Ketamine and Lamotrigine Combination in Psychopharmacology: Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Animal Studies
3.2. Human Studies
3.2.1. Human Studies on Healthy Participants
3.2.2. Human Studies in Mood Disorders
3.2.3. Human Studies in Substance Use Disorders
3.2.4. Human Studies in Anesthesia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pai, S.M.; Gries, J. ACCP Public Policy Committee Off-Label Use of Ketamine: A Challenging Drug Treatment Delivery Model with an Inherently Unfavorable Risk-Benefit Profile. J. Clin. Pharmacol. 2022, 62, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Turner, E.H. Esketamine for treatment-resistant depression: Seven concerns about efficacy and FDA approval. Lancet Psychiatry 2019, 6, 977–979. [Google Scholar] [CrossRef]
- Zarate, C.A., Jr.; Brutsche, N.E.; Ibrahim, L.; Franco-Chaves, J.; Diazgranados, N.; Cravchik, A.; Selter, J.; Marquardt, C.A.; Liberty, V.; Luckenbaugh, D.A. Replication of Ketamine’s Antidepressant Efficacy in Bipolar Depression: A Randomized Controlled Add-On Trial. Biol. Psychiatry 2012, 71, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Diazgranados, N.; Ibrahim, L.A.; Brutsche, N.E.; Ameli, R.; Henter, I.D.; Luckenbaugh, D.A.; Machado-Vieira, R.; Jr, C.A.Z. Rapid Resolution of Suicidal Ideation after a Single Infusion of anN-Methyl-D-Aspartate Antagonist in Patients with Treatment-Resistant Major Depressive Disorder. J. Clin. Psychiatry 2010, 71, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Grunebaum, M.F.; Ellis, S.P.; Keilp, J.G.; Moitra, V.K.; Cooper, T.B.; Marver, J.E.; Burke, A.K.; Milak, M.S.; Sublette, M.E.; Oquendo, M.A.; et al. Ketamine vs. midazolam in bipolar depression with suicidal thoughts. Bipolar Disord. 2017, 19, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhou, Y.-L.; Liu, W.-J.; Wang, C.-Y.; Zhan, Y.-N.; Li, H.-Q.; Chen, L.-J.; Li, M.D.; Ning, Y.-P. Rapid and longer-term antidepressant effects of repeated-dose intravenous ketamine for patients with unipolar and bipolar depression. J. Psychiatr. Res. 2018, 106, 61–68. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, Y.-L.; Liu, W.-J.; Wang, C.-Y.; Zhan, Y.-N.; Lan, X.-F.; Zhang, B.; Ning, Y.-P. A preliminary study of adjunctive ketamine for treatment-resistant bipolar depression. J. Affect. Disord. 2020, 275, 38–43. [Google Scholar] [CrossRef]
- Hess, E.M.; Riggs, L.M.; Michaelides, M.; Gould, T.D. Mechanisms of Ketamine and its Metabolites as Antidepressants. Biochem. Pharmacol. 2021, 197, 114892. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016, 533, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Highland, J.N.; Zanos, P.; Riggs, L.M.; Georgiou, P.; Clark, S.M.; Morris, P.J.; Moaddel, R.; Thomas, C.J.; Zarate, C.A., Jr.; Pereira, E.F.R.; et al. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol. Rev. 2021, 73, 763–791. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Rodrigues, N.B.; Lee, Y.; Lipsitz, O.; Subramaniapillai, M.; Gill, H.; Nasri, F.; Majeed, A.; Lui, L.M.W.; Senyk, O.; et al. The effectiveness of repeated intravenous ketamine on depressive symptoms, suicidal ideation and functional disability in adults with major depressive disorder and bipolar disorder: Results from the Canadian Rapid Treatment Center of Excellence. J. Affect. Disord. 2020, 274, 903–910. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Lipsitz, O.; Rodrigues, N.B.; Lee, Y.; Cha, D.S.; Vinberg, M.; Lin, K.; Malhi, G.S.; Subramaniapillai, M.; Kratiuk, K.; et al. The effectiveness of ketamine on anxiety, irritability, and agitation: Implications for treating mixed features in adults with major depressive or bipolar disorder. Bipolar Disord. 2020, 22, 831–840. [Google Scholar] [CrossRef]
