.; Phani, S.; Goodman, J.H. Thyroid hormone insufficiency during brain development reduces parvalbumin immunoreactivity and inhibitory function in the hippocampus. Endocrinology 2007, 148, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Khaleghzadeh-Ahangar, H.; Talebi, A.; Mohseni-Moghaddam, P. Thyroid disorders and development of cognitive impairment: A review study. Neuroendocrinology 2022, 112, 835–844. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Raghnaill, M.N.; Loscher, J.S.; O’Sullivan, N.C.; Pangalos, M.N.; Ring, R.H.; von Schack, D.; Dunn, M.J.; Regan, C.M.; Pennington, S.; et al. Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics 2011, 11, 4189–4201. [Google Scholar] [CrossRef]
- Churilov, L.P.; Sobolevskaia, P.A.; Stroev, Y.I. Thyroid gland and brain: Enigma of Hashimoto’s encephalopathy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101364. [Google Scholar] [CrossRef]
- Belandia, B.; Latasa, M.J.; Villa, A.; Pascual, A. Thyroid hormone negatively regulates the transcriptional activity of the beta-amyloid precursor protein gene. J. Biol. Chem. 1998, 273, 30366–30371. [Google Scholar] [CrossRef]
- Gilbert, M.E.; Lasley, S.M. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)? Neuroscience 2013, 239, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Wilcoxon, J.S.; Nadolski, G.J.; Samarut, J.; Chassande, O.; Redei, E.E. Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behav. Brain Res. 2007, 177, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Upadhyay, G.; Kumar, S.; Kapoor, A.; Kumar, A.; Tiwari, M.; Godbole, M.M. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in developing cerebellum. J. Endocrinol. 2003, 146, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.J.; Leonard, J.L.; Davis, F.B. Mechanisms of nongenomic actions of thyroid hormone. Front. Neuroendocrinol. 2008, 29, 211–218. [Google Scholar] [CrossRef]
- Santini, F.; Pinchera, A.; Ceccarini, G.; Castagna, M.; Rosellini, V.; Mammoli, C.; Montanelli, L.; Zucchi, V.; Chopra, I.J.; Chiovato, L. Evidence for a role of the type III-iodothyronine deiodinase in the regulation of 3,5,3′-triiodothyronine content in the human central nervous system. Eur. J. Endocrinol. 2001, 144, 577–583. [Google Scholar] [CrossRef]
- McLeod, D.S.; Cooper, D.S. The incidence and prevalence of thyroid autoimmunity. Endocrine 2012, 42, 252–265. [Google Scholar] [CrossRef]
- Vanderpump, M. The epidemiology of thyroid disease. Br. Med. Bull. 2011, 99, 39–51. [Google Scholar] [CrossRef]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef]
- Mariotti, S.; Sansoni, P.; Barbesino, G.; Caturegli, P.; Monti, D.; Cossarizza, A.; Giacomelli, T.; Passeri, G.; Fagiolo, U.; Pinchera, A. Thyroid and other organ-specific autoantibodies in healthy centenarians. Lancet 1992, 339, 1506–1508. [Google Scholar] [CrossRef]
- Danieli, M.G.; Rossetti, L.; Fraticelli, P.; Malcangi, G.; Testa, I.; Danieli, G. Autoimmune thyroid diseases in patients with undifferentiated connective tissue disease. Clin. Rheumatol. 2000, 19, 42–46. [Google Scholar] [CrossRef]
