The Expression of Toll-like Receptors in Cartilage Endplate Cells: A Role of Toll-like Receptor 2 in Pro-Inflammatory and Pro-Catabolic Gene Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. CEP Collection
2.2. RNA Extraction from Tissue
2.3. CEPC Isolation and Culture
2.4. Culture of THP1 and HEK 293T Cells
2.5. Immunohistochemistry
2.6. Stimulation of Cultured CEPCs
2.7. RNA Isolation from Cells
2.8. Gene Expression Analysis
2.9. Flow Cytometry
2.10. CEP Explant Model
2.11. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. TLR Expression in CEP Tissue
3.3. Basal TLR Expression in Cultured CEPCs
3.4. TLR2 Significantly Increased in MC1 CEPCs
3.5. Regulation of TLR1, 2, 4, and 6 Expression under Inflammatory Conditions
3.6. Inflammatory Gene Upregulation upon TLR Activation
3.7. Protease Upregulation through TLR2/6 Activation
3.8. Stimulation of TLR2/6 Heterodimer Increases TLR2 on CEPC Cell Surfaces
3.9. TL2-C29 Inhibits TLR2 Signaling
3.10. TLR2 Stimulation Induces Degeneration in CEP Explant Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, S.; Urban, J.P.; Evans, H.; Eisenstein, S.M. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine (Phila Pa 1976) 1996, 21, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Sampson, S.L.; Bell-Briones, H.; Ouyang, A.; Lazar, A.A.; Lotz, J.C.; Fields, A. Nutrient supply and nucleus pulposus cell function: Effects of the transport properties of the cartilage endplate and potential implications for intradiscal biologic therapy. Osteoarthr. Cartil. 2019, 27, 956–964. [Google Scholar] [CrossRef]
- Bailey, J.F.; Fields, A.J.; Ballatori, A.; Cohen, D.; Jain, D.; Coughlin, D.; O’neill, C.; McCormick, Z.; Han, M.; Krug, R.; et al. The Relationship Between Endplate Pathology and Patient-reported Symptoms for Chronic Low Back Pain Depends on Lumbar Paraspinal Muscle Quality. Spine (Phila Pa 1976) 2019, 44, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Fields, A.J.; Ballatori, A.; Liebenberg, E.C.; Lotz, J.C. Contribution of the Endplates to Disc Degeneration. Curr. Mol. Biol. Rep. 2018, 4, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Law, T.; Anthony, M.-P.; Chan, Q.; Samartzis, D.; Kim, M.; Cheung, K.M.; Khong, P.L. Ultrashort time-to-echo MRI of the cartilaginous endplate: Technique and association with intervertebral disc degeneration. J. Med Imaging Radiat. Oncol. 2013, 57, 427–434. [Google Scholar] [CrossRef]
- Berg-Johansen, B.; Han, M.; Fields, A.J.; Liebenberg, E.C.; Lim, B.J.; Larson, P.E.; Gunduz-Demir, C.; Kazakia, G.J.; Krug, R.; Lotz, J.C. Cartilage Endplate Thickness Variation Measured by Ultrashort Echo-Time MRI Is Associated With Adjacent Disc Degeneration. Spine (Phila Pa 1976) 2018, 43, E592–E600. [Google Scholar] [CrossRef]
- Finkenstaedt, T.; Siriwananrangsun, P.; Masuda, K.; Bydder, G.M.; Chen, K.C.; Bae, W.C. Ultrashort time-to-echo MR morphology of cartilaginous endplate correlates with disc degeneration in the lumbar spine. Eur. Spine J. 2023, 32, 2358–2367. [Google Scholar] [CrossRef]
