Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care
Abstract
:1. Introduction
2. Regenerative Medicine Strategies
2.1. Cell Therapy
2.1.1. Embryonic Stem Cells
2.1.2. Fetal Stem Cells
Fetal Tissue-Derived Stem Cells
Extra-Fetal Tissue-Derived Stem Cells
2.1.3. Adult Stem Cells
Hematopoietic Stem Cells
Mesenchymal Stem Cells
Induced Pluripotent Stem Cells
Induced Tissue-Specific Stem Cells
Very Small Embryonic-Like Stem Cells
2.2. Extracellular Vesicle Therapies: Exosomes
2.3. In Situ Regeneration: Scaffolds
2.4. In vivo Reprogramming
2.4.1. Gene Therapy
2.4.2. Epigenetic Reprogramming
2.4.3. Gene Editing
2.5. Organoids
2.6. Interspecies Chimerism
3. Regenerative Medicine in Ophthalmology
3.1. Overview
3.2. Published Evidence of Regenerative-Based Therapies in Ophthalmology
3.3. Concluding Remarks
3.4. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Jacques, E.; Suuronen, E.J. The Progression of Regenerative Medicine and its Impact on Therapy Translation. Clin. Transl. Sci. 2020, 13, 440–450. [Google Scholar] [CrossRef]
- Ntege, E.H.; Sunami, H.; Shimizu, Y. Advances in regenerative therapy: A review of the literature and future directions. Regen. Ther. 2020, 14, 136–153. [Google Scholar] [CrossRef]
- Sampogna, G.; Guraya, S.Y.; Forgione, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 2015, 3, 101–107. [Google Scholar] [CrossRef]
- Mao, A.S.; Mooney, D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA 2015, 112, 14452–14459. [Google Scholar] [CrossRef]
- Bobba, S.; Di Girolamo, N.; Munsie, M.; Chen, F.; Pebay, A.; Harkin, D.; Hewitt, A.W.; O’Connor, M.; McLenachan, S.; Shadforth, A.M.A.; et al. The current state of stem cell therapy for ocular disease. Exp. Eye Res. 2018, 177, 65–75. [Google Scholar] [CrossRef]
- Oie, Y.; Komoto, S.; Kawasaki, R. Systematic review of clinical research on regenerative medicine for the cornea. Jpn. J. Ophthalmol. 2021, 65, 169–183. [Google Scholar] [CrossRef]
- Enzo Maria, V.; Laura, C.; Antonio, F.; Filippo, A.; Paolo Giuseppe, L. Regenerative Medicine and Eye Diseases. In Regenerative Medicine; Mahmood, S.C., Ed.; IntechOpen: Rijeka, Croatia, 2020; p. 4. [Google Scholar]
- El-Kadiry, A.E.; Rafei, M.; Shammaa, R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front. Med. 2021, 8, 756029. [Google Scholar] [CrossRef]
- Oner, A. Stem Cell Treatment in Retinal Diseases: Recent Developments. Turk. J. Ophthalmol. 2018, 48, 33–38. [Google Scholar] [CrossRef]
- Kolios, G.; Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration 2013, 85, 3–10. [Google Scholar] [CrossRef]
- Zhu, B.; Murthy, S.K. Stem Cell Separation Technologies. Curr. Opin. Chem. Eng. 2013, 2, 3–7. [Google Scholar] [CrossRef]
- Yang, K.-Y.; Chiou, S.-H. Risk of Teratoma Formation After Transplantation of Induced Pluripotent Stem Cells: Response. Chest 2012, 141, 1121. [Google Scholar] [CrossRef]
- Matsu-Ura, T.; Sasaki, H.; Okada, M.; Mikoshiba, K.; Ashraf, M. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells. Stem Cell Res. Ther. 2016, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.O.; Moon, S.H.; Jeong, H.C.; Yi, J.Y.; Lee, T.H.; Shim, S.H.; Rhee, Y.H.; Lee, S.H.; Oh, S.J.; Lee, M.Y.; et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. USA 2013, 110, E3281–E3290. [Google Scholar] [CrossRef] [PubMed]
- De Pieri, A.; Rochev, Y.; Zeugolis, D.I. Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regen. Med. 2021, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzynski, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ji, X.; Zhang, F.; Li, L.; Ma, L. Embryonic stem cell markers. Molecules 2012, 17, 6196–6236. [Google Scholar] [CrossRef] [PubMed]
- Martello, G.; Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 2014, 30, 647–675. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.; Ogilvie, C. Concise Review: Human. Embryonic Stem Cells-What Have We Done? What Are We Doing? Where Are We Going? Stem Cells 2017, 35, 17–25. [Google Scholar] [CrossRef]