- Shim, I.H.; Lee, J.; Kim, M.-D.; Jung, Y.-E.; Min, K.J.; Kwon, Y.-J.; Kim, J.S.; Lee, K.; Woo, Y.S.; Nam, B.; et al. The prevalence and diagnostic classification of mixed features in patients with major depressive episodes: A multicenter study based on the DSM-5. Int. J. Methods Psychiatr. Res. 2019, 28, e1773. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, C.G.; Averill, C.L.; Salas, R.; Averill, L.A.; Baldwin, P.R.; Krystal, J.H.; Mathew, S.J.; Mathalon, D.H. Prefrontal Connectivity and Glutamate Transmission: Relevance to Depression Pathophysiology and Ketamine Treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, C.G.; Sanacora, G.; Duman, R.S.; Krystal, J.H. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol. Ther. 2018, 190, 148–158. [Google Scholar] [CrossRef]
- Maeng, S.; Zarate, C.A., Jr.; Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine: Role of α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid Receptors. Biol. Psychiatry 2008, 63, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Lauterborn, J.C.; Lynch, G.; Vanderklish, P.; Arai, A.; Gall, C.M. Positive Modulation of AMPA Receptors Increases Neurotrophin Expression by Hippocampal and Cortical Neurons. J. Neurosci. 2000, 20, 8–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tizzano, J.P.; Griffey, K.; Clay, M.; Lindstrom, T.; Skolnick, P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 2001, 40, 1028–1033. [Google Scholar] [CrossRef]
- Verrotti, A.; Striano, P.; Iapadre, G.; Zagaroli, L.; Bonanni, P.; Coppola, G.; Elia, M.; Mecarelli, O.; Franzoni, E.; De Liso, P.; et al. The pharmacological management of Lennox-Gastaut syndrome and critical literature review. Seizure 2018, 63, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Fowler, L.J.; Whitton, P.S. Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br. J. Pharmacol. 2004, 142, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southam, E.; Kirkby, D.; Higgins, G.A.; Hagan, R.M. Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. Eur. J. Pharmacol. 1998, 358, 19–24. [Google Scholar] [CrossRef]
- Andreazza, A.C.; Young, L.T. The neurobiology of bipolar disorder: Identifying targets for specific agents and synergies for combination treatment. Int. J. Neuropsychopharmacol. 2014, 17, 1039–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Suzuki, K.; Wei, Y.; Wang, Y.; Blumenthal, R.; Chen, Z.; Falke, C.; Zarate, C.A., Jr.; Manji, H.K. The Anticonvulsants Lamotrigine, Riluzole, and Valproate Differentially Regulate AMPA Receptor Membrane Localization: Relationship to Clinical Effects in Mood Disorders. Neuropsychopharmacology 2007, 32, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Rapoport, S. Mood-Stabilizers Target the Brain Arachidonic Acid Cascade. Curr. Mol. Pharmacol. 2009, 2, 207–214. [Google Scholar] [CrossRef]
- Garrido, R.; Springer, J.E.; Hennig, B.; Toborek, M. Apoptosis of spinal cord neurons by preventing depletion nicotine attenuates arachidonic acid-induced of neurotrophic factors. J. Neurotrauma 2003, 20, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, L.; Barbon, A.; Palumbo, S.; Mora, C.; Toscano, C.D.; Bosetti, F.; Barlati, S. Altered mRNA Editing and Expression of Ionotropic Glutamate Receptors after Kainic Acid Exposure in Cyclooxygenase-2 Deficient Mice. PLoS ONE 2011, 6, e19398. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, E.; Basselin, M.; Rao, J.S.; Chang, L.; Chen, M.; Ma, K.; Rapoport, S.I. Lamotrigine blocks NMDA receptor-initiated arachidonic acid signalling in rat brain: Implications for its efficacy in bipolar disorder. Int. J. Neuropsychopharmacol. 2012, 15, 931–943. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Rapoport, S.I.; Rao, J.S. Chronic Administration of Mood Stabilizers Upregulates BDNF and Bcl-2 Expression Levels in Rat Frontal Cortex. Neurochem. Res. 2009, 34, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; He, X.; Qi, X.; Zhang, Y.; He, S. The mood stabilizer lamotrigine produces antidepressant behavioral effects in rats: Role of brain-derived neurotrophic factor. J. Psychopharmacol. 2010, 24, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Abreu, L.N.; Lafer, B.; Baca-Garcia, E.; Oquendo, M.A. Suicidal ideation and suicide attempts in bipolar disorder type I: An update for the clinician. Rev. Bras. Psiquiatr. 2009, 31, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Jamison, K.R. Suicide and bipolar disorder. J. Clin. Psychiatry 2000, 61 (Suppl. 9), 47–51. [Google Scholar]
- Kupka, R.W.; Altshuler, L.L.; Nolen, W.A.; Suppes, T.; Luckenbaugh, D.A.; Leverich, G.S.; Frye, M.A.; E Keck, P.; McElroy, S.L.; Grunze, H.; et al. Three times more days depressed than manic or hypomanic in both bipolar I and bipolar II disorder. Bipolar Disord. 2007, 9, 531–535. [Google Scholar] [CrossRef]
- Hidalgo-Mazzei, D.; Berk, M.; Cipriani, A.; Cleare, A.J.; Di Florio, A.; Dietch, D.; Geddes, J.R.; Goodwin, G.M.; Grunze, H.; Hayes, J.F.; et al. Treatment-resistant and Multi-therapy resistant criteria for bipolar depression: Consensus definition—CORRIGENDUM. Br. J. Psychiatry 2019, 214, 309. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-T.; Bai, Y.-M.; Huang, Y.-L.; Chen, Y.-S.; Chen, T.-J.; Cheng, J.-Y.; Su, T.-P. Association between antidepressant resistance in unipolar depression and subsequent bipolar disorder: Cohort study. Br. J. Psychiatry 2012, 200, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldessarini, R.J.; Vázquez, G.H.; Tondo, L. Bipolar depression: A major unsolved challenge. Int. J. Bipolar Disord. 2020, 8, 1. [Google Scholar] [CrossRef]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Grunze, H.; Vieta, E.; Young, A.; Yatham, L.; Blier, P.; Kasper, S.; Moeller, H.J. The International College of Neuro-Psychopharmacology (CINP) treatment guidelines for Bipolar disorder in adults (CINP-BD-2017), part 3: The clinical guidelines. Int. J. Neuropsychopharmacol. 2017, 20, 180–195. [Google Scholar] [CrossRef]
- Veraart, J.K.E.; Smith-Apeldoorn, S.Y.; Bakker, I.M.; Visser, B.A.E.; Kamphuis, J.; Schoevers, R.A.; Touw, D.J. Pharmacodynamic Interactions Between Ketamine and Psychiatric Medications Used in the Treatment of Depression: A Systematic Review. Int. J. Neuropsychopharmacol. 2021, 24, 808–831. [Google Scholar] [CrossRef] [PubMed]
- Ostadhadi, S.; Ahangari, M.; Nikoui, V.; Javidan, A.N.; Zolfaghari, S.; Jazaeri, F.; Chamanara, M.; Akbarian, R.; Dehpour, A.-R. Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test. Biomed. Pharmacother. 2016, 82, 713–721. [Google Scholar] [CrossRef]
- Réus, G.Z.; Matias, B.I.; Maciel, A.L.; Abelaira, H.M.; Ignácio, Z.M.; De Moura, A.B.; Matos, D.; Danielski, L.G.; Petronilho, F.; Carvalho, A.F.; et al. Mechanism of synergistic action on behavior, oxidative stress and inflammation following co-treatment with ketamine and different antidepressant classes. Pharmacol. Rep. 2017, 69, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Brody, S.A.; Geyer, M.A.; Large, C.H. Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology 2003, 169, 240–246. [Google Scholar] [CrossRef]
- Cilia, J.; Hatcher, P.; Reavill, C.; Jones, D.N.C. (+/-) Ketamine-induced prepulse inhibition deficits of an acoustic startle response in rats are not reversed by antipsychotics. J. Psychopharmacol. 2007, 21, 302–311. [Google Scholar] [CrossRef]
- Hunt, M.J.; Raynaud, B.; Garcia, R. Ketamine Dose-Dependently Induces High-Frequency Oscillations in the Nucleus Accumbens in Freely Moving Rats. Biol. Psychiatry 2006, 60, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Hsiao, Y.-C.; Chan, M.-H.; Chen, H.-H. Lamotrigine attenuates the motivation to self-administer ketamine and prevents cue- and prime-induced reinstatement of ketamine-seeking behavior in rats. Drug Alcohol Depend. 2019, 194, 257–263. [Google Scholar] [CrossRef]
- Anand, A.; Charney, D.S.; Oren, D.A.; Berman, R.M.; Hu, X.S.; Cappiello, A.; Krystal, J.H. Attenuation of the Neuropsychiatric Effects of Ketamine with Lamotrigine: Support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch. Gen. Psychiatry 2000, 57, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, J.F.W.; Lees, J.; McKie, S.; Hallak, J.E.C.; Williams, S.; Dursun, S.M. Glutamate and the Neural Basis of the Subjective Effects of Ketamine: A pharmaco-magnetic resonance imaging study. Arch. Gen. Psychiatry 2008, 65, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, O.M.; De Simoni, S.; Schwarz, A.J.; Brittain, C.; O’Daly, O.G.; Williams, S.C.; Mehta, M.A. Quantifying the Attenuation of the Ketamine Pharmacological Magnetic Resonance Imaging Response in Humans: A Validation Using Antipsychotic and Glutamatergic Agents. J. Pharmacol. Exp. Ther. 2013, 345, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Shcherbinin, S.; Doyle, O.; Zelaya, F.O.; De Simoni, S.; Mehta, M.A.; Schwarz, A.J. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects. Psychopharmacology 2015, 232, 4191–4204. [Google Scholar] [CrossRef]
- Joules, R.; Doyle, O.M.; Schwarz, A.J.; O’Daly, O.G.; Brammer, M.; Williams, S.C.; Mehta, M.A. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology 2015, 232, 4205–4218. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.J.; Murrough, J.W.; Rot, M.A.H.; Collins, K.A.; Reich, D.L.; Charney, D.S. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: A pilot randomized, placebo-controlled continuation trial. Int. J. Neuropsychopharmacol. 2010, 13, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheshwari, K.; Bakal, O.; Xuan, P.; Turan, A.; Fang, J.; Esa, W.A.S.; Sessler, D.I.; Anand, A. Lamotrigine for reducing ketamine-induced psychologic disturbances: A pilot randomized and blinded trial. J. Clin. Anesth. 2020, 68, 110074. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.F.; Eu, C.L.; Soh, S.Y.; Maniam, T.; Shahidii Kadir, Z.; Chong, B.T.W.; Loo, J.L.; Sharip, S.; Wong, V.C.W.; Loo, T.H.; et al. Is Ketamine the Future Clozapine for Depression? A Case Series and Literature Review on Maintenance Ketamine in Treatment-resistant Depression With Suicidal Behavior. J. Psychiatr. Pract. 2018, 24, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Chen, L.-Y.; Chen, C.-K.; Lin, S.-K. Potential benefit of lamotrigine in managing ketamine use disorder. Med Hypotheses 2016, 87, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Kornhall, D.; Nielsen, E.W. Failure of Ketamine Anesthesia in a Patient with Lamotrigine Overdose. Case Rep. Crit. Care 2014, 2014, 916360. [Google Scholar] [CrossRef] [Green Version]
- Hunt, M.J.; Garcia, R.; Large, C.H.; Kasicki, S. Modulation of high-frequency oscillations associated with NMDA receptor hypofunction in the rodent nucleus accumbens by lamotrigine. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, Z. Lamotrigine reduces craving and depressive symptoms in cocaine dependence. J. Neuropsychiatry Clin. Neurosci. 2011, 23. [Google Scholar] [CrossRef]
- Rubio, G.; Lopez-Munoz, F.; Alamo, C. Effects of lamotrigine in patients with bipolar disorder and alcohol dependence. Bipolar Disord. 2006, 8, 289–293. [Google Scholar] [CrossRef]
- Mao, Z.; Bo, Q.; Li, W.; Wang, Z.; Ma, X.; Wang, C. Prepulse inhibition in patients with bipolar disorder: A systematic review and meta-analysis. BMC Psychiatry 2019, 19, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, S.; Paterson, C.; Yang, F.; Hood, V.L.; Law, A.J. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol. Psychiatry 2021, 26, 411–428. [Google Scholar] [CrossRef]
- Thiselton, D.L.; Vladimirov, V.I.; Kuo, P.-H.; McClay, J.; Wormley, B.; Fanous, A.; O’Neill, F.A.; Walsh, D.; Van den Oord, E.J.; Kendler, K.S.; et al. AKT1 Is Associated with Schizophrenia Across Multiple Symptom Dimensions in the Irish Study of High Density Schizophrenia Families. Biol. Psychiatry 2008, 63, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020241s045s051lbl.pdf (accessed on 20 December 2021).
- Dean, R.L.; Marquardt, T.; Hurducas, C.; Spyridi, S.; Barnes, A.; Smith, R.; Cowen, P.J.; McShane, R.; Hawton, K.; Malhi, G.S.; et al. Ketamine and other glutamate receptor modulators for depression in adults with bipolar disorder. Cochrane Database Syst. Rev. 2021. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Author | Aim and Study Design | Numer of Subjects | Population | Lamotrigine Dose and Root | Ketamine Dose and Root | Tests and Measures | Outcome |
---|---|---|---|---|---|---|---|
Ostahadi et al. 2016 [40] | To investigate the involvement of NMDA receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) synthesis in possible antidepressant-like effect of lamotrigine in forced swimming test (FST) in mice. NMDA receptor antagonists and agonist were used for exploring the involvement of NMDA receptors in the antidepressant-like effect of lamotrigine. Placebo controlled Mean + SEM | 8 in a group | Male Naval Medical Research Institute (NMRI) mice | Lamotrigine 5 mg/kg intraperitoneally | Ketamine (1 mg/kg) intraperitoneally | FST | Co-administration of ketamine (1 mg/kg) and lamotrigine (3 mg/kg) resulted in an antidepressant-like effect in FST, NMDA receptor agonist reversed this antidepressant-like effect. |
Reus et al. 2017 [41] | To investigate the synergistic interactions between fluoxetine, quetiapine and lamotrigine in combination with ketamine, Placebo controlled Mean ± SEM | 12 in a group, 8 groups | Male Wistar rats | (5.0 mg/kg) intraperitoneally | (5.0 mg/kg) intraperitoneally | FST OFT ST | The levels of IL-1ß were reduced in the serum of rats receiving lamotrigine in combination with ketamine, compared to lamotrigine group No difference was observed in behavioral tests results Rats treated with fluoxetine and lamotrigine or with the combination of ketamine with fluoxetine or lamotrigine had a reduction in the lipid peroxidation, compared with group that received only ketamine. |
Brody 2003 [42] | To assess the ability of lamotrigine to reduce the PPI– disruptive effects of ketamine and the dopaminergic agent amphetamine in two inbred mouse strains Placebo controlled Mean ± SEM. | Not stated | two inbred mouse strains, C57BL/6J and 129SvPasIco. | Lamotrigine (0,6.7, 13, or 27 mg/kg) or a combination of lamotrigine (27 mg/ kg) and either d-amphetamine or ketamine | ketamine (100 mg/kg) | PPI | In the 129SvPasIco mice, lamotrigine reversed the ketamine-induced PPI deficit, without altering PPI in control mice. In C57BL/6J mice 27 mg/kg lamotrigine generally increased PPI in both control and ketamine-treated mice. |