- Crump, K.B.; Alminnawi, A.; Bermudez-Lekerika, P.; Compte, R.; Gualdi, F.; McSweeney, T.; Muñoz-Moya, E.; Nüesch, A.; Geris, L.; Dudli, S.; et al. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research. JOR Spine 2023, 6, e1294. [Google Scholar] [CrossRef]
- Farshad-Amacker, N.A.; Hughes, A.; Herzog, R.J.; Seifert, B.; Farshad, M. The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur. Radiol. 2017, 27, 2507–2520. [Google Scholar] [CrossRef]
- Wang, D.; Lai, A.; Gansau, J.; Seifert, A.C.; Munitz, J.; Zaheer, K.; Bhadouria, N.; Lee, Y.; Nasser, P.; Laudier, D.M.; et al. Lumbar endplate microfracture injury induces Modic-like changes, intervertebral disc degeneration and spinal cord sensitization—An in vivo rat model. Spine J. 2023, 23, 1375–1388. [Google Scholar] [CrossRef]
- Dolor, A.; Sampson, S.L.; Lazar, A.A.; Lotz, J.C.; Szoka, F.C.; Fields, A.J. Matrix modification for enhancing the transport properties of the human cartilage endplate to improve disc nutrition. PLoS ONE 2019, 14, e0215218. [Google Scholar] [CrossRef]
- Shirazi-Adl, A.; Taheri, M.; Urban, J.P.G. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population. J. Biomech. 2010, 43, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Liebscher, T.; Haefeli, M.; Wuertz, K.; Nerlich, A.G.; Boos, N. Age-related variation in cell density of human lumbar intervertebral disc. Spine (Phila Pa 1976) 2011, 36, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, G.; Zhou, Z.; Fang, X.; Chen, S.; Fan, S. Expression of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Interleukins in Vertebral Cartilage Endplate. Orthop. Surg. 2018, 10, 306–311. [Google Scholar] [CrossRef]
- Weiler, C.; Nerlich, A.; Zipperer, J.; Bachmeier, B.; Boos, N. 2002 SSE Award Competition in Basic Science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur. Spine J. 2002, 11, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Bachmeier, B.E.; Nerlich, A.; Mittermaier, N.; Weiler, C.; Lumenta, C.; Wuertz, K.; Boos, N. Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur. Spine J. 2009, 18, 1573–1586. [Google Scholar] [CrossRef]
- Schroeder, G.D.; Markova, D.Z.; Koerner, J.D.; Rihn, J.A.; Hilibrand, A.S.; Vaccaro, A.R.; Anderson, D.G.; Kepler, C.K. Are Modic changes associated with intervertebral disc cytokine profiles? Spine J. 2017, 17, 129–134. [Google Scholar] [CrossRef]
- Burke, J.G.; Watson, R.W.G.; McCormack, D.; Fitzpatrick, J.M.; Stack, J.; Walsh, M.G. Modic changes are associated with increased disc inflammatory mediator production. Spine J. 2002, 2, 3–4. [Google Scholar] [CrossRef]
- Dudli, S.; Sing, D.C.; Hu, S.S.; Berven, S.H.; Burch, S.; Deviren, V.; Cheng, I.; Tay, B.K.B.; Alamin, T.F.; Ith, M.A.M.; et al. ISSLS PRIZE IN BASIC SCIENCE 2017, Intervertebral disc/bone marrow cross-talk with Modic changes. Eur. Spine. J. 2017, 26, 1362–1373. [Google Scholar] [CrossRef]
- Janeway, C.A.; Medzhitov, R. Innate Immune Recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef]
- Klawitter, M.; Hakozaki, M.; Kobayashi, H.; Krupkova, O.; Quero, L.; Ospelt, C.; Gay, S.; Hausmann, O.; Liebscher, T.; Meier, U.; et al. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. Eur. Spine J. 2014, 23, 1878–1891. [Google Scholar] [CrossRef] [PubMed]
- Bisson, D.G.; Mannarino, M.; Racine, R.; Haglund, L. For whom the disc tolls: Intervertebral disc degeneration, back pain and toll-like receptors. Eur. Cells Mater. 2021, 41, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Krock, E.; Rosenzweig, D.H.; Currie, J.B.; Bisson, D.G.; Ouellet, J.A.; Haglund, L. Toll-like Receptor Activation Induces Degeneration of Human Intervertebral Discs. Sci. Rep. 2017, 7, 17184. [Google Scholar] [CrossRef]
- Quero, L.; Klawitter, M.; Schmaus, A.; Rothley, M.; Sleeman, J.; Tiaden, A.N.; Klasen, J.; Boos, N.O.; Hottiger, M.; Wuertz, K.; et al. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signaling pathways. Arthritis Res. Ther. 2013, 15, R94. [Google Scholar] [CrossRef]
- Greg Anderson, D.; Li, X.; Tannoury, T.; Beck, G.; Balian, G. A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine (Phila Pa 1976) 2003, 28, 2338–2345. [Google Scholar] [CrossRef]
- Oegema, T.R.; Johnson, S.L.; Aguiar, D.J.; Ogilvie, J.W. Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976) 2000, 25, 2742–2747. [Google Scholar] [CrossRef]
- Ruel, N.; Markova, D.Z.; Adams, S.L.; Scanzello, C.; Cs-Szabo, G.; Gerard, D.; Shi, P.; Anderson, D.G.; Zack, M.; An, H.S.; et al. Fibronectin fragments and the cleaving enzyme ADAM-8 in the degenerative human intervertebral disc. Spine (Phila Pa 1976) 2014, 39, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, D.M.; Zheng, Y.; Cheng, A.C.; Rosenfeld, J.V.; Chan, P.; Liew, S.; Hussain, S.M.; Cicuttini, F.M. Could low grade bacterial infection contribute to low back pain? A systematic review. BMC Med. 2015, 13, 13. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y.; Yuan, Y.; Jiao, Y.; Xiao, J.; Zhou, Z.; Cao, P. Modic Changes and Disc Degeneration Caused by Inoculation of Propionibacterium acnes inside Intervertebral Discs of Rabbits: A Pilot Study. BioMed Res. Int. 2016, 2016, 9612437. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Soundararajan, D.C.R.; Nayagam, S.M.; Tangavel, C.; Raveendran, M.; Thippeswamy, P.B.; Djuric, N.; Anand, S.V.; Shetty, A.P.; Kanna, R.M. Modic changes are associated with activation of intense inflammatory and host defense response pathways—Molecular insights from proteomic analysis of human intervertebral. Spine J. 2021, 22, 19–38. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Tangavel, C.; Aiyer, S.N.; Nayagam, S.M.; Raveendran, M.; Demonte, N.L.; Subbaiah, P.; Kanna, R.; Shetty, A.P.; Dharmalingam, K. ISSLS PRIZE IN CLINICAL SCIENCE 2017, Is infection the possible initiator of disc disease? An insight from proteomic analysis. Eur. Spine J. 2017, 26, 1384–1400. [Google Scholar] [CrossRef] [PubMed]