- Golchin, A.; Chatziparasidou, A.; Ranjbarvan, P.; Niknam, Z.; Ardeshirylajimi, A. Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. Adv. Exp. Med. Biol. 2021, 1312, 19–37. [Google Scholar] [CrossRef]
- Guillot, P.V.; O’Donoghue, K.; Kurata, H.; Fisk, N.M. Fetal stem cells: Betwixt and between. Semin. Reprod. Med. 2006, 24, 340–347. [Google Scholar] [CrossRef]
- Ishii, T.; Eto, K. Fetal stem cell transplantation: Past, present, and future. World J. Stem Cells 2014, 6, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Charitos, I.A.; Ballini, A.; Cantore, S.; Boccellino, M.; Di Domenico, M.; Borsani, E.; Nocini, R.; Di Cosola, M.; Santacroce, L.; Bottalico, L. Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells Int. 2021, 2021, 9978837. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Gelati, M.; Profico, D.C.; Vescovi, A.L. Human Fetal Neural Stem Cells for Neurodegenerative Disease Treatment. Results Probl. Cell Differ. 2018, 66, 307–329. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, K.; Fisk, N.M. Fetal stem cells. Best. Pract. Res. Clin. Obstet. Gynaecol. 2004, 18, 853–875. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Kumar, L.; Chhabra, D.; Mehra, N.K.; Sharma, A.; Mohanty, S.; Kochupillai, V. In vitro expansion of fetal liver hematopoietic stem cells. Sci. Rep. 2021, 11, 11879. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Rim, J.; Lee, J.; Jang, I.; Jung, B.; Kim, K.; Lee, S. Therapeutic Potential of Human Fetal Mesenchymal Stem Cells in Musculoskeletal Disorders: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 1439. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Valderrama, A.V.; Han, Z.; Uzan, G.; Naserian, S.; Oberlin, E. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3(+) T reg induction capacity. Stem Cell Res. Ther. 2021, 12, 138. [Google Scholar] [CrossRef]
- Yin, X.; Li, L.; Zhang, X.; Yang, Y.; Chai, Y.; Han, X.; Feng, Z. Development of neural stem cells at different sites of fetus brain of different gestational age. Int. J. Clin. Exp. Pathol. 2013, 6, 2757–2764. [Google Scholar]
- Mane, P.; Sabnis, A.S. Proliferative Capacity of Retinal Progenitor Cells in Human Fetal Retina. J. Anat. Soc. India 2021, 70, 136–139. [Google Scholar] [CrossRef]
- Marcus, A.J.; Woodbury, D. Fetal stem cells from extra-embryonic tissues: Do not discard. J. Cell. Mol. Med. 2008, 12, 730–742. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Barreto-Filho, J.B. Placental-derived stem cells: Culture, differentiation and challenges. World J. Stem Cells 2015, 7, 769–775. [Google Scholar] [CrossRef]
- Fukuchi, Y.; Nakajima, H.; Sugiyama, D.; Hirose, I.; Kitamura, T.; Tsuji, K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004, 22, 649–658. [Google Scholar] [CrossRef]
- Sabapathy, V.; Ravi, S.; Srivastava, V.; Srivastava, A.; Kumar, S. Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int. 2012, 2012, 174328. [Google Scholar] [CrossRef]
- Chia, W.K.; Cheah, F.C.; Abdul Aziz, N.H.; Kampan, N.C.; Shuib, S.; Khong, T.Y.; Tan, G.C.; Wong, Y.P. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front. Pediatr. 2021, 9, 615508. [Google Scholar] [CrossRef]
- Loukogeorgakis, S.P.; De Coppi, P. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 2017, 35, 1663–1673. [Google Scholar] [CrossRef]
- Srivastava, M.; Ahlawat, N.; Srivastava, A. Amniotic Fluid Stem Cells: A New Era in Regenerative Medicine. J. Obstet. Gynaecol. India 2018, 68, 15–19. [Google Scholar] [CrossRef]
- Azzopardi, J.I.; Blundell, R. Review: Umbilical Cord Stem Cells. Stem Cell Discov. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Goldstein, G.; Toren, A.; Nagler, A. Human umbilical cord blood biology, transplantation and plasticity. Curr. Med. Chem. 2006, 13, 1249–1259. [Google Scholar] [CrossRef]
- Nagamura-Inoue, T.; He, H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells 2014, 6, 195–202. [Google Scholar] [CrossRef]