Cilia 2007 [43] | To investigate the effects of antipsychotics and lamotrigine upon ketamine-induced PPI deficits in rats. Placebo controlled Cross over design Mean ± SEM % PPI | 12 in a group | Male Sprague Dawley rats | lamotrigine (3–30 mg/kg p.o.; 60 min ptt) | Ketamine (1–10 mg/kg s.c; 15 min ptt) | PPI | Ketamine significantly increased startle amplitude at all doses tested. Lamotrigine failed to significantly attenuate ketamine-induced PPI Deficits. It may be possible that the lack of effect of lamotrigine (3–10 mg/kg) in this study was due to strain and species differences. |
Hunt et al. 2008 [44] | To examine if lamotrigine would disrupt ketamine-enhanced HFO Rats were pretreated with either saline or lamotrigine followed by injection of ketamine. A separate group received a unilateral intra-NAc infusion of lamotrigine followed by systemic injection of ketamine Placebo controlled Mean ± SEM | 32 | Wistar rats | Lamotrigine 0.1 mL/100 g rat weight intraperitoneal injection 3 doses 2 mg/kg, 6.7 mg/kg 20.1 mg/kg | intraperitoneal injection of 25 mg/kg ketamine | HFO | Lamotrigine pretreatment had a significant effect on ketamine-induced behavioral activation Systemic injection of a high dose of lamotrigine (20.1 mg/kg) reduced the power and frequency of ketamine-enhanced HFO. Local infusion of lamotrigine into the NAc did not significantly affect ketamine-induced HFO. |
Lee 2019 [45] | To find out if lamotrigine can reduce the motivation for ketamine use and ketamine seeking behavior in rats. Intravenous ketamine self-administration paradigm was used. Placebo controlled Mean ± SEM | Not stated | Male Sprague-Dawley rats | lamotrigine orally 10 mg/kg 30 mg/kg | intravenous ketamine (0.5 mg/kg/infusion) | IV ketamine self-administration paradigm | Lamotrigine 30 mg/kg attenuated the reinforcing efficacy of ketamine and educed ketamine craving and relapse risk |
Author | Aim and Study Design | Number of Participants | Population | Lamotrigine Dose and Root | Ketamine Dose and Root | Tests and Measures | Outcome |
---|---|---|---|---|---|---|---|
Anand et al. 2000 [46] | To test if lamotrigine can reduce neuropsychiatric effects of ketamine Randomized, double blind Mean ± SEM | 19, 16 completed the study | Healthy humans | Lamotrigine 300 mg single dose 2 h prior to ketamine | 0.26 mg/kg iv in 1 min followed by 0.65 mg/kg for 90 min Four infusions | YMRS HVLT CADSS BPRS | Lamotrigine caused further increase in ketamine-induced mood elevation (YMRS) and decrease in ketamine-induced impairment of learning (HVLT) and dissociative symptoms (CADSS). Significant decrease in ketamine-induced positive and negative symptoms (BPRS) was observed. |
Deakin et al. 2008 [47] | To determine the role of increased glutamate release as an effect of ketamine with the use of lamotrigine. Randomized, double blind, placebo controlled, crossover, counter balanced-order trial SD | 21, 19 completed the study | Healthy right-handed humans | Lamotrigine, 300 mg, oral, 2 h prior to ketamine | 0.26 mg/kg IV in 1 min followed by 0.25 mg/kg/h Single infusion | CADSS BPRS BOLD | Lamotrigine pretreatment resulted in significantly lower BPRS and CADSS scores. Several areas showing BOLD signal responses to ketamine in the ketamine-placebo experiment also showed significantly greater response to ketamine after placebo infusion compared to lamotrigine infusion. |
Doyle et al. 2013 [48] | To test the hypothesis if lamotrigine or risperidone can reduce ketamine-induced glutamate release. Randomized, double blind, placebo controlled, crossover trial Least Square Mean (95%CI) Difference (95% CI) | 20, 16 completed the study | Healthy humans | Lamotrigine 300 mg oral, or placebo, 4.75 h prior to ketamine | Ketamine 0.12 (mean) mg/kg iv during 1 min followed by 0.31 mg/kg/h Four test days 1control and 3 ketamine infusions, two of which included pretreatment with lamotrigine or risperidone | BOLD | A significant positive and negative BOLD response was revealed to ketamine infusion. For the positively responding regions, pretreatment with lamotrigine resulted in attenuation of the ketamine responses. For the negatively responding regions the attenuating effect of lamotrigine was weak. |
Shcherbinin et al. 2015 [49] | To assess the effects of ketamine, risperidone and lamotrigine, on resting brain perfusion Randomized, double blind, placebo controlled, crossover trial Accuracy (%) | 20, 16 completed the study Same sample as Doyle et al. (2013) and Joules et al. (2015) | Healthy humans | Lamotrigine 300 mg oral, or placebo, prior to ketamine | Ketamine 0.12 mg/kg iv during 1 min followed by 0.31 mg/kg/h Four test days | Resting brain perfusion | Lamotrigine had no significant effect on resting brain perfusion. |
Joules et al. 2015 [50] | To investigate the functional connectivity effects of ketamine with pharmacological magnetic resonance imaging (phMRI) and the potential modulation of these effects by pre-treatment with lamotrigine and risperidone Randomized, double blind, placebo controlled, crossover trial Accuracy (%) | 20, 16 completed the study Same sample as [48] and [49]. | Healthy humans | Lamotrigine 300 mg oral, or placebo, 4.75 h prior to ketamine | Ketamine 0.12 (mean) mg/kg IV in 1 min followed by approximately 0.31 mg/kg/hb.c Four test days | Functional connectivity | No evidence of a significant modulation effect of the ketamine-induced degree-centrality pattern by lamotrigine |
Author | Aim and Study Design | Numer of Subjects | Population | Lamotrigine Dose and Root | Ketamine Dose and Root | Tests and Measures | Outcome |
---|---|---|---|---|---|---|---|
Abdallah et al. 2017 [14] | To investigate prefrontal GBCr in treatment-resistant depression (TRD) at baseline and following treatment. Randomized, double blind, placebo controlled crossover trial Mean ± SEM | 22 patients with TRD 29 healthy control | Patients with TRD, healthy controls | Lamotrigine 300 mg oral, or placebo, about 2 h prior to ketamine | Ketamine 0.23 mg/kg IV in 2 min followed by 0.58 mg/kg for approximately 70 min Single infusion | BPRS CADSS GBC | Ketamine significantly increased BPRS and CADSS scores but pretreatment with lamotrigine had no significant effect on the ketamine-induced increases. Lamotrigine significantly reduced the ketamine-induced GBCr surge by inhibition of glutamatergic transmission. Ketamine did not significantly reduce vPFC GBCr in TRD subjects but it did reduce vPFC GBCr in healthy subjects. Following pretreatment with lamotrigine, ketamine showed no significant effects on the GBCr in the vPFC. |
Mathew et al. 2010 [51] | To replicate the acute efficacy of single-dose intravenous (i.v.) ketamine; test the efficacy of the glutamate-modulating agent riluzole in preventing postketamine relapse; and examine whether pretreatment with lamotrigine would attenuate ketamine’s psychotomimetic effects and enhance its antidepressant activity Randomized, double blind, placebo controlled trial Response and remission rates (%) Mean ± SD | 26 | Medication free patients with a diagnosis of MDD, of at least moderate severity and nsufficient response to >2 adequate antidepressant trials in the current episode. | Lamotrigine 300 mg oral, or placebo, 2 h prior to ketamine infusion | Ketamine 0.5 mg/kg iv for 40 min Single infusion | BPRS CADSS MADRS | Lamotrigine pretreatment did not attenuate side-effects associated with ketamine. There was no difference detected in MADRS scores and no differences on BPRS positive symptoms between lamotrgine and placebo treatment groups. No difference in CADSS scores was found. |
Aim and Study Design | Number of Participants | Population | Lamotrigine Dose and Root | Ketamine Dose and Root | Outcome | ||
---|---|---|---|---|---|---|---|
Maheshwari et al. 2021 [52] | To test the hypothesis that a single dose of lamotrigine 300-mg given before surgery reduces ketamine-induced psychological disturbances. Pilot randomized double-blind trial Relative risk (95% CI) | 46 adults (23 Lamotrigine, 23 placebo) | Patients scheduled for elective noncardiac surgery with general anesthesia | Lamotrigine 300 mg/d Single dose | ketamine 1 mg/kg bolus at induction of anesthesia followed by a 5-μg/kg/min infusion which was stopped at the end of surgery. | BPRS | No patients randomized to lamotrigine had psychologic disturbances measured with BPRS, whereas 3 (14%) assigned to placebo did. |
Author | Aim and Study Design | Numer of Subjects | Population | Lamotrigine Dose and Root | Ketamine Dose and Root | Tests and Measures | Outcomes |
---|---|---|---|---|---|---|---|
Chan et al. 2018 [53] | Case series | 13 TRD and TRBD patients, 2 of them (TRBD) received ketamine and lamotrigine | Patient 1 Lamotrigine 200 mg/d oraly Patient 2 Lamotrigine 200 mg/d oraly | Patient 1 Ketamine 0.5 mg/kg iv 42 infusions over 7 months Patient 2 Ketamine 0.5 mg/kg iv Single infusion | QIDS-SR16 BDI | Patient 1 Mood, suicidality and cognitive functions improved Patient 2 Active suicidal ideation resolved 24 h after ketamine infusion | |
Huang et al. 2016 [54] | Case report | 1 | 25 years old male with ketamine use disorder | Lamotrigine 100 mg/d orally (slow titration) | He used ketamine 6–10 times almost daily (total, 4–5 g/day) by smokind and snorting | Not stated | one case of ketamine use disorder who experienced a great reduction in craving and ketamine use after lamotrigine treatment |
Kornhal and Nielsen 2014 [55] | Case report describing Failure of Ketamine Anesthesia in a patient with lamotrigine overdose | 1 bipolar patient | - | Lamotrigine intoxication, serum concentration was 191.9 micromol/Ltherapeutic reference area is 10–60 micromol/L. | total ketamine dose of 250 mg iv | Not stated | Despite being injected with a total of 250 mg ketamine, The patient presented no signs of dissociative anaesthesia. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkowska, A.; Wiglusz, M.S.; Jakuszkowiak-Wojten, K.; Cubała, W.J. Ketamine and Lamotrigine Combination in Psychopharmacology: Systematic Review. Cells 2022, 11, 645. https://doi.org/10.3390/cells11040645
Wilkowska A, Wiglusz MS, Jakuszkowiak-Wojten K, Cubała WJ. Ketamine and Lamotrigine Combination in Psychopharmacology: Systematic Review. Cells. 2022; 11(4):645. https://doi.org/10.3390/cells11040645
Chicago/Turabian StyleWilkowska, Alina, Mariusz S. Wiglusz, Katarzyna Jakuszkowiak-Wojten, and Wiesław J. Cubała. 2022. "Ketamine and Lamotrigine Combination in Psychopharmacology: Systematic Review" Cells 11, no. 4: 645. https://doi.org/10.3390/cells11040645
APA StyleWilkowska, A., Wiglusz, M. S., Jakuszkowiak-Wojten, K., & Cubała, W. J. (2022). Ketamine and Lamotrigine Combination in Psychopharmacology: Systematic Review. Cells, 11(4), 645. https://doi.org/10.3390/cells11040645