- Dudli, S.; Liebenberg, E.; Magnitsky, S.; Miller, S.; Demir-Deviren, S.; Lotz, J.C.J.C. Propionibacterium acnes infected intervertebral discs cause vertebral bone marrow lesions consistent with Modic changes. J. Orthop. Res. 2016, 34, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Heggli, I.; Mengis, T.; Laux, C.J.; Opitz, L.; Herger, N.; Menghini, D.; Schuepbach, R.; Farshad-Amacker, N.; Brunner, F.; Fields, A.; et al. Low back pain patients with Modic type 1 changes exhibit distinct bacterial and non-bacterial subtypes. Osteoarthr. Cartil. Open 2024, 6, 100434. [Google Scholar] [CrossRef]
- Jiao, Y.; Yuan, Y.; Lin, Y.; Zhou, Z.; Zheng, Y.; Wu, W.; Tang, G.; Chen, Y.; Xiao, J.; Li, C.; et al. Propionibacterium acnes induces discogenic low back pain via stimulating nucleus pulposus cells to secrete pro-algesic factor of IL-8/CINC-1 through TLR2–NF-κB p65 pathway. J. Mol. Med. 2019, 97, 25–35. [Google Scholar] [CrossRef]
- Schmid, B.; Hausmann, O.; Hitzl, W.; Achermann, Y.; Wuertz-Kozak, K. The Role of Cutibacterium acnes in Intervertebral Disc Inflammation. Biomedicines 2020, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Zhang, X.; Li, S.; Yu, T.; Mamuti, M.; Zhao, F. The Influence of Direct Inoculation of Propionibacterium acnes on Modic Changes in the Spine: Evidence from a Rabbit Model. J. Bone Jt. Surg. Am. 2017, 99, 472–481. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, B.; Zhang, L.; Zhang, Z.; Wang, L.; Tang, L.; Li, S.; Yang, Y.; Yang, F.; Zhang, P.; et al. MyD88-dependent Toll-like receptor 4 signal pathway in intervertebral disc degeneration. Exp. Ther. Med. 2016, 12, 611–618. [Google Scholar] [CrossRef]
- Mannarino, M.; Cherif, H.; Li, L.; Sheng, K.; Rabau, O.; Jarzem, P.; Weber, M.H.; Ouellet, J.A.; Haglund, L. Toll-like receptor 2 induced senescence in intervertebral disc cells of patients with back pain can be attenuated by o-vanillin. Arthritis Res. Ther. 2021, 23, 117. [Google Scholar] [CrossRef]
- De Luca, P.; Castagnetta, M.; de Girolamo, L.; Coco, S.; Malacarne, M.; Ragni, E.; Viganò, M.; Lugano, G.; Brayda-Bruno, M.; Coviello, D.; et al. Intervertebral disc and endplate cell characterisation highlights annulus fibrosus cells as the most promising for tissue-specific disc degeneration therapy. Eur. Cells Mater. 2020, 39, e70. [Google Scholar] [CrossRef]
- Binch, A.; Snuggs, J.; Le Maitre, C.L. Immunohistochemical analysis of protein expression in formalin fixed paraffin embedded human intervertebral disc tissues. JOR Spine 2020, 3, e1098. [Google Scholar] [CrossRef]
- Piccinini, A.M.; Midwood, K.S. DAMPening Inflammation by Modulating TLR Signalling. Mediat. Inflamm. 2010, 2010, 672395. [Google Scholar] [CrossRef] [PubMed]
- Ladner, Y.D.; Alini, M.; Armiento, A.R. The Dimethylmethylene Blue Assay (DMMB) for the Quantification of Sulfated Glycosaminoglycans. In Cartilage Tissue Engineering; Stoddart, M.J., Della Bella, E., Armiento, A.R., Eds.; Springer: New York, NY, USA, 2023; pp. 115–121. [Google Scholar] [CrossRef]
- De Luca, P.; de Girolamo, L.; Kouroupis, D.; Castagnetta, M.; Perucca Orfei, C.; Coviello, D.; Coco, S.; Correa, D.; Brayda-Bruno, M.; Colombini, A. Intervertebral disc and endplate cells response to IL-1β inflammatory cell priming and identification of molecular targets of tissue degeneration. Eur. Cells Mater. 2020, 39, 227–248. [Google Scholar] [CrossRef] [PubMed]
- Kuchynsky, K.; Stevens, P.; Hite, A.; Xie, W.; Diop, K.; Tang, S.; Pietrzak, M.; Khan, S.; Walter, B.; Purmessur, D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res. Ther. 2024, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, V.M.; Lima, C.O.G.X.; Candido, G.B.; Mara Cassiano, K.; Lewandrowski, K.-U.; de Oliveira Ferreira, E.; Fiorelli, R.K.A. Would Cutibacterium acnes Be the Villain for the Chronicity of Low Back Pain in Degenerative Disc Disease? Preliminary Results of an Analytical Cohort. J. Pers. Med. 2023, 13, 598. [Google Scholar] [CrossRef]
- Su, S.-L.; Tsai, C.-D.; Lee, C.-H.; Salter, D.M.; Lee, H.-S. Expression and regulation of Toll-like receptor 2 by IL-1beta and fibronectin fragments in human articular chondrocytes. Osteoarthr. Cartil. 2005, 13, 879–886. [Google Scholar] [CrossRef]
- Sillat, T.; Barreto, G.; Clarijs, P.; Soininen, A.; Ainola, M.; Pajarinen, J.; Korhonen, M.; Konttinen, Y.T.; Sakalyte, R.; Hukkanen, M.; et al. Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop. 2013, 84, 585–592. [Google Scholar] [CrossRef]
- Huang, Q.-Q.; Pope, R.M. The role of toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep. 2009, 11, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, H. Skin: Cutibacterium (Formerly Propionibacterium) Acnes and Acne Vulgaris. Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Zhang, B.; Choi, Y.M.; Lee, J.; An, I.S.; Li, L.; He, C.; Dong, Y.; Bae, S.; Meng, H. Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris. Biomed. Dermatol. 2019, 3, 4. [Google Scholar] [CrossRef]
- Scheibner, K.A.; Lutz, M.A.; Boodoo, S.; Fenton, M.J.; Powell, J.D.; Horton, M.R. Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2. J. Immunol. 2006, 177, 1272–1281. [Google Scholar] [CrossRef]
- Paulson, J.C.; Kawasaki, N. Sialidase inhibitors DAMPen sepsis. Eur. Radiol. 2011, 29, 406–407. [Google Scholar] [CrossRef]
- Määttä, J.H.; Rade, M.; Freidin, M.B.; Airaksinen, O.; Karppinen, J.; Williams, F.M.K. Strong association between vertebral endplate defect and Modic change in the general population. Sci. Rep. 2018, 8, 16630. [Google Scholar] [CrossRef] [PubMed]
- Djuric, N.; Rajasekaran, S.; Tangavel, C.; Raveendran, M.; Soundararajan, D.C.R.; Nayagam, S.M.; Matchado, M.S.; Anand, K.S.S.V.; Shetty, A.P.; Kanna, R.M. Influence of endplate avulsion and Modic changes on the inflammation profile of herniated discs: A proteomic and bioinformatic approach. Eur. Spine J. 2021, 31, 389–399. [Google Scholar] [CrossRef]
- Takatalo, J.; Karppinen, J.; Niinimäki, J.; Taimela, S.; Mutanen, P.; Sequeiros, R.B.; Näyhä, S.; Järvelin, M.-R.; Kyllönen, E.; Tervonen, O. Association of modic changes, Schmorl’s nodes, spondylolytic defects, high-intensity zone lesions, disc herniations, and radial tears with low back symptom severity among young Finnish adults. Spine (Phila Pa 1976) 2012, 37, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.A.; Boyd, S.K.; Ferguson, S.J. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 2007, 41, 946–957. [Google Scholar] [CrossRef] [PubMed]
Primers | Forward | Reverse |
---|---|---|
CCL2 | 5′-CAG CCA GAT GCA ATC AAT GCC-3′ | 5′-TGG AAT CCT GAA CCC ACT TCT-3′ |
GAPDH | 5′-ATTCCACCCATGGCAAATTC-3′ | 5′-GGGATTTCCATTGATGACAAGC-3′ |
IL-6 | 5′-AGA CAG CCA CTC ACC TCT TCA G-3′ | 5′-TTC TGC CAG TGC CTC TTT GCT G-3′ |
IL-8 | 5′-GAG AGT GAT TGA GAG TGG ACC AC-3′ | 5′-CAC AAC CCT CTG CAC CCA GTT T-3′ |
MMP1 | 5′-ATG AAG CAG CCC AGA TGT GGA G-3′ | 5′-TGG TCC ACA TCT GCT CTT GGC A-3′ |
MMP3 | 5′-CAC TCA CAG ACC TGA CTC GGT T-3′ | 5′-AAG CAG GAT CAC AGT TGG CTG G-3′ |
MMP9 | 5′- GCCACTACTGTGCCTTTGAGTC-3′ | 5′-CCCTCAGAGAATCGCCAGTACT-3′ |
MMP13 | 5′-CCT TGA TGC CAT TAC CAG TCT CC-3′ | 5′-AAA CAG CTC CGC ATC AAC CTG C-3′ |
TLR1 | 5′-CAGTGTCTGGTACACGCATGGT-3′ | 5′-TTTCAAAAACCGTGTCTGTTAAGAGA-3′ |
TLR2 | 5′-GGCCAGCAAATTACCTGTGTG-3′ | 5′-AGGCGGACATCCTGAACCT-3′ |
TLR3 | 5′-CCTGGTTTGTTAATTGGATTAACGA-3′ | 5′-TGAGGTGGAGTGTTGCAAAGG-3′ |
TLR4 | 5′-CAGAGTTTCCTGCAATGGATCA-3′ | 5′-GCTTATCTGAAGGTGTTGCACAT-3′ |
TLR5 | 5′-TGCCTTGAAGCCTTCAGTTATG-3′ | 5′-CCAACCACCACCATGATGAG-3′ |
TLR6 | 5′-GAAGAAGAACAACCCTTTAGGATAGC-3′ | 5′-AGGCAAACAAAATGGAAGCTT-3′ |
TLR7 | 5′-TTTACCTGGATGGAAACCAGCTA-3′ | 5′-TCAAGGCTGAGAAGCTGTAAGCTA-3′ |
TLR8 | 5′-TTATGTGTTCCAGGAACTCAGAGAA-3′ | 5′-TAATACCCAAGTTGATAGTCGATAAGTTTG-3′ |
TLR9 | 5′-GGACCTCTGGTACTGCTTCCA-3′ | 5′-AAGCTCGTTGTACACCCAGTCT-3′ |
TLR10 | 5′-CTGATGACCAACTGCTCCAA-3′ | 5′-AGTCTGCGGGAACCTTTCTT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengis, T.; Bernhard, L.; Nüesch, A.; Heggli, I.; Herger, N.; Devan, J.; Marcus, R.; Laux, C.J.; Brunner, F.; Farshad, M.; et al. The Expression of Toll-like Receptors in Cartilage Endplate Cells: A Role of Toll-like Receptor 2 in Pro-Inflammatory and Pro-Catabolic Gene Expression. Cells 2024, 13, 1402. https://doi.org/10.3390/cells13171402
Mengis T, Bernhard L, Nüesch A, Heggli I, Herger N, Devan J, Marcus R, Laux CJ, Brunner F, Farshad M, et al. The Expression of Toll-like Receptors in Cartilage Endplate Cells: A Role of Toll-like Receptor 2 in Pro-Inflammatory and Pro-Catabolic Gene Expression. Cells. 2024; 13(17):1402. https://doi.org/10.3390/cells13171402
Chicago/Turabian StyleMengis, Tamara, Laura Bernhard, Andrea Nüesch, Irina Heggli, Nick Herger, Jan Devan, Roy Marcus, Christoph J. Laux, Florian Brunner, Mazda Farshad, and et al. 2024. "The Expression of Toll-like Receptors in Cartilage Endplate Cells: A Role of Toll-like Receptor 2 in Pro-Inflammatory and Pro-Catabolic Gene Expression" Cells 13, no. 17: 1402. https://doi.org/10.3390/cells13171402
APA StyleMengis, T., Bernhard, L., Nüesch, A., Heggli, I., Herger, N., Devan, J., Marcus, R., Laux, C. J., Brunner, F., Farshad, M., Distler, O., Le Maitre, C. L., & Dudli, S. (2024). The Expression of Toll-like Receptors in Cartilage Endplate Cells: A Role of Toll-like Receptor 2 in Pro-Inflammatory and Pro-Catabolic Gene Expression. Cells, 13(17), 1402. https://doi.org/10.3390/cells13171402