- McCormick, J.B.; Huso, H.A. Stem cells and ethics: Current issues. J. Cardiovasc. Transl. Res. 2010, 3, 122–127. [Google Scholar] [CrossRef]
- Shizuru, J.A.; Negrin, R.S.; Weissman, I.L. Hematopoietic stem and progenitor cells: Clinical and preclinical regeneration of the hematolymphoid system. Annu. Rev. Med. 2005, 56, 509–538. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, D. Biology of human bone marrow stem cells. Clin. Exp. Med. 2003, 3, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Rix, B.; Maduro, A.H.; Bridge, K.S.; Grey, W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front. Physiol. 2022, 13, 1009160. [Google Scholar] [CrossRef] [PubMed]
- Hawley, R.G.; Ramezani, A.; Hawley, T.S. Hematopoietic stem cells. Methods Enzymol. 2006, 419, 149–179. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Hong, S.H. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int. J. Stem Cells 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Chen, F.H.; Song, L.; Mauck, R.L.; Li, W.-J.; Tuan, R.S. Chapter Fifty-Five-Mesenchymal Stem Cells. In Principles of Tissue Engineering, 3rd ed.; Lanza, R., Langer, R., Vacanti, J., Eds.; Academic Press: Cambridge, MA, USA, 2007; pp. 823–843. [Google Scholar]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. Int. Soc. Cell. Ther. Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Bara, J.J.; Richards, R.G.; Alini, M.; Stoddart, M.J. Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: Implications for basic research and the clinic. Stem Cells 2014, 32, 1713–1723. [Google Scholar] [CrossRef]
- Purwaningrum, M.; Jamilah, N.S.; Purbantoro, S.D.; Sawangmake, C.; Nantavisai, S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J. Vet. Sci. 2021, 22, e74. [Google Scholar] [CrossRef]
- Murphy, M.B.; Moncivais, K.; Caplan, A.I. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013, 45, e54. [Google Scholar] [CrossRef]
- Liao, H.T.; Chen, C.T. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells. World J. Stem Cells 2014, 6, 288–295. [Google Scholar] [CrossRef]
- Mohamed-Ahmed, S.; Fristad, I.; Lie, S.A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S.B. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res. Ther. 2018, 9, 168. [Google Scholar] [CrossRef]
- Bhasin, A.; Srivastava, M.; Bhatia, R.; Mohanty, S.; Kumaran, S.; Bose, S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J. Stem Cells Regen. Med. 2012, 8, 181–189. [Google Scholar] [CrossRef]
- Aguiar, F.S.; Melo, A.S.; Araujo, A.M.S.; Cardoso, A.P.; de Souza, S.A.L.; Lopes-Pacheco, M.; Cruz, F.F.; Xisto, D.G.; Asensi, K.D.; Faccioli, L.; et al. Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma. Stem Cell Res. Ther. 2020, 11, 167. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Bhat, S.; Viswanathan, P.; Chandanala, S.; Prasanna, S.J.; Seetharam, R.N. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci. Rep. 2021, 11, 3403. [Google Scholar] [CrossRef]
- Huang, S.; Xu, L.; Sun, Y.; Wu, T.; Wang, K.; Li, G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J. Orthop. Translat. 2015, 3, 26–33. [Google Scholar] [CrossRef]
- Abdallah, B.M.; Alzahrani, A.M.; Abdel-Moneim, A.M.; Ditzel, N.; Kassem, M. A simple and reliable protocol for long-term culture of murine bone marrow stromal (mesenchymal) stem cells that retained their in vitro and in vivo stemness in long-term culture. Biol. Proced. Online 2019, 21, 3. [Google Scholar] [CrossRef]
- Bain, B.J. Bone marrow biopsy morbidity and mortality. Br. J. Haematol. 2003, 121, 949–951. [Google Scholar] [CrossRef]
- Marti, J.; Anton, E.; Valenti, C. Complications of bone marrow biopsy. Br. J. Haematol. 2004, 124, 557–558. [Google Scholar] [CrossRef]
- Al-Ghadban, S.; Bunnell, B.A. Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology 2020, 35, 125–133. [Google Scholar] [CrossRef]
- Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120. [Google Scholar] [CrossRef]
- Aronowitz, J.A.; Lockhart, R.A.; Hakakian, C.S. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus 2015, 4, 713. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, W.; Rubin, J.P.; Marra, K.G. Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells 2014, 6, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Raposio, E.; Bertozzi, N. Isolation of Ready-to-Use Adipose-Derived Stem Cell (ASC) Pellet for Clinical Applications and a Comparative Overview of Alternate Methods for ASC Isolation. Curr. Protoc. Stem Cell Biol. 2017, 41, 1F.17.1–1F.17.12. [Google Scholar] [CrossRef] [PubMed]
- Trzyna, A.; Banas-Zabczyk, A. Adipose-Derived Stem Cells Secretome and Its Potential Application in “Stem Cell-Free Therapy”. Biomolecules 2021, 11, 878. [Google Scholar] [CrossRef]
- El-Badawy, A.; Amer, M.; Abdelbaset, R.; Sherif, S.N.; Abo-Elela, M.; Ghallab, Y.H.; Abdelhamid, H.; Ismail, Y.; El-Badri, N. Adipose Stem Cells Display Higher Regenerative Capacities and More Adaptable Electro-Kinetic Properties Compared to Bone Marrow-Derived Mesenchymal Stromal Cells. Sci. Rep. 2016, 6, 37801. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Al Abbar, A.; Ngai, S.C.; Nograles, N.; Alhaji, S.Y.; Abdullah, S. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 2020, 9, 121–136. [Google Scholar] [CrossRef]
- Noguchi, H.; Saitoh, I.; Tsugata, T.; Kataoka, H.; Watanabe, M.; Noguchi, Y. Induction of tissue-specific stem cells by reprogramming factors, and tissue-specific selection. Cell Death Differ. 2015, 22, 145–155. [Google Scholar] [CrossRef]
- Bilic, J.; Izpisua Belmonte, J.C. Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart? Stem Cells 2012, 30, 33–41. [Google Scholar] [CrossRef]
- Heffernan, C.; Sumer, H.; Verma, P.J. Generation of clinically relevant "induced pluripotent stem" (iPS) cells. J. Stem Cells 2011, 6, 109–127. [Google Scholar]
- Ciccocioppo, R.; Cantore, A.; Chaimov, D.; Orlando, G. Regenerative medicine: The red planet for clinicians. Intern. Emerg. Med. 2019, 14, 911–921. [Google Scholar] [CrossRef]
- Kumar, D.; Anand, T.; Kues, W.A. Clinical potential of human-induced pluripotent stem cells: Perspectives of induced pluripotent stem cells. Cell Biol. Toxicol. 2017, 33, 99–112. [Google Scholar] [CrossRef]
- Noguchi, H.; Miyagi-Shiohira, C.; Nakashima, Y. Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2018, 19, 930. [Google Scholar] [CrossRef]
- Saitoh, I.; Sato, M.; Kiyokawa, Y.; Inada, E.; Iwase, Y.; Ibano, N.; Noguchi, H. Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regenerative Medicine. Pharmaceutics 2021, 13, 780. [Google Scholar] [CrossRef]
- Kucia, M.; Reca, R.; Campbell, F.R.; Zuba-Surma, E.; Majka, M.; Ratajczak, J.; Ratajczak, M.Z. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006, 20, 857–869. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Ratajczak, J.; Kucia, M. Very Small Embryonic-Like Stem Cells (VSELs). Circ. Res. 2019, 124, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Tien, K.E.; Wen, C.H.; Hsieh, T.B.; Hwang, S.M. Recovery of CD45(-)/Lin(-)/SSEA-4(+) very small embryonic-like stem cells by cord blood bank standard operating procedures. Cytotherapy 2014, 16, 560–565. [Google Scholar] [CrossRef]
- Shin, D.M.; Zuba-Surma, E.K.; Wu, W.; Ratajczak, J.; Wysoczynski, M.; Ratajczak, M.Z.; Kucia, M. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 2009, 23, 2042–2051. [Google Scholar] [CrossRef] [PubMed]
- Klich, I.; Tarnowski, M.; Shin, D.-M.; Ratajczak, J.; Kucia, M.; Ratajczak, M.Z. Quiescent Status of Very Small Embryonic Like Stem Cells (VSELs) Points to Pivotal Role of Autocrine Role of Insulin-Like Growth Factor-2 (Igf2)—Ras-Activating Guanine Nucleotide Exchange Factor (Rasgrf1) Axis in Regulating Proliferation of Embryonic Stem Cells. Blood 2009, 114, 1484. [Google Scholar] [CrossRef]
- Bhartiya, D.; Jha, N.; Tripathi, A.; Tripathi, A. Very small embryonic-like stem cells have the potential to win the three-front war on tissue damage, cancer, and aging. Front. Cell Dev. Biol. 2022, 10, 1061022. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Zuba-Surma, E.; Wojakowski, W.; Suszynska, M.; Mierzejewska, K.; Liu, R.; Ratajczak, J.; Shin, D.M.; Kucia, M. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: Recent pros and cons in the midst of a lively debate. Leukemia 2014, 28, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Ratajczak, J.; Suszynska, M.; Miller, D.M.; Kucia, M.; Shin, D.M. A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells. Circ. Res. 2017, 120, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Danova-Alt, R.; Heider, A.; Egger, D.; Cross, M.; Alt, R. Very small embryonic-like stem cells purified from umbilical cord blood lack stem cell characteristics. PLoS ONE 2012, 7, e34899. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, H. VSELs: Is ideology overtaking science? Cell Stem Cell 2013, 13, 143–144. [Google Scholar] [CrossRef]
- Szade, K.; Bukowska-Strakova, K.; Nowak, W.N.; Szade, A.; Kachamakova-Trojanowska, N.; Zukowska, M.; Jozkowicz, A.; Dulak, J. Murine bone marrow Lin(-)Sca(-)1(+)CD45(-) very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS ONE 2013, 8, e63329. [Google Scholar] [CrossRef]
- Miyanishi, M.; Mori, Y.; Seita, J.; Chen, J.Y.; Karten, S.; Chan, C.K.; Nakauchi, H.; Weissman, I.L. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep. 2013, 1, 198–208. [Google Scholar] [CrossRef]
- Abbott, A. Doubt cast over tiny stem cells. Nature 2013, 499, 390. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- Pashoutan Sarvar, D.; Shamsasenjan, K.; Akbarzadehlaleh, P. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Adv. Pharm. Bull. 2016, 6, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Bapat, A.; Jain, R.; Jeyaraman, N.; Jeyaraman, M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig. 2021, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; He, X.; Zheng, J. Exosomes and regenerative medicine: State of the art and perspectives. Transl. Res. 2018, 196, 1–16. [Google Scholar] [CrossRef]
- Xu, M.; Ji, J.; Jin, D.; Wu, Y.; Wu, T.; Lin, R.; Zhu, S.; Jiang, F.; Ji, Y.; Bao, B.; et al. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes Dis. 2023, 10, 1894–1907. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.F.; Li, W.J.; Hu, K.S.; Gao, J.; Zhai, W.L.; Yang, J.H.; Zhang, S.J. Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol. Cancer 2022, 21, 207. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, C.; Besnier, M.; Shantikumar, S.; Shearn, A.I.; Rajakaruna, C.; Laftah, A.; Sessa, F.; Spinetti, G.; Petretto, E.; Angelini, G.D.; et al. Human Pericardial Fluid Contains Exosomes Enriched with Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Mol. Ther. 2017, 25, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, P.; Zhang, T.; Xu, Z.; Huang, X.; Wang, R.; Du, L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front. Bioeng. Biotechnol. 2021, 9, 811971. [Google Scholar] [CrossRef]
- Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 2012, 30, 1556–1564. [Google Scholar] [CrossRef]
- Takeda, Y.S.; Xu, Q. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLoS ONE 2015, 10, e0135111. [Google Scholar] [CrossRef]
- Zhang, Y.; Chopp, M.; Zhang, Z.G.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; Mahmood, A.; Xiong, Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 2017, 111, 69–81. [Google Scholar] [CrossRef]
- El Bassit, G.; Patel, R.S.; Carter, G.; Shibu, V.; Patel, A.A.; Song, S.; Murr, M.; Cooper, D.R.; Bickford, P.C.; Patel, N.A. MALAT1 in Human Adipose Stem Cells Modulates Survival and Alternative Splicing of PKCdeltaII in HT22 Cells. Endocrinology 2017, 158, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Tomarev, S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl. Med. 2017, 6, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Kang, I.; Yu, K.R. Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J. Clin. Med. 2021, 10, 711. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wang, J.; Ding, L.; Hu, Y.; Li, W.; Yuan, Z.; Guo, Q.; Zhu, C.; Yu, L.; Wang, H.; et al. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front. Bioeng. Biotechnol. 2020, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Ovsianikov, A.; Khademhosseini, A.; Mironov, V. The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies. Trends Biotechnol. 2018, 36, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef]
- Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008, 17 (Suppl. S4), 467–479. [Google Scholar] [CrossRef]
- Alvarez, K.; Nakajima, H. Metallic Scaffolds for Bone Regeneration. Materials 2009, 2, 790–832. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jimenez-Rosado, M.; Romero, A.; Guerrero, A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers 2020, 12, 1566. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Zhao, X.; Pakvasa, M.; Tucker, A.B.; Luo, H.; Qin, K.H.; Hu, D.A.; Wang, E.J.; Li, A.J.; et al. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 598607. [Google Scholar] [CrossRef]
- Xie, Y.; Kawazoe, N.; Yang, Y.; Chen, G. Preparation of mesh-like collagen scaffolds for tissue engineering. Mater. Adv. 2022, 3, 1556–1564. [Google Scholar] [CrossRef]
- Chawla, D.; Kaur, T.; Joshi, A.; Singh, N. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Int. J. Biol. Macromol. 2020, 144, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Williams, J.Z.; Chang, R.; Li, Z.; Burnett, C.E.; Hernandez-Lopez, R.; Setiady, I.; Gai, E.; Patterson, D.M.; Yu, W.; et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 2021, 16, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Yildiz, A.; El Assal, R.; Chen, P.; Guven, S.; Inci, F.; Demirci, U. Towards artificial tissue models: Past, present, and future of 3D bioprinting. Biofabrication 2016, 8, 014103. [Google Scholar] [CrossRef] [PubMed]
- Brougham, C.M.; Levingstone, T.J.; Shen, N.; Cooney, G.M.; Jockenhoevel, S.; Flanagan, T.C.; O’Brien, F.J. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Adv. Healthc. Mater. 2017, 6, 598. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Beltran, M.A.; Gomez-Calderon, A.J.; Quintanar-Zuniga, R.E.; Santillan-Cortez, D.; Tellez-Gonzalez, M.A.; Suarez-Cuenca, J.A.; Garcia, S.; Mondragon-Teran, P. Electrospinning-Generated Nanofiber Scaffolds Suitable for Integration of Primary Human Circulating Endothelial Progenitor Cells. Polymers 2022, 14, 2448. [Google Scholar] [CrossRef]
- Ahearne, M.; Fernández-Pérez, J.; Masterton, S.; Madden, P.W.; Bhattacharjee, P. Designing Scaffolds for Corneal Regeneration. Adv. Funct. Mater. 2020, 30, 1908996. [Google Scholar] [CrossRef]
- Svystonyuk, D.A.; Mewhort, H.E.M.; Fedak, P.W.M. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair. Front. Cardiovasc. Med. 2018, 5, 35. [Google Scholar] [CrossRef]
- Xin, L.; Zheng, X.; Chen, J.; Hu, S.; Luo, Y.; Ge, Q.; Jin, X.; Ma, L.; Zhang, S. An Acellular Scaffold Facilitates Endometrial Regeneration and Fertility Restoration via Recruiting Endogenous Mesenchymal Stem Cells. Adv. Healthc. Mater. 2022, 11, e2201680. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.; Guo, Z.; Li, Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res. Ther. 2021, 12, 583. [Google Scholar] [CrossRef]
- Baldari, S.; Di Rocco, G.; Piccoli, M.; Pozzobon, M.; Muraca, M.; Toietta, G. Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. Int. J. Mol. Sci. 2017, 18, 2087. [Google Scholar] [CrossRef]
- Ofenbauer, A.; Tursun, B. Strategies for in vivo reprogramming. Curr. Opin. Cell Biol. 2019, 61, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res. 2009, 88, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein 2017, 15, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Wirth, T.; Parker, N.; Yla-Herttuala, S. History of gene therapy. Gene 2013, 525, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Anguela, X.M.; High, K.A. Entering the Modern Era of Gene Therapy. Annu. Rev. Med. 2019, 70, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xu, Z. Gene therapy: A double-edged sword with great powers. Mol. Cell Biochem. 2020, 474, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Stirnadel-Farrant, H.; Kudari, M.; Garman, N.; Imrie, J.; Chopra, B.; Giannelli, S.; Gabaldo, M.; Corti, A.; Zancan, S.; Aiuti, A.; et al. Gene therapy in rare diseases: The benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J. Rare Dis. 2018, 13, 49. [Google Scholar] [CrossRef]
- Roberts, Z.J.; Better, M.; Bot, A.; Roberts, M.R.; Ribas, A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk. Lymphoma 2018, 59, 1785–1796. [Google Scholar] [CrossRef]
- Shahryari, A.; Saghaeian Jazi, M.; Mohammadi, S.; Razavi Nikoo, H.; Nazari, Z.; Hosseini, E.S.; Burtscher, I.; Mowla, S.J.; Lickert, H. Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front. Genet. 2019, 10, 868. [Google Scholar] [CrossRef]
- Bennett, J.; Wellman, J.; Marshall, K.A.; McCague, S.; Ashtari, M.; DiStefano-Pappas, J.; Elci, O.U.; Chung, D.C.; Sun, J.; Wright, J.F.; et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: A follow-on phase 1 trial. Lancet 2016, 388, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.K.; Kapp, D.; Schroth, M. Gene Therapy for Spinal Muscular Atrophy: An Emerging Treatment Option for a Devastating Disease. J. Manag. Care Spec. Pharm. 2018, 24, S3–S16. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.C.; Wang, Z.L.; Xu, T.; He, Z.Y.; Wei, Y.Q. The approved gene therapy drugs worldwide: From 1998 to 2019. Biotechnol. Adv. 2020, 40, 107502. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Tiwari, V.K. Epigenetic reprogramming of cell identity: Lessons from development for regenerative medicine. Clin. Epigenet. 2021, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.A.; Akman, K.; Calimport, S.R.; Wuttke, D.; Stolzing, A.; de Magalhaes, J.P. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012, 15, 483–494. [Google Scholar] [CrossRef]
- Lu, Y. Reversal of Aging via in Vivo Epigenetic Reprogramming. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2020. [Google Scholar]
- Ocampo, A.; Reddy, P.; Martinez-Redondo, P.; Platero-Luengo, A.; Hatanaka, F.; Hishida, T.; Li, M.; Lam, D.; Kurita, M.; Beyret, E.; et al. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell 2016, 167, 1719–1733.e12. [Google Scholar] [CrossRef]
- Vierbuchen, T.; Ostermeier, A.; Pang, Z.P.; Kokubu, Y.; Sudhof, T.C.; Wernig, M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010, 463, 1035–1041. [Google Scholar] [CrossRef]
- Lu, Y.; Brommer, B.; Tian, X.; Krishnan, A.; Meer, M.; Wang, C.; Vera, D.L.; Zeng, Q.; Yu, D.; Bonkowski, M.S.; et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020, 588, 124–129. [Google Scholar] [CrossRef]
- Anokye-Danso, F.; Trivedi, C.M.; Juhr, D.; Gupta, M.; Cui, Z.; Tian, Y.; Zhang, Y.; Yang, W.; Gruber, P.J.; Epstein, J.A.; et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, D.; Maehr, R.; Guo, W.; Eijkelenboom, A.; Snitow, M.; Chen, A.E.; Melton, D.A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 2008, 26, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Desponts, C.; Do, J.T.; Hahm, H.S.; Scholer, H.R.; Ding, S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 2008, 3, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.B.; Platt, R.J.; Zhang, F. Therapeutic genome editing: Prospects and challenges. Nat. Med. 2015, 21, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shen, H.; Guo, D.; Sun, X.; Sun, Y.; Hong, N.; Wang, X.; Xie, C.; Zhao, Y.; He, Q.; et al. Recent developments in regenerative ophthalmology. Sci. China Life Sci. 2020, 63, 1450–1490. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; Purohit, P.; Vasudeva, A.; Kumar, M.; Agrawal, R.; Sheikh, N.A.; Misra, R.; Kishore, S.; Misra, S. Chapter 9—Gene therapy and gene editing in healthcare. In Biotechnology in Healthcare; Barh, D., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 147–175. [Google Scholar]
- Kormann, M.S.; Hasenpusch, G.; Aneja, M.K.; Nica, G.; Flemmer, A.W.; Herber-Jonat, S.; Huppmann, M.; Mays, L.E.; Illenyi, M.; Schams, A.; et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 2011, 29, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cho, A.-N.; Min, S.; Kim, S.; Cho, S.-W. Organoids for Advanced Therapeutics and Disease Models. Adv. Ther. 2019, 2, 1800087. [Google Scholar] [CrossRef]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef]
- Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Engineering Stem Cell Organoids. Cell Stem Cell 2016, 18, 25–38. [Google Scholar] [CrossRef]
- Li, N.; Xie, T.; Sun, Y. Towards organogenesis and morphogenesis in vitro: Harnessing engineered microenvironment and autonomous behaviors of pluripotent stem cells. Integr. Biol. 2018, 10, 574–586. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Hsia, G.S.P.; Esposito, J.; da Rocha, L.A.; Ramos, S.L.G.; Okamoto, O.K. Clinical Application of Human Induced Pluripotent Stem Cell-Derived Organoids as an Alternative to Organ Transplantation. Stem Cells Int. 2021, 2021, 6632160. [Google Scholar] [CrossRef]
- Xu, H.; Jiao, Y.; Qin, S.; Zhao, W.; Chu, Q.; Wu, K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp. Hematol. Oncol. 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Wu, J.; Si, C.; Dai, S.; Zhang, Y.; Sun, N.; Zhang, E.; Shao, H.; Si, W.; Yang, P.; et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 2021, 184, 2020–2032.e14. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhou, Y.; Ju, R.; Chen, J. Human-animal chimeras for autologous organ transplantation: Technological advances and future perspectives. Ann. Transl. Med. 2019, 7, 576. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, I.; Rognard, C.; Moulin, A.; Marcy, G.; Masfaraud, E.; Wianny, F.; Cortay, V.; Bellemin-Menard, A.; Doerflinger, N.; Dirheimer, M.; et al. Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells. Stem Cell Rep. 2021, 16, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Platero-Luengo, A.; Sakurai, M.; Sugawara, A.; Gil, M.A.; Yamauchi, T.; Suzuki, K.; Bogliotti, Y.S.; Cuello, C.; Morales Valencia, M.; et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 2017, 168, 473–486.e15. [Google Scholar] [CrossRef] [PubMed]
- Kaminska, A.; Pinkas, J.; Wrzesniewska-Wal, I.; Ostrowski, J.; Jankowski, M. Awareness of Common Eye Diseases and Their Risk Factors-A Nationwide Cross-Sectional Survey among Adults in Poland. Int. J. Environ. Res. Public. Health 2023, 20, 3594. [Google Scholar] [CrossRef]
- Kels, B.D.; Grzybowski, A.; Grant-Kels, J.M. Human ocular anatomy. Clin. Dermatol. 2015, 33, 140–146. [Google Scholar] [CrossRef]
- Gunda, S.; Hariharan, S.; Mandava, N.; Mitra, A.K. Barriers in Ocular Drug Delivery. In Ocular Transporters in Ophthalmic Diseases and Drug Delivery: Ophthalmology Research; Tombran-Tink, J., Barnstable, C.J., Eds.; Humana Press: Totowa, NJ, USA, 2008; pp. 399–413. [Google Scholar]
- Stern, J.H.; Tian, Y.; Funderburgh, J.; Pellegrini, G.; Zhang, K.; Goldberg, J.L.; Ali, R.R.; Young, M.; Xie, Y.; Temple, S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 2018, 22, 834–849. [Google Scholar] [CrossRef]
- Holoclar. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/holoclar (accessed on 19 December 2022).
- Vyawahare, H.; Shinde, P. Age-Related Macular Degeneration: Epidemiology, Pathophysiology, Diagnosis, and Treatment. Cureus 2022, 14, e29583. [Google Scholar] [CrossRef] [PubMed]
- Constable, I.J.; Pierce, C.M.; Lai, C.M.; Magno, A.L.; Degli-Esposti, M.A.; French, M.A.; McAllister, I.L.; Butler, S.; Barone, S.B.; Schwartz, S.D.; et al. Phase 2a Randomized Clinical Trial: Safety and Post Hoc Analysis of Subretinal rAAV.sFLT-1 for Wet Age-related Macular Degeneration. EBioMedicine 2016, 14, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, E.P.; Lai, C.M.; Magno, A.L.; Wikstrom, M.E.; French, M.A.; Pierce, C.M.; Schwartz, S.D.; Blumenkranz, M.S.; