Primary Cilia Influence Progenitor Function during Cortical Development
Abstract
:1. Introduction
2. Upstream Mechanisms of Primary Cilia Formation
2.1. Initiation of PC Formation and Centrosome Dynamics
2.2. Other Cytoskeletal Processes Contributing to PC Growth
2.3. PC and Cell Cycle
3. The Impact of Primary Cilia on Neuronal Progenitor Behaviour during Cortical Development
3.1. PC Assembly versus Disassembly for Proper Proliferation
3.1.1. Cilia Formation Defects and Impacted aRG Proliferation
3.1.2. Numerous and/or Elongated Cilia and Impaired aRG Proliferation
3.2. aRG Differentiation
3.2.1. Neurogenesis and Basal Progenitors
3.2.2. Neuronal Delamination
3.2.3. Neuronal Migration
3.3. aRG Morphology
3.3.1. Polarity
3.3.2. Scaffold and Localisation
4. Key Remarks
4.1. Spatio-Temporal Cilia Deletion Matters
4.2. Signalling via the PC Is Crucial
4.3. Cilia Size Matters?
4.4. Cilia Abnormalities, Causes or Consequences of Cortical Defects?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frith, C.; Dolan, R. The role of the prefrontal cortex in higher cognitive functions. Cogn. Brain Res. 1996, 5, 175–181. [Google Scholar] [CrossRef]
- Paridaen, J.T.M.L.; Huttner, W.B. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 2014, 15, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Spear, P.C.; Erickson, C.A. Interkinetic nuclear migration: A mysterious process in search of a function. Dev. Growth Differ. 2012, 54, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Hasenpusch-Theil, K.; Theil, T. The Multifaceted Roles of Primary Cilia in the Development of the Cerebral Cortex. Front. Cell Dev. Biol. 2021, 9, 630161. [Google Scholar] [CrossRef]
- Izawa, I.; Goto, H.; Kasahara, K.; Inagaki, M. Current topics of functional links between primary cilia and cell cycle. Cilia 2015, 4, 12. [Google Scholar] [CrossRef]
- Agirman, G.; Broix, L.; Nguyen, L. Cerebral cortex development: An outside-in perspective. FEBS Lett. FEBS Lett. 2017, 591, 3978–3992. [Google Scholar] [CrossRef]
- Ferent, J.; Zaidi, D.; Francis, F. Extracellular Control of Radial Glia Proliferation and Scaffolding during Cortical Development and Pathology. Front. Cell Dev. Biol. 2020, 8, 578341. [Google Scholar] [CrossRef]
- Ghossoub, R.; Molla-Herman, A.; Bastin, P.; Benmerah, A. The ciliary pocket: A once-forgotten membrane domain at the base of cilia. Biol. Cell 2011, 103, 131–144. [Google Scholar] [CrossRef]
- Molla-Herman, A.; Ghossoub, R.; Blisnick, T.; Meunier, A.; Serres, C.; Silbermann, F.; Emmerson, C.; Romeo, K.; Bourdoncle, P.; Schmitt, A.; et al. The ciliary pocket: An endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 2010, 123, 1785–1795. [Google Scholar] [CrossRef]
- Joukov, V.; De Nicolo, A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Bizzotto, S.; Efrancis, F. Morphological and functional aspects of progenitors perturbed in cortical malformations. Front. Cell. Neurosci. 2015, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Stouffer, M.A.; Golden, J.A.; Francis, F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol. Dis. 2016, 92, 18–45. [Google Scholar] [CrossRef] [PubMed]
- Romero, D.M.; Bahi-Buisson, N.; Francis, F. Genetics and mechanisms leading to human cortical malformations. Semin. Cell Dev. Biol. 2018, 76, 33–75. [Google Scholar] [CrossRef] [PubMed]
- Uzquiano, A.; Gladwyn-Ng, I.; Nguyen, L.; Reiner, O.; Götz, M.; Matsuzaki, F.; Francis, F. Cortical progenitor biology: Key features mediating proliferation versus differentiation. J. Neurochem. 2018, 146, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Boutaud, L.; Reilly, M.L.; Benmerah, A. Cilia in hereditary cerebral anomalies. Biol. Cell 2019, 111, 217–231. [Google Scholar] [CrossRef]
- Wang, L.; Dynlacht, B.D. The regulation of cilium assembly and disassembly in development and disease. Development 2018, 145, dev151407. [Google Scholar] [CrossRef]
- Wilsch-Bräuninger, M.; Huttner, W.B. Primary Cilia and Centrosomes in Neocortex Development. Front. Neurosci. 2021, 15, 755867. [Google Scholar] [CrossRef]
- Fisch, C.; Dupuis-Williams, P. Ultrastructure of cilia and flagella - back to the future! Biol. CELL. 2011, 103, 249–270. [Google Scholar] [CrossRef]
- Reiter, J.F.; E Blacque, O.; Leroux, M.R. The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 2012, 13, 608–618. [Google Scholar] [CrossRef]
- Ishikawa, H.; Marshall, W.F. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harb. Perspect. Biol. 2017, 9, a021998. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; White, S.R.; Shida, T.; Schulz, S.; Aguiar, M.; Gygi, S.P.; Bazan, J.F.; Nachury, M.V. The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia. Cell 2010, 141, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Pitaval, A.; Senger, F.; Letort, G.; Gidrol, X.; Guyon, L.; Sillibourne, J.; Théry, M. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 2017, 216, 3713–3728. [Google Scholar] [CrossRef] [PubMed]
- Pitaval, A.; Tseng, Q.; Bornens, M.; Théry, M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 2010, 191, 303–312. [Google Scholar] [CrossRef]
- Hong, H.; Kim, J.; Kim, J. Myosin heavy chain 10 (MYH10) is required for centriole migration during the biogenesis of primary cilia. Biochem. Biophys. Res. Commun. 2015, 461, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Meng, D.; Zhu, B.; Pan, J. Mechanism of ciliary disassembly. Experientia 2016, 73, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Kimura, A. A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center. BioArchitecture 2011, 1, 74–79. [Google Scholar] [CrossRef]
- Antoniades, I.; Stylianou, P.; Skourides, P.A. Making the Connection: Ciliary Adhesion Complexes Anchor Basal Bodies to the Actin Cytoskeleton. Dev. Cell 2014, 28, 70–80. [Google Scholar] [CrossRef]
- Wu, C.-T.; Chen, H.-Y.; Tang, T.K. Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat. Cell Biol. 2018, 20, 175–185. [Google Scholar] [CrossRef]
- Mirvis, M.; Stearns, T.; Nelson, W.J. Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem. J. 2018, 475, 2329–2353. [Google Scholar] [CrossRef]
- Sharma, N.; Kosan, Z.A.; Stallworth, J.E.; Berbari, N.F.; Yoder, B.K. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol. Biol. Cell 2011, 22, 806–816. [Google Scholar] [CrossRef]
- Graser, S.; Stierhof, Y.-D.; Lavoie, S.B.; Gassner, O.S.; Lamla, S.; Le Clech, M.; Nigg, E.A. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 2007, 179, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Boisvieux-Ulrich, E.; Lainé, M.-C.; Sandoz, D. Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium. Cell Tissue Res. 1990, 259, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Avasthi, P.; Marshall, W.F. Stages of ciliogenesis and regulation of ciliary length. Differentiation 2012, 83, S30–S42. [Google Scholar] [CrossRef]
- Fu, W.; Wang, L.; Kim, S.; Li, J.; Dynlacht, B.D. Role for the IFT-A Complex in Selective Transport to the Primary Cilium. Cell Rep. 2016, 17, 1505–1517. [Google Scholar] [CrossRef]
- Kim, J.; Jongshin, K.; Hong, H.; Kim, M.H.; Kim, J.M.; Lee, J.-K.; Heo, W.D.; Kim, J. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 2015, 6, 6781. [Google Scholar] [CrossRef]
- Pan, J.; Snell, W. The Primary Cilium: Keeper of the Key to Cell Division. Cell 2007, 129, 1255–1257. [Google Scholar] [CrossRef] [PubMed]
- Plotnikova, O.V.; Pugacheva, E.N.; Golemis, E.A. Primary Cilia and the Cell Cycle. Methods Cell Biol. 2009, 94, 137–160. [Google Scholar] [CrossRef]
- Delgehyr, N.; Spassky, N. Cil primaire, cycle cellulaire et prolifération. Médecine/Sciences 2014, 30, 976–979. [Google Scholar] [CrossRef]
- Khan, N.A.; Willemarck, N.; Talebi, A.; Marchand, A.; Binda, M.M.; Dehairs, J.; Rueda-Rincon, N.; Daniels, V.W.; Bagadi, M.; Raj, D.B.T.G.; et al. Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget 2016, 7, 9975–9992. [Google Scholar] [CrossRef]
- Goto, H.; Inoko, A.; Inagaki, M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell. Mol. Life Sci. 2013, 70, 3893–3905. [Google Scholar] [CrossRef] [Green Version]
- Goto, H.; Inaba, H.; Inagaki, M. Mechanisms of ciliogenesis suppression in dividing cells. Experientia 2017, 74, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Mirvis, M.; Siemers, K.A.; Nelson, W.J.; Stearns, T.P. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLOS Biol. 2019, 17, e3000381. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Zaghloul, N.A.; Bubenshchikova, E.; Oh, E.C.; Rankin, S.; Katsanis, N.; Obara, T.; Tsiokas, L. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat. Cell Biol. 2011, 13, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.W.; Pardee, A.B.; Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 1979, 17, 527–535. [Google Scholar] [CrossRef]
- Tucker, R.; Scher, C.; Stiles, C. Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40. Cell 1979, 18, 1065–1072. [Google Scholar] [CrossRef]
- Inoko, A.; Matsuyama, M.; Goto, H.; Ohmuro-Matsuyama, Y.; Hayashi, Y.; Enomoto, M.; Ibi, M.; Urano, T.; Yonemura, S.; Kiyono, T.; et al. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J. Cell Biol. 2012, 197, 391–405. [Google Scholar] [CrossRef]
- Li, A.; Saito, M.; Chuang, J.-Z.; Tseng, Y.-Y.; Dedesma, C.; Tomizawa, K.; Kaitsuka, T.; Sung, C.-H. Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat. Cell Biol. 2011, 13, 402–411. [Google Scholar] [CrossRef]
- Kim, S.; Tsiokas, L. Cilia and cell cycle re-entry. Cell Cycle 2011, 10, 2683–2690. [Google Scholar] [CrossRef]
- Seeley, E.S.; Nachury, M.V. The perennial organelle: Assembly and disassembly of the primary cilium. J. Cell Sci. 2010, 123, 511–518. [Google Scholar] [CrossRef]
- Paridaen, J.T.; Wilsch-Bräuninger, M.; Huttner, W.B. Asymmetric Inheritance of Centrosome-Associated Primary Cilium Membrane Directs Ciliogenesis after Cell Division. Cell 2013, 155, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tsai, J.-W.; Imai, J.H.; Lian, W.-N.; Vallee, R.B.; Shi, S.-H. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009, 461, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Yang, J.; He, M.; Yu, X.-Y.; Lee, C.H.; Yang, Z.; Joyner, A.L.; Anderson, K.V.; Zhang, J.; Tsou, M.-F.B.; et al. Centrosome anchoring regulates progenitor properties and cortical formation. Nature 2020, 580, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Snedeker, J.; Schock, E.N.; Struve, J.N.; Chang, C.-F.; Cionni, M.; Tran, P.V.; Brugmann, S.A.; Stottmann, R.W. Unique spatiotemporal requirements for intraflagellar transport genes during forebrain development. PLoS ONE 2017, 12, e0173258. [Google Scholar] [CrossRef]
- Waters, A.M.; Asfahani, R.; Carroll, P.; Bicknell, L.; Lescai, F.; Bright, A.; Chanudet, E.; Brooks, A.; Christou-Savina, S.; Osman, G.; et al. The kinetochore protein,CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J. Med Genet. 2015, 52, 147–156. [Google Scholar] [CrossRef]
- Ou, Y.Y.; Mack, G.J.; Zhang, M.; Rattner, J.B. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 2002, 115, 1825–1835. [Google Scholar] [CrossRef]
- Haley, C.O.; Waters, A.M.; Bader, D. Malformations in the Murine Kidney Caused by Loss of CENP-F Function. Anat. Rec. 2019, 302, 163–170. [Google Scholar] [CrossRef]
- Cappuccio, G.; Brillante, S.; Tammaro, R.; Pinelli, M.; De Bernardi, M.L.; Gensini, M.G.; Bijlsma, E.K.; Koopmann, T.T.; Hoffer, M.J.V.; McDonald, K.; et al. Biallelic variants in CENPF causing a phenotype distinct from Strømme syndrome. Am. J. Med Genet. Part C: Semin. Med Genet. 2022, 190, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Bomont, P.; Maddox, P.; Shah, J.V.; Desai, A.B.; Cleveland, D. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J. 2005, 24, 3927–3939. [Google Scholar] [CrossRef] [PubMed]
- Moawia, A.; Shaheen, R.; Rasool, S.; Msc, S.S.W.; Ewida, N.; Budde, B.; Kawalia, A.; Motameny, S.; Khan, K.; Fatima, A.; et al. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann. Neurol. 2017, 82, 562–577. [Google Scholar] [CrossRef]
- Pejskova, P.; Reilly, M.L.; Bino, L.; Bernatik, O.; Dolanska, L.; Ganji, R.S.; Zdrahal, Z.; Benmerah, A.; Cajanek, L. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J. Cell Biol. 2020, 219. [Google Scholar] [CrossRef]
- Tanos, B.E.; Yang, H.-J.; Soni, R.; Wang, W.-J.; Macaluso, F.P.; Asara, J.M.; Tsou, M.-F.B. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 2013, 27, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Adly, N.; Alhashem, A.; Ammari, A.; Alkuraya, F.S. Ciliary Genes TBC1D32/C6orf170 and SCLT1 are Mutated in Patients with OFD Type IX. Hum. Mutat. 2014, 35, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, D.; Liu, H.; Williams, B.; Overbeek, P.A.; Lee, B.; Zheng, L.; Yang, T. Sclt1 deficiency causes cystic kidney by activating ERK and STAT3 signaling. Hum. Mol. Genet. 2017, 26, 2949–2960. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.W.; Norman, R.X.; Tran, J.; Fuller, K.P.; Fukuda, M.; Eggenschwiler, J.T. Broad-Minded Links Cell Cycle-Related Kinase to Cilia Assembly and Hedgehog Signal Transduction. Dev. Cell 2010, 18, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Dixon-Salazar, T.; Silhavy, J.L.; Marsh, S.E.; Louie, C.M.; Scott, L.C.; Gururaj, A.; Al-Gazali, L.; Al-Tawari, A.A.; Kayserili, H.; Sztriha, L.; et al. Mutations in the AHI1 Gene, Encoding Jouberin, Cause Joubert Syndrome with Cortical Polymicrogyria. Am. J. Hum. Genet. 2004, 75, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-C.; Tong, Z.J.; Westfall, J.E.; Ault, J.G.; Page-McCaw, P.S.; Ferland, R.J. Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum. Mol. Genet. 2009, 18, 3926–3941. [Google Scholar] [CrossRef]