- Eisenbarth, G.S.; Gottlieb, P.A. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 2004, 350, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, S.; Sanjay, S.; Somashekar, R.; Ashalatha, R.; Shankar, S.K. CIDP, Hashimoto’s thyroiditis and nephropathy: Autoimmune syndrome complex? Can. J. Neurol. Sci. 2009, 36, 382–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanazawa, M.; Shimohata, T.; Tanaka, K.; Nishizawa, M. Clinical features of patients with myasthenia gravis associated with autoimmune diseases. Eur. J. Neurol. 2007, 14, 1403–1404. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.J.; Gough, S.C. The search for the genetic contribution to autoimmune thyroid disease: The never ending story? Brief. Funct. Genom. 2011, 10, 77–90. [Google Scholar] [CrossRef]
- Popławska-Kita, A.; Kościuszko-Zdrodowska, M.; Siewko, K.; Telejko, B.; Hryniewicka, J.; Milewski, H. High serum IgG4 concentrations in patients with Hashimoto’s thyroiditis. Int. J. Endocrinol. 2015, 2015, 706843. [Google Scholar] [CrossRef]
- Weetman, A.P. The immunopathogenesis of chronic autoimmune thyroiditis one century after Hashimoto. Eur. Thyroid J. 2013, 1, 243–250. [Google Scholar] [CrossRef]
- Kawashima, A.; Tanigawa, K.; Akama, T.; Yoshihara, A.; Ishii, N.; Suzuki, K. Innate immune activation and thyroid autoimmunity. J. Clin. Endocrinol. Metab. 2011, 96, 3661–3671. [Google Scholar] [CrossRef]
- Łacka, K.; Maciejewski, A. The role of apoptosis in the etiopathogenesis of autoimmune thyroiditis. Pol. Merkur. Lek. 2012, 32, 87–92. [Google Scholar]
- Weetman, A.P. Autoimmune Diseases in Endocrinology; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar]
- Dong, Y.H.; Fu, D.G. Autoimmune thyroid disease: Mechanism, genetics and current knowledge. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3611–3618. [Google Scholar]
- Antonelli, A.; Ferrari, S.M.; Giuggioli, D.; Ferrannini, E.; Ferri, C.; Fallahi, P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun. Rev. 2014, 13, 272–280. [Google Scholar] [CrossRef]
- Rotondi, M.; Chiovato, L.; Romagnani, S.; Serio, M.; Romagnani, P. Role of chemokines in endocrine autoimmune diseases. Endocr. Rev. 2007, 28, 492–520. [Google Scholar] [CrossRef] [PubMed]
- Heath, W.R.; Allison, J.; Hoffmann, M.W. Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature 1992, 359, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Röcken, M.; Urban, J.F.; Shevach, E.M. Infection breaks T-celltolerance. Nature 1992, 359, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.C.; Morris, G.P.; Brown, N.K.; Yan, Y.; Flynn, J.C.; David, C.S. Autoimmune thyroiditis: A model uniquely suited to probe regulatory T cell function. J. Autoimmun. 2009, 33, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Bossowski, A.; Moniuszko, M.; Idźkowska, E.; Dąbrowska, M.; Jeznach, M.; Sawicka, B.; Borysewicz-Sańczyk, H. Evaluation of CD4+CD161+CD196+ and CD4+IL-17+ Th17 cells in the peripheral blood of young patients with Hashimoto’s thyroiditis and Graves’ disease. Pediatr. Endocrinol. Diabetes Metab. 2012, 18, 89–95. [Google Scholar]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Roliński, J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J. Immunol. Res. 2015, 2015, 979167. [Google Scholar] [CrossRef]
- Mangan, P.R.; Harrington, L.E.; O’Quinn, D.B.; Helms, W.S.; Bullard, D.C.; Elson, C.O.; Hatton, R.D.; Wahl, S.M.; Schoeb, T.R.; Weaver, C.T. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006, 441, 231–234. [Google Scholar] [CrossRef]
- Carlé, A.; Laurberg, P.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Jorgensen, T.; Pedersen, I.B. Thyroid peroxidase and thyroglobulin auto-antibodies in patients with newly diagnosed overt hypothyroidism. Autoimmunity 2006, 39, 497–503. [Google Scholar] [CrossRef]
- Czarnocka, B.; Ruf, J.; Ferrand, M.; Carayon, P.; Lissitzky, S. Purification of the human thyroid peroxidase and its identification as the microsomal antigen involved in autoimmune thyroid diseases. FEBS Lett. 1985, 190, 147–152. [Google Scholar] [CrossRef]
- Xie, L.; Gao, Y.; Li, M.R.; Lu, G.; Guo, X.H. Distribution of immunoglobulin G subclasses of anti-thyroid peroxidase antibody in sera from patients with Hashimoto’s thyroiditis with different thyroid functional status. Clin. Exp. Immunol. 2008, 154, 172–176. [Google Scholar] [CrossRef]
- Pandrc, M.S.; Petrović, S.; Kostovski, V.; Petrović, M.; Zarić, M. The importance of IgG4 in the predictive model of thyroiditis. Endocrinol. Diabetes Metab. Case Rep. 2015, 2015, 150038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, L.; Gao, Y.; Liu, M.; Li, T.; Huang, Y.; Lu, G.; Gao, Y.; Guo, X.; Shi, B. A classification of Hashimoto’s thyroiditis based on immunohistochemistry for IgG4 and IgG. Thyroid 2014, 24, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Greenberg, D.A.; Davies, T.F.; Jacobson, E.; Concepcion, E.; Tomer, Y. Linkage analysis of thyroid antibody production: Evidence for shared susceptibility to clinical autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 2008, 93, 3589–3596. [Google Scholar] [CrossRef]
- Kakudo, K.; Li, Y.; Taniguchi, E.; Mori, I.; Ozaki, T.; Nishihara, E.; Matsuzuka, F.; Miyauchi, A. IgG4-related disease of the thyroid glands. Endocr. J. 2012, 59, 273–281. [Google Scholar] [CrossRef]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef] [PubMed]
- Duyff, R.F.; Van den Bosch, J.; Laman, D.M.; van Loon, B.J.; Linssen, W.H. Neuromuscular findings in thyroid dysfunction: A prospective clinical and electrodiagnostic study. J. Neurol. Neurosurg. Psychiatry 2000, 68, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Fatourechi, V. Hashimoto’s encephalopathy: Myth or reality? An endocrinologist’s perspective. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 53–66. [Google Scholar] [CrossRef]
- Tyler, K.L.; Rüegg, S. The neuromythology of Hashimoto encephalopathy: The emperor has no clothes. Neurology 2020, 94, 55–56. [Google Scholar] [CrossRef]
- Mocellin, R.; Walterfang, M.; Velakoulis, D. Hashimoto’s encephalopathy: Epidemiology, pathogenesis and management. CNS Drugs 2007, 21, 799–811. [Google Scholar] [CrossRef]
- Ferracci, F.; Bertiato, G.; Moretto, G. Hashimoto’s encephalopathy: Epidemiologic data and pathogenetic considerations. J. Neurol. Sci. 2004, 217, 165–168. [Google Scholar] [CrossRef]
- Olmez, I.; Moses, H.; Sriram, S.; Kirshner, H.; Lagrange, A.H.; Pawate, S. Diagnostic and therapeutic aspects of Hashimoto’s encephalopathy. J. Neurol. Sci. 2013, 331, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Payer, J.; Petrovic, T.; Lisy, L.; Langer, P. Hashimoto encephalopathy: A rare intricate syndrome. Int. J. Endocrinol. Metab. 2012, 10, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Gut, P.; Kosowicz, J.; Florczak, J.; Ziemnicka, K.; Bączyk, M.; Sowiński, J.; Kozubski, W. The incidence of the thyroid microsomal autoantibodies in Alzheimer disease. Endokrynol Pol. 2009, 60, 271–276. [Google Scholar] [PubMed]
- Chou, K.M.; Huang, B.Y.; Chen, C.H.; Lin, J.D.; Lee, C.C. Correlation and presentation of thyroid functional status with thyroid autoantibodies in long-term follow-up of autoimmune thyroiditis: A study of 116 cases. J. Formos. Med. Assoc. 2013, 20, 1039–1046. [Google Scholar] [CrossRef]
- Nolte, K.W.; Unbehaun, A.; Sieker, H.; Kloss, T.M.; Paulus, W. Hashimoto encephalopathy: A brainstem vasculitis? Neurology 2000, 54, 769–770. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Hayashi, A.; Tamaoka, A.; Usuki, S.; Mizusawa, H.; Shoji, S. Case report: Thyrotropin-releasing hormone-induced myoclonus and tremor in a patient with Hashimoto’s encephalopathy. Am. J. Med. Sci. 1995, 310, 202–205. [Google Scholar] [CrossRef]
- Forchetti, C.M.; Katsamakis, G.; Garron, D.C. Autoimmune thyroiditis and a rapidly progressive dementia: Global hypoperfusion on SPECT scanning suggests a possible mechanism. Neurology 1997, 49, 623–626. [Google Scholar] [CrossRef]
- Tang, Y.; Xing, Y.; Lin, M.T.; Zhang, J.; Jia, J. Hashimoto’s encephalopathy cases: Chinese experience. BMC Neurol. 2012, 12, 60. [Google Scholar] [CrossRef]
- Zen, Y.; Nakanuma, Y. Pathogenesis of IgG4-related disease. Curr. Opin. Rheumatol. 2011, 23, 114–118. [Google Scholar] [CrossRef]
- Hamano, H.; Kawa, S.; Horiuchi, A. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N. Engl. J. Med. 2001, 344, 732–738. [Google Scholar] [CrossRef]
- Kubo, K.; Yamamoto, K. IgG4-related disease. Int. J. Rheum. Dis. 2015, 19, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, Y.; Kono, S.; Terada, T.; Konishi, T.; Miyajima, H. Hashimoto’s encephalopathy associated with an elevated intrathecal IgG4 level. J. Neurol. 2013, 260, 1174–1176. [Google Scholar] [CrossRef] [PubMed]
- Ochi, H.; Horiuchi, I.; Araki, N.; Toda, T.; Araki, T.; Sato, K. Proteomic analysis of human brain identifies alpha-enolase as a novel autoantigen in Hashimoto’s encephalopathy. FEBS Lett. 2002, 528, 197–202. [Google Scholar] [CrossRef]
- Fujii, A.; Yoneda, M.; Ito, T.; Yamamura, O.; Satomi, S.; Higa, H.; Kimura, M. Autoantibodies against the amino terminal of α-enolase are a useful diagnostic marker of Hashimoto’s encephalopathy. J. Neuroimmunol. 2005, 162, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Wang, J.F.; Guo, J.R.; Li, Y.E.; Lian, S.A.; Guo, W.J.; Yang, H.M.; Kong, F.Z.; Zhen, L.; Guo, L.; et al. Progress in the biological function of alpha-enolase. Anim. Nutr. 2016, 2, 12–17. [Google Scholar] [CrossRef]
- Terrier, B.; Degand, N.; Duilpain, P.; Servettaz, A.; Guillevin, L.; Mouthon, L. Alphaenolase: A target of autoantibodies in infectious and autoimmune diseases. Autoimm. Rev. 2007, 6, 176–182. [Google Scholar] [CrossRef]
- Cheng, J.L.; Beebe, J.D.; Nepple, K.G.; Zakharia, Y.; Mullins, R.F.; Flamme-Wiese, M.J.; Thurtell, M.J.; Han, I.C. Autoimmune retinopathy and optic neuropathy associated with enolase-positive renal oncocytoma. Am. J. Ophthalmol. Case Rep. 2018, 12, 55–60. [Google Scholar] [CrossRef]
- Kishitani, T.; Matsunaga, A.; Ikawa, M.; Hayashi, K.; Yamamura, O.; Hamano, T.; Watanabe, O.; Watanabe, O.; Nakamoto, Y.; Yoneda, M. Limbic encephalitis associated with anti-NH2-terminal of α-enolase antibodies: A clinical subtype of Hashimoto encephalopathy. Medicine 2017, 96, e6181. [Google Scholar] [CrossRef]
- Mattozzi, S.; Sabater, L.; Escudero, D.; Ariño, H.; Armangue, T.; Simabukuro, M.; Iizuka, T.; Hará, M.; Saiz, A.; Sotgiu, S.; et al. Hashimoto encephalopathy in the 21st century. Neurology 2020, 94, e217–e224. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Xu, B.; Lopes, J. Hashimoto encephalopathy: Literature review. Acta Neurol. Scand. 2017, 135, 285–290. [Google Scholar] [CrossRef]
- Tzakas, P.; Sit, S.W. Progressive impairment of cognition and motor function: Hashimoto encephalopathy. CMAJ 2011, 183, E495–E497. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Reddy, B. Hashimoto’s encephalopathy presented with mutism: A case report. Gen. Psychiatr. 2021, 34, e100502. [Google Scholar] [CrossRef] [PubMed]
- Prat, S.; Jouan, Y.; Magnant, J.; Graux, J.; El-Hage, W. Hashimoto encephalopathy diagnosis after 40 years of a schizophrenia-like disorder. Schizophr. Res. 2012, 139, 269–270. [Google Scholar] [CrossRef]
- Misiak, B.; Stańczykiewicz, B.; Wiśniewski, M.; Bartoli, F.; Carra, G.; Cavaleri, D.; Samochowiec, J.; Jarosz, K.; Rosińczuk JFrydecka, D. Thyroid hormones in persons with schizophrenia: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110402. [Google Scholar] [CrossRef] [PubMed]
- Engum, A.; Bjøro, T.; Mykletun, A.; Dahl, A.A. Thyroid autoimmunity, depression and anxiety; are there any connections? An epidemiological study of a large population. J. Psychosom. Res. 2005, 59, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Verma, L. Hashimoto’s encephalopathy with psychiatric presentation. Indian Psychiatry J. 2022, 31, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Yu, K.T.; Chan, H.Y.; Chan, C.H. Hashimoto’s encephalopathy presenting as catatonia in a bipolar patient. Asian J. Psychiatr. 2021, 66, 102895. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F. Hashimoto’s Encephalopathy and Seizure Disorders. Front. Neurol. 2019, 10, 440. [Google Scholar] [CrossRef]
- Casciato, S.; Di Bonaventura, C.; Lapenta, L.; Fattouch, J.; Ferrazzano, G.; Fanella, M.; Di Fabio, F.; Pasquini, M.; Amendolea, M.A.; Manfredi, M.; et al. Recurrent partial seizures with ictal yawning as atypical presentation of Hashimoto’s encephalopathy. Epilepsy Behav. 2011, 22, 799–803. [Google Scholar] [CrossRef]
- Tsai, M.H.; Lee, L.H.; Chen, S.D.; Lu, C.H.; Chen, M.T.; Chuang, Y.C. Complex partial status epilepticus as a manifestation of Hashimoto’s encephalopathy. Seizure 2007, 16, 713–716. [Google Scholar] [CrossRef]
- Ercoli, T.; Defazio, G.; Muroni, A. Status epilepticus in Hashimoto’s encephalopathy. Seizure 2019, 70, 1–5. [Google Scholar] [CrossRef]
- Guo, Z.; He, X.; Zhang, G.; Zhang, C.; Tao, A.; Wang, B.; Wang, X.; Li, L.; He, M. Hashimoto’s encephalopathy: A rare cause of refractory status epilepticus. CNS Neurosci. Ther. 2021, 27, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Schein, A.; Najjar, S. Epilepsy associated with systemic autoimmune disorders. Epilepsy Curr. 2013, 13, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bien, C.G.; Bauer, J. Autoimmune epilepsies. Neurotherapeutics 2014, 11, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Visée, H.; Mabiglia, C.; Vanderaspoilden, V.; Gazagnes, M.D.; Glibert, G. Recurrent status epilepticus associated with Hashimoto’s encephalopathy. Epilepsy Behav. Case Rep. 2013, 1, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Irani, S.R.; Lang, B. Potentially pathogenic autoantibodies associated with epilepsy and encephalitis in children and adults. Epilepsia 2011, 52, 8–11. [Google Scholar] [CrossRef]
- Leyhe, T.; Müssig, K. Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain Behav. Immun. 2014, 41, 261–266. [Google Scholar] [CrossRef]
- Tsai, M.H.; Fu, T.Y.; Chen, N.C.; Shih, F.Y.; Lu, Y.T.; Cheng, M.Y.; Chuang, H.Y.; Chuang, Y.C. Antithyroid antibodies are implicated in epileptogenesis of adult patients with epilepsy. Medicine 2015, 94, e1059. [Google Scholar] [CrossRef]
- Crotty, G.F.; Doherty, C.; Solomon, I.H.; Berry, J.D.; Samuels, M.A. Learning from history: Lord Brain and Hashimoto’s encephalopathy. Pract. Neurol. 2019, 19, 316–320. [Google Scholar] [CrossRef]
- Waliszewska-Prosol, M.; Nowakowska-Kotas, M.; Bladowska, J.; Papier, P.; Budrewicz, S.; Pokryszko-Dragan, A. Transient Global Amnesia-Risk Factors and Putative Background. Neurol. India 2020, 68, 624–629. [Google Scholar] [CrossRef]
- Nar Senol, P.; Bican Demir, A.; Bora, I.; Bakar, M. Paroxysmal amnesia attacks due to Hashimoto’s encephalopathy. Case Rep. Med. 2016, 2016, 1267192. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.J.; Tselis, A.C.; Li, J.; Gorman, M. A case of Hashimoto’s encephalopathy: Association with sensory ganglionopathy. J. Neurol. Sci. 2005, 238, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, O.; Maschke, M.; Schlamann, K.; Diener, H.C. Hashimoto encephalopathy and neuralgic amyotrophy-causal link or chance association? Eur. Neurol. 2005, 53, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Lau, K.K.; Li, H.L.; Cheng, L.F. A case of Hashimoto’s encephalopathy with demyelinating peripheral neuropathy. Eur. Neurol. 2005, 53, 84–85. [Google Scholar] [CrossRef]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef] [Green Version]
- DeBiase, J.M.; Avasthi, D. Hashimoto’s Encephalopathy: A Case Report and Literature Review of an Encephalopathy With Many Names. Cureus 2020, 12, e9601. [Google Scholar] [CrossRef]
- Ferracci, F.; Moretto, G.; Candeago, R.M.; Cimini, N.; Conte, F.; Gentile, M.; Papa, N.; Carnevale, A. Antithyroid antibodies in the CSF: Their role in the pathogenesis of Hashimoto’s encephalopathy. Neurology 2003, 60, 712–714. [Google Scholar] [CrossRef]
- Uy, C.E.; Binks, S.; Irani, S.R. Autoimmune encephalitis: Clinical spectrum and management. Pract. Neurol. 2021, 21, 412–423. [Google Scholar] [CrossRef]
- Muramatsu, T.; Hamano, T.; Shirafuji, N.; Matsunaga, A.; Ikawa, M.; Yoneda, M. Hashimoto’s encephalopathy presenting periodic synchronous discharge, as a differential diagnosis for Creutzfeldt-Jakob disease. Rinsho Shinkeigaku 2013, 53, 716–720. [Google Scholar] [CrossRef]
- Waliszewska-Prosół, M.; Ejma, M. Assessment of Visual and Brainstem Auditory Evoked Potentials in Patients with Hashimoto’s Thyroiditis. J. Immunol. Res. 2021, 2021, 3258942. [Google Scholar] [CrossRef]
- Waliszewska-Prosół, M.; Bladowska, J.; Budrewicz, S.; Sąsiadek, M.; Dziadkowiak, E.; Ejma, M. The evaluation of Hashimoto’s thyroiditis with event-related potentials and magnetic resonance spectroscopy and its relation to cognitive function. Sci. Rep. 2021, 11, 2480. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Qin, W.; Wei, C.; Li, K. Time course of Hashimoto’s encephalopathy revealed by MRI: Report of two cases. J. Neurol. Sci. 2011, 300, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, D.; Guastamacchia, G.; Duca, S.; Appendino, L.; Marietti, G.; Romito, A.; Atzori, C.; Buffa, C. Regression of white matter MRI abnormalities in nonvasculitic autoimmune inflammatory meningoencephalitis following intravenous immunoglobulin. Eur. Neurol. 2007, 57, 244–245. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Jing, J.; Jiang, L.; Liu, P.; Chen, Y. Hashimoto’s encephalopathy presenting as Wernekinck commissure syndrome: A case report. Clin. Neuropathol. 2022, 41, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Bladowska, J.; Waliszewska-Prosół, M.; Ejma, M.; Sąsiadek, M. The metabolic alterations within the normal appearing brain in patients with Hashimoto’s thyroiditis are correlated with hormonal changes. Metab. Brain Dis. 2019, 34, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, A.; Amenduni, T.; Bruno, R. Hashimoto’s encephalopathy (HE): An under diagnosed autoimmune-mediated encephalopathy. Endocrine 2016, 54, 572–573. [Google Scholar] [CrossRef]
- Georgiev, D.; Kojović, M.; Klanjšček, G.; Dolenc-Grošelj, L. Hashimoto encephalopathy associated rapid onset narcolepsy type 1. Sleep Med. 2017, 29, 94–95. [Google Scholar] [CrossRef]
- Álvarez Bravo, G.; Yusta Izquierdo, A.; Carvalho Monteiro, G.; Sánchez, I. Cerebellopathy secondary to anti-peroxidase antibody-mediated toxicity. A special case of Hashimoto encephalopathy. J. Neuroimmunol. 2017, 312, 1–3. [Google Scholar] [CrossRef]
- Nedunchezhian, A.S.; Hrishi, A.P.; Ajayan, N.; Prathapadas, U.; Sethuraman, M. Anesthetic Management of Hashimoto’s Encephalopathy Presenting for Spine Surgery. Neurol. India 2021, 69, 1409–1411. [Google Scholar]
- Berger, I.; Castiel, Y.; Dor, T. Paediatric Hashimoto encephalopathy, refractory epilepsy and immunoglobulin treatment—unusual case report and review of the literature. Acta Paediatr. 2010, 99, 1903–1905. [Google Scholar] [CrossRef]
- Smets, I.; Titulaer, M.J. Antibody Therapies in Autoimmune Encephalitis. Neurotherapeutics 2022, 19, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.T.; Chen, W.X.; Hou, C.; Zhu, H.X.; Chen, L.F.; Zeng, Y.R.; Wu, W.X.; Liang, H.C.; Li, X.J. Hashimoto’s encephalopathy presenting with isolated cerebellar ataxia in 13 children. Zhonghua Er Ke Za Zhi 2022, 60, 46–50. [Google Scholar] [PubMed]
- Yao, Y.; Zhang, O.; Gu, L.; Zhang, X. Analysis of risk factors for a poor functional prognosis and relapse in patients with autoimmune encephalitis. J. Neuroimmunol. 2022, 369, 577899. [Google Scholar] [CrossRef] [PubMed]
Type 1—Recurrent, Benign, Vasculitic | Type 2—Progressive, Indolent |
---|---|
|
|
Symptoms common in both types | |
|
1. Encephalopathy with seizures, myoclonus, hallucinations or stroke-like episodes |
2. Thyroid disease (subclinical or mild overt) |
3. MRI scan of brain—normal or with nonspecific abnormalities |
4. Serum thyroid antibodies present (no specific disease—cut-off value) |
5. Absence of other neuronal antibodies in serum or CSF |
6. Exclusion of alternative causes of encephalopathy by differential diagnosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waliszewska-Prosół, M.; Ejma, M. Hashimoto Encephalopathy—Still More Questions than Answers. Cells 2022, 11, 2873. https://doi.org/10.3390/cells11182873
Waliszewska-Prosół M, Ejma M. Hashimoto Encephalopathy—Still More Questions than Answers. Cells. 2022; 11(18):2873. https://doi.org/10.3390/cells11182873
Chicago/Turabian StyleWaliszewska-Prosół, Marta, and Maria Ejma. 2022. "Hashimoto Encephalopathy—Still More Questions than Answers" Cells 11, no. 18: 2873. https://doi.org/10.3390/cells11182873