- A Lancaster, M.; Gopal, D.J.; Kim, J.; Saleem, S.N.; Silhavy, J.L.; Louie, C.M.; E Thacker, B.; Williams, Y.; Zaki, M.S.; Gleeson, J.G. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med. 2011, 17, 726–731. [Google Scholar] [CrossRef]
- Tuz, K.; Hsiao, Y.-C.; Juarez, O.; Shi, B.; Harmon, E.Y.; Phelps, I.G.; Lennartz, M.R.; Glass, I.A.; Doherty, D.; Ferland, R. The Joubert Syndrome-associated Missense Mutation (V443D) in the Abelson-helper Integration Site 1 (AHI1) Protein Alters Its Localization and Protein-Protein Interactions. J. Biol. Chem. 2013, 288, 13676–13694. [Google Scholar] [CrossRef]
- Higginbotham, H.; Guo, J.; Yokota, Y.; Umberger, N.L.; Su, C.-Y.; Li, J.; Verma, N.; Hirt, J.; Ghukasyan, V.; Caspary, T.; et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat. Neurosci. 2013, 16, 1000–1007. [Google Scholar] [CrossRef]
- Hanks, S.; Coleman, K.; Reid, S.; Plaja, A.; Firth, H.; FitzPatrick, D.R.; Kidd, A.; Méhes, K.; Nash, R.; Robin, N.; et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 2004, 36, 1159–1161. [Google Scholar] [CrossRef]
- Miyamoto, T.; Porazinski, S.; Wang, H.; Borovina, A.; Ciruna, B.; Shimizu, A.; Kajii, T.; Kikuchi, A.; Furutani-Seiki, M.; Matsuura, S. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum. Mol. Genet. 2011, 20, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Higginbotham, H.; Li, J.; Nichols, J.; Hirt, J.; Ghukasyan, V.; Anton, E. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat. Commun. 2015, 6, 7857. [Google Scholar] [CrossRef] [PubMed]
- Simmons, A.J.; Park, R.; A Sterling, N.; Jang, M.-H.; A Van Deursen, J.M.; Yen, T.J.; Cho, S.-H.; Kim, S. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum. Mol. Genet. 2019, 28, 1822–1836. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.; Roberts, E.; Springell, K.; Lizarraga, S.B.; Scott, S.; Higgins, J.; Hampshire, D.; E Morrison, E.; Leal, G.F.; O Silva, E.; et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 2005, 37, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Barrera, J.A.; Kao, L.-R.; Hammer, R.E.; Seemann, J.; Fuchs, J.L.; Megraw, T.L. CDK5RAP2 Regulates Centriole Engagement and Cohesion in Mice. Dev. Cell 2010, 18, 913–926. [Google Scholar] [CrossRef]
- González-Martínez, J.; Cwetsch, A.W.; Martínez-Alonso, D.; López-Sainz, L.R.; Almagro, J.; Melati, A.; Gómez, J.; Pérez-Martínez, M.; Megías, D.; Boskovic, J.; et al. Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI Insight 2021, 6. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Kaindl, A.M. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol. Cell. Probes 2015, 29, 271–281. [Google Scholar] [CrossRef]
- Hussain, M.S.; Baig, S.M.; Neumann, S.; Nürnberg, G.; Farooq, M.; Ahmad, I.; Alef, T.; Hennies, H.C.; Technau, M.; Altmüller, J.; et al. A Truncating Mutation of CEP135 Causes Primary Microcephaly and Disturbed Centrosomal Function. Am. J. Hum. Genet. 2012, 90, 871–878. [Google Scholar] [CrossRef]
- Siller, S.S.; Sharma, H.; Li, S.; Yang, J.; Zhang, Y.; Holtzman, M.J.; Winuthayanon, W.; Colognato, H.; Holdener, B.C.; Li, F.-Q.; et al. Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation. PLoS Genet. 2017, 13, e1007128. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.-L.; Yang, M.; Herrlinger, S.; Shao, Q.; Collar, J.L.; Fierro, E.; Shi, Y.; Liu, A.; Lu, H.; et al. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 2019, 10, 2612. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, E.; Wason, A.; Ramani, A.; Gooi, L.M.; Keller, P.; Pozniakovsky, A.; Poser, I.; Noack, F.; Telugu, N.S.; Calegari, F.; et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 2016, 35, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wu, Q.; Sun, L.; Pan, N.C.; Wang, X. Cenpj Regulates Cilia Disassembly and Neurogenesis in the Developing Mouse Cortex. J. Neurosci. 2019, 39, 1994–2010. [Google Scholar] [CrossRef] [PubMed]
- Patzke, S.; Hauge, H.; Sioud, M.; Finne, E.F.; Sivertsen, E.A.; Delabie, J.; Stokke, T.; Aasheim, H.-C. Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization. Oncogene 2005, 24, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Tuz, K.; Bachmann-Gagescu, R.; O’Day, D.R.; Hua, K.; Isabella, C.R.; Phelps, I.G.; Stolarski, A.E.; O’Roak, B.J.; Dempsey, J.C.; Lourenco, C.; et al. Mutations in CSPP1 Cause Primary Cilia Abnormalities and Joubert Syndrome with or without Jeune Asphyxiating Thoracic Dystrophy. Am. J. Hum. Genet. 2014, 94, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Kielar, M.; Tuy, F.P.D.; Bizzotto, S.; Lebrand, C.; Romero, C.D.J.; Poirier, K.; Oegema, R.; Mancini, G.M.; Bahi-Buisson, N.; Olaso, R.; et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat. Neurosci. 2014, 17, 923–933. [Google Scholar] [CrossRef]
- Oegema, R.; McGillivray, G.; Leventer, R.; Le Moing, A.; Bahi-Buisson, N.; Barnicoat, A.; Mandelstam, S.; Francis, D.; Francis, F.; Mancini, G.M.S.; et al. EML1- associated brain overgrowth syndrome with ribbon-like heterotopia. Am. J. Med Genet. Part C: Semin. Med Genet. 2019, 181, 627–637. [Google Scholar] [CrossRef]
- Uzquiano, A.; Cifuentes-Diaz, C.; Jabali, A.; Romero, D.M.; Houllier, A.; Dingli, F.; Maillard, C.; Boland, A.; Deleuze, J.-F.; Loew, D.; et al. Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Rep. 2019, 28, 1596–1611.e10. [Google Scholar] [CrossRef]
- Collins, S.C.; Uzquiano, A.; Selloum, M.; Wendling, O.; Gaborit, M.; Osipenko, M.; Birling, M.; Yalcin, B.; Francis, F. The neuroanatomy of Eml 1 knockout mice, a model of subcortical heterotopia. J. Anat. 2019, 235, 637–650. [Google Scholar] [CrossRef]
- Jabali, A.; Hoffrichter, A.; Uzquiano, A.; Marsoner, F.; Wilkens, R.; Siekmann, M.; Bohl, B.; Rossetti, A.C.; Horschitz, S.; Koch, P.; et al. Human cerebral organoids reveal progenitor pathology in EML1-linked cortical malformation. EMBO Rep. 2022, 23, e54027. [Google Scholar] [CrossRef]
- Parrini, E.; Ramazzotti, A.; Dobyns, W.B.; Mei, D.; Moro, F.; Veggiotti, P.; Marini, C.; Brilstra, E.H.; Dalla Bernardina, B.; Goodwin, L. Periventricular heterotopia: Phenotypic heterogeneity and correlation with Filamin A mutations. Brain. 2006, 129, 1892–1906. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Chen, M.H.; Moskowitz, I.P.; Mendonza, A.M.; Vidali, L.; Nakamura, F.; Kwiatkowski, D.J.; Walsh, C.A. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 19836–19841. [Google Scholar] [CrossRef] [PubMed]
- Lian, G.; Lu, J.; Hu, J.; Zhang, J.; Cross, S.H.; Ferland, R.J.; Sheen, V.L. Filamin A Regulates Neural Progenitor Proliferation and Cortical Size through Wee1-Dependent Cdk1 Phosphorylation. J. Neurosci. 2012, 32, 7672–7684. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Simms, R.J.; Abdelhamed, Z.; Dawe, H.R.; Szymanska, K.; Logan, C.; Wheway, G.; Pitt, E.; Gull, K.; Knowles, M.A.; et al. A meckelin–filamin A interaction mediates ciliogenesis. Hum. Mol. Genet. 2012, 21, 1272–1286. [Google Scholar] [CrossRef] [PubMed]
- Bielas, S.L.; Silhavy, J.L.; Brancati, F.; Kisseleva, M.V.; Al-Gazali, L.; Sztriha, L.; A Bayoumi, R.; Zaki, M.S.; Abdel-Aleem, A.; Rosti, R.O.; et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 2009, 41, 1032–1036. [Google Scholar] [CrossRef]
- Hasenpusch-Theil, K.; Laclef, C.; Colligan, M.; Fitzgerald, E.; Howe, K.; Carroll, E.; Abrams, S.R.; Reiter, J.F.; Schneider-Maunoury, S.; Theil, T. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. eLife 2020, 9, e58162. [Google Scholar] [CrossRef]
- Mishra-Gorur, K.; Çağlayan, A.O.; Schaffer, A.E.; Chabu, C.; Henegariu, O.; Vonhoff, F.; Akgümüş, G.T.; Nishimura, S.; Han, W.; Tu, S.; et al. Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron 2014, 85, 228. [Google Scholar] [CrossRef]
- Hu, W.F.; Pomp, O.; Ben-Omran, T.; Kodani, A.; Henke, K.; Mochida, G.H.; Yu, T.W.; Woodworth, M.B.; Bonnard, C.; Raj, G.S.; et al. Katanin p80 Regulates Human Cortical Development by Limiting Centriole and Cilia Number. Neuron 2014, 84, 1240–1257. [Google Scholar] [CrossRef]
- Poirier, K.; Lebrun, N.; Broix, L.; Tian, G.; Saillour, Y.; Boscheron, C.; Parrini, E.; Valence, S.; Pierre, B.S.; Oger, M.; et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 2013, 45, 639–647. [Google Scholar] [CrossRef]
- Broix, L.; Asselin, L.; Silva, C.S.G.; Ivanova, E.L.; Tilly, P.; Gilet, J.; Lebrun, N.; Jagline, H.; Muraca, G.; Saillour, Y.; et al. Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development. Hum. Mol. Genet. 2018, 27, 224–238. [Google Scholar] [CrossRef]
- Lin, Y.-N.; Lee, Y.-S.; Li, S.-K.; Tang, T.K. Loss of CPAP in developing mouse brain and its functional implication in human primary microcephaly. J. Cell Sci. 2020, 133, jcs243592. [Google Scholar] [CrossRef]
- Gilet, J.; Ivanova, E.L.; Trofimova, D.; Rudolf, G.; Meziane, H.; Broix, L.; Drouot, N.; Courraud, J.; Skory, V.; Voulleminot, P.; et al. Conditional switching of KIF2A mutation provides new insights into cortical malformation pathogeny. Hum. Mol. Genet. 2020, 29, 766–784. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-L.; Chang, C.-H.; Tsai, J.-W. Gli2 Rescues Delays in Brain Development Induced by Kif3a Dysfunction. Cereb. Cortex 2019, 29, 751–764. [Google Scholar] [CrossRef]
- Ostergaard, P.; Simpson, M.A.; Mendola, A.; Vasudevan, P.; Connell, F.C.; van Impel, A.; Moore, A.T.; Loeys, B.L.; Ghalamkarpour, A.; Onoufriadis, A.; et al. Mutations in KIF11 Cause Autosomal-Dominant Microcephaly Variably Associated with Congenital Lymphedema and Chorioretinopathy. Am. J. Hum. Genet. 2012, 90, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Mirzaa, G.M.; Enyedi, L.; Parsons, G.; Collins, S.; Medne, L.; Adams, C.; Ward, T.; Davitt, B.; Bicknese, A.; Zackai, E.; et al. Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: Five novel mutations and review of the literature. Am. J. Med Genet. Part A 2014, 164, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Birtel, J.; Gliem, M.; Mangold, E.; Tebbe, L.; Spier, I.; Müller, P.L.; Holz, F.G.; Neuhaus, C.; Wolfrum, U.; Bolz, H.J.; et al. Novel Insights Into the Phenotypical Spectrum of KIF11-Associated Retinopathy, Including a New Form of Retinal Ciliopathy. Investig. Opthalmology Vis. Sci. 2017, 58, 3950–3959. [Google Scholar] [CrossRef] [PubMed]
- Zalenski, A.A.; Majumder, S.; De, K.; Venere, M. An interphase pool of KIF11 localizes at the basal bodies of primary cilia and a reduction in KIF11 expression alters cilia dynamics. Sci. Rep. 2020, 10, 13946. [Google Scholar] [CrossRef]
- Fujikura, K.; Setsu, T.; Tanigaki, K.; Abe, T.; Kiyonari, H.; Terashima, T.; Sakisaka, T. Kif14 Mutation Causes Severe Brain Malformation and Hypomyelination. PLoS ONE 2013, 8, e53490. [Google Scholar] [CrossRef]
- Carleton, M.; Mao, M.; Biery, M.; Warrener, P.; Kim, S.; Buser, C.; Marshall, C.G.; Fernandes, C.; Annis, J.; Linsley, P.S. RNA Interference-Mediated Silencing of Mitotic Kinesin KIF14 Disrupts Cell Cycle Progression and Induces Cytokinesis Failure. Mol. Cell. Biol. 2006, 26, 3853–3863. [Google Scholar] [CrossRef]
- Alkuraya, F.S.; Cai, X.; Emery, C.; Mochida, G.H.; Al-Dosari, M.S.; Felie, J.M.; Hill, R.S.; Barry, B.J.; Partlow, J.N.; Gascon, G.G.; et al. Human Mutations in NDE1 Cause Extreme Microcephaly with Lissencephaly. Am. J. Hum. Genet. 2011, 88, 536–547. [Google Scholar] [CrossRef]
- Bakircioglu, M.; Carvalho, O.P.; Khurshid, M.; Cox, J.J.; Tuysuz, B.; Barak, T.; Yilmaz, S.; Caglayan, O.; Dincer, A.; Nicholas, A.K.; et al. The Essential Role of Centrosomal NDE1 in Human Cerebral Cortex Neurogenesis. Am. J. Hum. Genet. 2011, 88, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Dauber, A.; LaFranchi, S.H.; Maliga, Z.; Lui, J.C.; Moon, J.; McDeed, C.; Henke, K.; Zonana, J.; Kingman, G.A.; Pers, T.; et al. Novel Microcephalic Primordial Dwarfism Disorder Associated with Variants in the Centrosomal Protein Ninein. J. Clin. Endocrinol. Metab. 2012, 97, E2140–E2151. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; De Angelis, A.; Avallone, B.; Piscopo, I.; Tammaro, R.; Studer, M.; Franco, B. Ofd1 Controls Dorso-Ventral Patterning and Axoneme Elongation during Embryonic Brain Development. PLoS ONE 2012, 7, e52937. [Google Scholar] [CrossRef] [PubMed]
- Field, M.; Scheffer, I.; Gill, D.; Wilson, M.; Christie, L.; Shaw, M.; Gardner, A.; Glubb, G.; Hobson, L.; Corbett, M.; et al. Expanding the molecular basis and phenotypic spectrum of X-linked Joubert syndrome associated with OFD1 mutations. Eur. J. Hum. Genet. 2012, 20, 806–809. [Google Scholar] [CrossRef]
- Juric-Sekhar, G.; Adkins, J.; Doherty, D.; Hevner, R.F. Joubert syndrome: Brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol. 2012, 123, 695–709. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, M.G.; Stowe, T.R.; Chen, S.; Zhu, M.; Stearns, T.; Franco, B.; Zhong, Q. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nat. 2013, 502, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Morleo, M.; Franco, B. The OFD1 protein is a novel player in selective autophagy: Another tile to the cilia/autophagy puzzle. Cell Stress 2021, 5, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, M.; Iaconis, D.; Tammaro, R.; Perone, L.; Calì, G.; Nitsch, L.; Dougherty, G.W.; Ragnini-Wilson, A.; Franco, B. The centrosomal/basal body protein OFD1 is required for microtubule organization and cell cycle progression. Tissue Cell 2020, 64, 101369. [Google Scholar] [CrossRef]
- Andreu-Cervera, A.; Catala, M.; Schneider-Maunoury, S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol. Dis. 2021, 150, 105236. [Google Scholar] [CrossRef]
- Zoubovsky, S.; Oh, E.C.; Cash-Padgett, T.; Johnson, A.W.; Hou, Z.; Mori, S.; Gallagher, M.; Katsanis, N.; Sawa, A.; Jaaro-Peled, H. Neuroanatomical and behavioral deficits in mice haploinsufficient for Pericentriolar material 1 (Pcm1). Neurosci. Res. 2015, 98, 45–49. [Google Scholar] [CrossRef]
- Andreu-Cervera, A.; Anselme, I.; Karam, A.; Laclef, C.; Catala, M.; Schneider-Maunoury, S. The ciliopathy gene ftm/rpgrip1l controls mouse forebrain patterning via region-specific modulation of hedgehog/gli signaling. J. Neurosci. 2019, 39, 2398–2415. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, C.; Lier, J.M.; Burmühl, S.; Struchtrup, A.; Deutschmann, K.; Vetter, M.; Leu, T.; Reeg, S.; Grune, T.; Rüther, U. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J. Cell Biol. 2015, 210, 1027–1045. [Google Scholar] [CrossRef] [PubMed]
- Faisst, A.M.; Alvarez-Bolado, G.; Treichel, D.; Gruss, P. Rotatin is a novel gene required for axial rotation and left–right specification in mouse embryos. Mech. Dev. 2002, 113, 15–28. [Google Scholar] [CrossRef]
- Kia, S.K.; Verbeek, E.; Engelen, E.; Schot, R.; Poot, R.A.; de Coo, I.F.; Lequin, M.H.; Poulton, C.J.; Pourfarzad, F.; Grosveld, F.G.; et al. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex. Am. J. Hum. Genet. 2012, 91, 533–540. [Google Scholar] [CrossRef]
- Vandervore, L.V.; Schot, R.; Kasteleijn, E.; Oegema, R.; Stouffs, K.; Gheldof, A.; Grochowska, M.M.; Van Der Sterre, M.L.T.; Van Unen, L.M.A.; Wilke, M.; et al. Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 2019, 142, 867–884. [Google Scholar] [CrossRef] [PubMed]
- Izraeli, S.; Lowe, L.A.; Bertness, V.L.; Good, D.J.; Dorward, D.W.; Kirsch, I.R.; Kuehn, M. The SIL gene is required for mouse embryonic axial development and left–right specification. Nat. 1999, 399, 691–694. [Google Scholar] [CrossRef]
- Pfaff, K.L.; Straub, C.T.; Chiang, K.; Bear, D.M.; Zhou, Y.; Zon, L.I. The Zebra fish cassiopeia Mutant Reveals that SIL Is Required for Mitotic Spindle Organization. Mol. Cell. Biol. 2007, 27, 5887–5897. [Google Scholar] [CrossRef]
- Kumar, A.; Girimaji, S.C.; Duvvari, M.R.; Blanton, S.H. Mutations in STIL, Encoding a Pericentriolar and Centrosomal Protein, Cause Primary Microcephaly. Am. J. Hum. Genet. 2008, 84, 286–290. [Google Scholar] [CrossRef]
- Vulprecht, J.; David, A.; Tibelius, A.; Castiel, A.; Konotop, G.; Liu, F.; Bestvater, F.; Raab, M.S.; Zentgraf, H.; Izraeli, S.; et al. STIL is required for centriole duplication in human cells. J. Cell Sci. 2012, 125, 1353–1362. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Takemaru, K.-I.; Jiang, X.; Xu, G.; Wang, B. Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse. Development 2018, 145, dev164236. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, F.R.; Corbit, K.C.; Sirerol-Piquer, M.S.; Ramaswami, G.; Otto, E.A.; Noriega, T.R.; Seol, A.D.; Robinson, J.F.; Bennett, C.L.; Josifova, D.J.; et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 2011, 43, 776–784. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Miller, J.J.; Corbit, K.C.; Giles, R.H.; Brauer, M.J.; Otto, E.A.; Baye, L.M.; Wen, X.; Scales, S.J.; Kwong, M.; et al. Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways. Cell 2011, 145, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Ji, F.; Wang, B.; Zhang, Y.; Xu, X.; Sun, M. Tectonic Proteins Are Important Players in Non-Motile Ciliopathies. Cell. Physiol. Biochem. 2018, 50, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Bilgüvar, K.; Öztürk, A.K.; Louvi, A.; Kwan, K.; Choi, M.; Tatlı, B.; Yalnızoğlu, D.; Tüysüz, B.; Caglayan, A.; Gökben, S.; et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nat. 2010, 467, 207–210. [Google Scholar] [CrossRef]
- Shohayeb, B.; Ho, U.; Yeap, Y.Y.; Parton, R.G.; Millard, S.; Xu, Z.; Piper, M.; Ng, D. The association of microcephaly protein WDR62 with CPAP/IFT88 is required for cilia formation and neocortical development. Hum. Mol. Genet. 2020, 29, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, D.; Kodani, A.; Gonzalez, D.M.; Mancias, J.D.; Mochida, G.H.; Vagnoni, C.; Johnson, J.; Krogan, N.; Harper, J.W.; Reiter, J.F.; et al. Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate. Neuron 2016, 92, 813–828. [Google Scholar] [CrossRef]
- Kajii, T.; Ikeuchi, T.; Yang, Z.-Q.; Nakamura, Y.; Tsuji, Y.; Yokomori, K.; Kawamura, M.; Fukuda, S.; Horita, S.; Asamoto, A. Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: Report of five infants. Am. J. Med. Genet. 2001, 104, 57–64. [Google Scholar] [CrossRef]
- Bizzotto, S.; Uzquiano, A.; Dingli, F.; Ershov, D.; Houllier, A.; Arras, G.; Richards, M.; Loew, D.; Minc, N.; Croquelois, A.; et al. Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Sci. Rep. 2017, 7, 17308. [Google Scholar] [CrossRef]
- Hu, H.-B.; Song, Z.-Q.; Song, G.-P.; Li, S.; Tu, H.-Q.; Wu, M.; Zhang, Y.-C.; Yuan, J.-F.; Li, T.-T.; Li, P.-Y.; et al. LPA signaling acts as a cell-extrinsic mechanism to initiate cilia disassembly and promote neurogenesis. Nat. Commun. 2021, 12, 662. [Google Scholar] [CrossRef]
- Miyamoto, T.; Hosoba, K.; Ochiai, H.; Royba, E.; Izumi, H.; Sakuma, T.; Yamamoto, T.; Dynlacht, B.D.; Matsuura, S. The Microtubule-Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled with Cell Proliferation. Cell Rep. 2015, 10, 664–673. [Google Scholar] [CrossRef]
- Jacoby, M.; Cox, J.J.; Gayral, S.; Hampshire, D.; Ayub, M.; Blockmans, M.; Pernot, E.; Kisseleva, M.V.; Compère, P.; Schiffmann, S.; et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 2009, 41, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Garcia, G., III; Van De Weghe, J.C.; McGorty, R.; Pazour, G.J.; Doherty, D.; Huang, B.; Reiter, J.F. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 2017, 19, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Wilsch-Bräuninger, M.; Peters, J.; Paridaen, J.T.M.L.; Huttner, W.B. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 2012, 139, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Penisson, M.; Ladewig, J.; Belvindrah, R.; Francis, F. Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Front. Cell. Neurosci. 2019, 13, 381. [Google Scholar] [CrossRef]
- Foerster, P.; Daclin, M.; Asm, S.; Faucourt, M.; Boletta, A.; Genovesio, A.; Spassky, N. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 2017, 144, 201–210. [Google Scholar] [CrossRef]
- Das, R.M.; Storey, K.G. Apical Abscission Alters Cell Polarity and Dismantles the Primary Cilium During Neurogenesis. Science 2014, 343, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Ortega, G.C.; Falk, S.; Johansson, P.; Peyre, E.; Broix, L.; Sahu, S.K.; Hirst, W.; Schlichthaerle, T.; Romero, C.d.J.; Draganova, K.; et al. The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature 2019, 567, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Ba, A.M.D.; Geng, Y.; Bs, J.A.C.; Martin, B.; Boyle, E.; Bs, C.M.L.; Hossain, A.; Ba, N.E.H.; Ms, B.J.B.; Kwiatkowski, D.J.; et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 2015, 77, 720–725. [Google Scholar] [CrossRef]
- Park, S.M.; Lim, J.S.; Ramakrishina, S.; Kim, S.H.; Kim, W.K.; Lee, J.; Kang, H.-C.; Reiter, J.F.; Kim, D.S.; Kim, H.H.; et al. Brain Somatic Mutations in MTOR Disrupt Neuronal Ciliogenesis, Leading to Focal Cortical Dyslamination. Neuron 2018, 99, 83–97.e7. [Google Scholar] [CrossRef]
- LoTurco, J.J.; Bai, J. The multipolar stage and disruptions in neuronal migration. Trends Neurosci. 2006, 29, 407–413. [Google Scholar] [CrossRef]
- Higginbotham, H.; Eom, T.-Y.; Mariani, L.E.; Bachleda, A.; Hirt, J.; Gukassyan, V.; Cusack, C.L.; Lai, C.; Caspary, T.; Anton, E. Arl13b in Primary Cilia Regulates the Migration and Placement of Interneurons in the Developing Cerebral Cortex. Dev. Cell 2012, 23, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Buchsbaum, I.Y.; Cappello, S. Neuronal migration in the CNS during development and disease: Insights from in vivo and in vitro models. Development 2019, 146, dev163766. [Google Scholar] [CrossRef]
- Gertz, C.C.; Kriegstein, A.R. Neuronal Migration Dynamics in the Developing Ferret Cortex. J. Neurosci. 2015, 35, 14307–14315. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, M.; Ciceri, G.; Espinós, A.; Fernández, V.; Marín, O.; Borrell, V. Extensive branching of radially-migrating neurons in the mammalian cerebral cortex. J. Comp. Neurol. 2019, 527, 1558–1576. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, M.; Miyoshi, R.; Toyokuni, R.; Zhu, Y.; Murakami, F. Dynamics of the leading process, nucleus, and Golgi apparatus of migrating cortical interneurons in living mouse embryos. Proc. Natl. Acad. Sci. 2012, 109, 16737–16742. [Google Scholar] [CrossRef] [PubMed]
- Baudoin, J.-P.; Viou, L.; Launay, P.-S.; Luccardini, C.; Gil, S.E.; Kiyasova, V.; Irinopoulou, T.; Alvarez, C.; Rio, J.-P.; Boudier, T.; et al. Tangentially Migrating Neurons Assemble a Primary Cilium that Promotes Their Reorientation to the Cortical Plate. Neuron 2012, 76, 1108–1122. [Google Scholar] [CrossRef]
- Caspary, T.; Larkins, C.E.; Anderson, K.V. The Graded Response to Sonic Hedgehog Depends on Cilia Architecture. Dev. Cell 2007, 12, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Rakotomamonjy, J.; Brunner, M.; Jüschke, C.; Zang, K.; Huang, E.J.; Reichardt, L.F.; Chenn, A. Afadin controls cell polarization and mitotic spindle orientation in developing cortical radial glia. Neural Dev. 2017, 12, 7. [Google Scholar] [CrossRef]
- Wheway, G.; Nazlamova, L.; Hancock, J.T. Signaling through the Primary Cilium. Front. Cell Dev. Biol. 2018, 6, 8. [Google Scholar] [CrossRef]
- Habbig, S.; Bartram, M.P.; Sägmüller, J.G.; Griessmann, A.; Franke, M.; Müller, R.-U.; Schwarz, R.; Hoehne, M.; Bergmann, C.; Tessmer, C.; et al. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ. Hum. Mol. Genet. 2012, 21, 5528–5538. [Google Scholar] [CrossRef]
- Rausch, V.; Hansen, C.G. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol. 2020, 30, 32–48. [Google Scholar] [CrossRef]
- Kawaguchi, A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Front. Cell Dev. Biol. 2021, 6, 623573. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, A.; Shinoda, T.; Kawaue, T.; Suzuki, M.; Nagayama, K.; Matsumoto, T.; Ueno, N.; Kawaguchi, A.; Miyata, T. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Front. Cell Dev. Biol. 2016, 4, 139. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Jang, H.J.; Lee, J.H. Roles of Primary Cilia in the Developing Brain. Front. Cell. Neurosci. 2019, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.A.; Chen, S.; Li, Z.; Lee, C.H.; Mirzaa, G.; Dobyns, W.B.; Ross, M.E.; Zhang, J.; Shi, S.-H. PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia. Genes Dev. 2018, 32, 763–780. [Google Scholar] [CrossRef]
- Keeling, J.; Tsiokas, L.; Maskey, D. Cellular Mechanisms of Ciliary Length Control. Cells 2016, 5, 6. [Google Scholar] [CrossRef]
- Hsiao, C.-J.; Chang, C.-H.; Ibrahim, R.B.; Lin, I.-H.; Wang, C.-H.; Wang, W.-J.; Tsai, J.-W. Gli2 modulates cell cycle re-entry through autophagy-mediated regulation on the length of primary cilia. J. Cell Sci. 2018, 131, jcs221218. [Google Scholar] [CrossRef]
- Basten, S.G.; Giles, R.H. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2013, 2, 6. [Google Scholar] [CrossRef]
- Rosengren, T.; Larsen, L.J.; Pedersen, L.B.; Christensen, S.T.; Møller, L.B. TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms. Exp. 2018, 75, 2663–2680. [Google Scholar] [CrossRef]
- Ferent, J.; Constable, S.; Gigante, E.D.; Yam, P.T.; Mariani, L.E.; Legué, E.; Liem, K.F.; Caspary, T.; Charron, F. The Ciliary Protein Arl13b Functions Outside of the Primary Cilium in Shh-Mediated Axon Guidance. Cell Rep. 2019, 29, 3356–3366.e3. [Google Scholar] [CrossRef]
- Boehlke, C.; Janusch, H.; Hamann, C.; Powelske, C.; Mergen, M.; Herbst, H.; Kotsis, F.; Nitschke, R.; Kuehn, E.W. A Cilia Independent Role of Ift88/Polaris during Cell Migration. PLoS ONE 2015, 10, e0140378. [Google Scholar] [CrossRef] [Green Version]
- Robert, A.; Margall-Ducos, G.; Guidotti, J.-E.; Brégerie, O.; Celati, C.; Bréchot, C.; Desdouets, C. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J. Cell Sci. 2007, 120, 628–637. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.C.; Uzbas, F.; Antognolli, G.; Merino, F.; Draganova, K.; Jäck, A.; Zhang, S.; Pedini, G.; Schessner, J.P.; Cramer, K.; et al. Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science 2022, 376, eabf9088. [Google Scholar] [CrossRef] [PubMed]
Gene | Function/Localisation | Phenotype | Chromosome | Brain Malformation | Models | Mutant | Phenotype | References |
---|---|---|---|---|---|---|---|---|
AHI1 | Enriched at interface of cilium and basal body (mother centriole). | Some reductions in cilia formation observed with AHI1 patient missense mutation by transfection. | 6 (AR) | Joubert syndrome, polymicrogyria. | Zebrafish and mouse models Human constructs were transfected into IMCD3 cells. Human fibroblasts also studied. | KO mouse (full) | Hypoplastic cerebellum with an underdeveloped vermis and mildly defective foliation pattern. | [65,66,67,68] |
ARL13B | Small GTPase localised at the cilium membrane. | Mouse | Arl13b null | Absence of cilia. Disrupted aRG scaffold and polarity. Neuronal heterotopias. | [69] | |||
BUB1B/BUBR1 | Localised at basal bodies. Involved in proteasomal degradation. Also required for mitotic progression. | Abnormal docking of centrosomes, fewer cells with cilia. | 15 (AR) | Mosaic variegated aneuploidy (MVA), including severe intrauterine growth defect and microcephaly. | Medakafish and mouse models Human fibroblasts. | Hypomorphic Bubr1 allele (Bubr1 H/H mice) Bubr1 cKO (Emx1-Cre). | Defect in metaphase plate formation and shortened metaphase. Reduced cortical ventricular surface and cortical progenitors, including apical and intermediate progenitors, massive cell death in progenitors and cortical neurons. | [70,71,72,73] |
CDK5RAP2 | Centrosome cohesion and engagement, thereby restricting centriole replication. | Centriole amplification with a preponderance of single, unpaired centrioles and increased numbers of daughter-daughter centriole pairs. Multipolar spindles during mitosis, also excess of mother centrioles leading to multiple primary cilia. | 9 (AR) | Microcephaly. | Mouse | KO mouse (full) CRISPR/Cas9-mediated genetic KO. | Centriole amplification with many single, unpaired centrioles and increased numbers of daughter-daughter centriole pairs. Delayed chromosome segregation and chromosomal instability in neural progenitors. | [74,75,76] |
CENPF | Localises to the basal body in ciliated fibroblasts and at the subdistal appendages of the mother centriole. | Shortened cilia. | 1 (AR) | Stromme syndrome, microcephaly. | Zebrafish and mouse models Human renal epithelial cells and fibroblasts. | KO mouse (full) | Loss of ciliary structure, tubule dilation, and disruption of the glomerulus in the kidney. | [54,56,57,77] |
CEP135 | Present at the centrosomes, in pericentriolar material and during the early phase of centriole elongation. Critical function in early centriole and basal body assembly. Regulation of centriole duplication. | Spindles are disorganised, cells either lack centrosomes and cilia, or have multiple fragmented centrosomes. | 4 (AR) | Microcephaly. | Patient fibroblasts Zebrafish and mouse models | CRISPR/Cas9-mediated genetic KO. | Centriole duplication defects, TP53 activation, and cell death of progenitors. Trp53 ablation prevents cell death but not microcephaly, and it leads to subcortical heterotopias. | [76,78] |
CEP164 | Mother centrosome protein. Important for anchoring of centrosomes to the plasma membrane to initiate ciliogenesis. | Mouse | Cep164 cKO (Foxg1-Cre) | Hydrocephalus. | [79] | |||
CEP170 | Centrosomal protein located at the subdistal appendage of the mother centriole. Known to promote cilium disassembly. | Human NPCs and Mouse | shRNA mouse | Longer cilia. | [80] | |||
CPAP/ CENPJ | Centriole duplication. Scaffold for cilia disassembly complex. | Elongated cilia with delayed cell cycle re-entry. Premature neurogenesis and cell death increased. | 13 (AR) | Seckel syndrome, microcephaly. | Mouse and cerebral organoids | CenpJ cKO (Emx1-Cre) | Longer cilia. Decreased proliferation and increased differentiation. Microcephaly. | [74,81,82] |
CSPP1 | Centrosome and spindle pole associated protein 1. | Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia. RNAi depletion leads to perturbed cell cycle progression. | 8 (AR) | Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. 3/10 patients with heterotopia (periventricular). | Human fibroblasts and Zebrafish | [83,84] | ||
EML1 | MT-binding protein found in the vicinity of centrosomes. | Heterotopia mutations lead to reduced primary cilia length and number. Cell cycle exit is decreased. | 14 (AR) | Heterotopia (subcortical), macrocephaly, polymicrogyria, corpus callosum agenesis. | Human fibroblasts and Mouse | Human organoids Spontaneous (HeCo) & mouse KO (full) | Shorter cilia. aRG detachment. Decreased cell cycle. Subcortical heterotopia. | [85,86,87,88,89] |
FLNA | Basal body localisation with meckelin. | Knockdown leads to ciliogenesis defects. Fewer patient cells show cilia. Cilia have reduced length. Basal body mispositioning. | X-linked | Heterotopia (periventricular). | Patient fibroblasts (c.1587delG p.K529fs) and FlnaDilp2 null. Zebrafish and mouse models | KO mouse (full) | Death at midgestation with widespread hemorrhage from abnormal vessels. | [90,91,92,93] |
IFT88 | Intraflagellar transport protein. Localised at centriole and cilium basal body. Involved in the anterograde transport of ciliary protein. | Mouse | Ift88 cKO (Foxg1, Ap2-Cre) | Bigger brain and dysmorphic. | [53] | |||
INPP5E | Enzyme located in the ciliary membrane which hydrolyses the phosphatidylinositol polyphosphates PI(4,5)P2 and PI(3,4,5)P3. | Mouse | Inpp5e Δ/Δ | Defective cilium membrane and structure. Transient increase in direct neurogenesis. Thinner cortex. | [94,95] | |||
KATNB1 | Regulates overall centriole, mother centriole, and cilia number. | Katnb1 null fibroblasts show an excess of centrioles and cilia. Defective mitotic spindle formation. Affects asymmetric division leading to reduced cell number. | 16(AR) | Complex cerebral malformations (including microcephaly and lissencephaly spectrum, polymicrogyria). | Multiple mutant models: Drosophila, Zebrafish, Human cells, Mouse | KO mouse (full) | Increased cell death. Reduced cycling and proliferating radial neuroepithelial progenitor. | [96,97] |
KIF2A | MT depolymerisation protein involved in cilia disassembly. | Delayed progression through mitosis. Cilia disassembly defects and elongated cilia. | 5 (AD) | Microcephaly, cortical dysplasia, complex, with other brain malformations (- 3), (agyria, posterior predominant pachygyria, subcortical band heterotopia, and thin corpus callosum). | Human fibroblasts (e.g., KIF2A p. His321Asp), and Mouse | KIF2A (p. His321Asp) conditional knock-in mouse | Increased cell death. Smaller brain and neuronal cortical layering defects. | [80,98,99,100,101] |
KIF3A | MT motor protein localised at the centriole and cytoskeleton. Involved in MT anchoring at the mother centriole. | Mouse | shKif3a (IUE) | Less ciliated neural cells. Delayed cell cycle progression. Bigger brain. | [53,102] | |||
KIF11 | MT motors. Associates with daughter centriole. | Increased number and increased length of primary cilia in mutant cells. | 10 (AD) | Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation. | Multiple cell types Human RPE1 cells (Crispr/Cas9 to generate heterozygous state). | [103,104,105,106] | ||
KIF14 | MT motors. Located in the cilia in interphase. Also plays a role during mitosis. | Kif14 absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation. Disrupts the localisation of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. Also deregulates Aurora A activity. | 1 (AR) | Microcephaly or Meckel Syndrome. | Multiple cell types and Mouse Human hTERT RPE-1 cell line used for siRNA studies. | Spontaneous (homozygous splice site mutation in the Kif14 gene caused loss of the wildtype protein) | Smaller brain with dysgenesis of the cerebral and cerebellar cortices and the hippocampus. Severe hypomyelination of the brain and spinal cord. Massive neuronal cell death. | [59,60,107,108] |
NDE1 | Component of ciliary disassembly complex. | Ciliary defects linking disassembly and cell cycle progression. Enhanced Nde1 leads to reduction in cilia length. Depleted Nde1 leads to lengthening and delayed cell cycle re-entry. | 16 (AR) | Lissencephaly with microcephaly. Microhydranencephaly. | Patient lymphoblasts Zebrafish and Mouse models | KO mouse (full) | Small-brain phenotype. In MEFs, defects in mitotic progression and increased mitotic index. | [43,109,110] |
NINEIN | Part of the MT-anchoring complex proteins. Ninein is enriched at subdistal appendages. | Centriole maturation defects. | 14 (AR) | Seckel syndrome: severe short stature, microcephaly, and developmental delay. | Hela cells and Zebrafish Human fibroblasts. | [51,55,111] | ||
OFD1 | OFD1 is expressed during mitosis. In interphase it is localised at the base of the cilium.. | Disruption of ciliogenesis and mitotic arrest also observed in mutant fibroblasts. Autophagic degradation of OFD1 at centriolar satellites promotes primary cilium biogenesis. When OFD1 accumulated at centriolar satellites, fewer and shorter primary cilia are observed. | X-linked (XLR and XLD) | Joubert syndrome, but some children can also have heterotopia (subcortical), macrocephaly, polymicrogyria, corpus callosum agenesis and also focal malformations. | Zebrafish and mouse models | KO mouse (leads to an aberrant mRNA encoding a truncated protein of 106 aa) | Dorso-ventral patterning defects. Absence of ciliary axonemes but presence of mature basal bodies correctly orientated and docked. | [112,113,114,115,116,117,118] |
PCM1 | Pericentriolar material protein. Important for centrosomes assembly and function. | Mouse | Pcm1 +/− mouse | Reduced cortex volume. | [119] | |||
RPGRIP1L | Located at the transition zone. Involved in the degradation of proteins via proteasome. | Heterotopia mutations lead to reduced primary cilia length and number, reduced interaction with EML1. | 16 (AR) | Joubert and Meckel syndromes. Children can have heterotopia (subcortical), and corpus callosum agenesis. | Human fibroblasts and Mouse | KO mouse (full) | Shorter cilia. Defect in symmetric vs. asymmetric division. Thinner cortex. | [87,120,121] |
RTTN | Co-localises with basal bodies and axonemes. Determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. | In fibroblasts, abnormally short cilia with multiple basal bodies. Centrosome amplification, cell cycle arrest (G2/M) aneuploidy. | 18 (AR) | Microcephaly, short stature, heterotopia (periventricular) and polymicrogyria with seizures. Simplified gyral pattern. | Human fibroblasts and Mouse | KO mouse (full) | Embryonic lethality, with deficient axial rotation, notochord degeneration, abnormal differentiation of the neural tube. Loss of the left-right specification of the heart. Severe hydrocephalus. | [122,123,124] |
SCLT1 | SCLT1 is recruited to centrioles distal appendage. Important for docking and initiating ciliogenesis. | Complete cilia loss. | 4 (AR) | OFD Type IX, including microcephaly. | Zebrafish and mouse models | KO mouse (full) | Decreased number of cilia in kidney. Increased proliferation and apoptosis of renal tubule epithelial cells. | [61,62,63] |
STIL | Centriolar assembly protein. | 1 (AR) | Microcephaly | Mouse | KO mouse (full) | Reduced size and limited developmental progress. Midline neural tube defects, including delay or failure of neural tube closure and holoprosencephaly. | [125,126,127,128] | |
TBC1D32 | Transition zone protein required for ciliogenesis. | Reduced and dysmorphic cilia. | 6 (AR) | OFD Type IX, including microcephaly. | Zebrafish and mouse models | Mouse with recessive splice-site mutation (bromi=Tbc1d32) | Exencephaly with absence of cephalic ventral midline furrow, poorly developed eyes, and preaxial polydactyly. Neuroepithelium with curled axonemes surrounded by dilated ciliary membranes | [62,64,129] |
TCTN2 | Localised at the transition zone. Required for transportation of proteins into the cilia. | Significant reduction of the number of cilia in the neural tube. Basal bodies docked normally to the plasma membrane. Hedgehog signalling disrupted. | 12 (AR) | Joubert and Meckel syndromes. Children can have heterotopia (subcortical). | Mouse | KO mouse (full) | Lacked nodal cilia. Cilia in neural tubes are scarce with defective morphology and failed to elongate axonemes. | [114,130,131,132] |
WDR62 | Involved in the regulation of spindle assembly and orientation. Plays a role in centrosome inheritance, and maintenance. | Retarded cilium disassembly, long cilium, and delayed cell cycle progression leading to decreased proliferation and premature differentiation of NPCs. Defects may lead to G1-S phase delay. | 19 (AR) | Microcephaly, pachygyria. | Mouse and cerebral organoids | KO mouse (full) | Longer cilia. Decreased proliferation and increased differentiation. Microcephaly. | [80,133,134,135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaidi, D.; Chinnappa, K.; Francis, F. Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022, 11, 2895. https://doi.org/10.3390/cells11182895
Zaidi D, Chinnappa K, Francis F. Primary Cilia Influence Progenitor Function during Cortical Development. Cells. 2022; 11(18):2895. https://doi.org/10.3390/cells11182895
Chicago/Turabian StyleZaidi, Donia, Kaviya Chinnappa, and Fiona Francis. 2022. "Primary Cilia Influence Progenitor Function during Cortical Development" Cells 11, no. 18: 2895. https://doi.org/10.3390/cells11182895
APA StyleZaidi, D., Chinnappa, K., & Francis, F. (2022). Primary Cilia Influence Progenitor Function during Cortical Development. Cells, 11(18), 2895. https://doi.org/10.3390/cells11182895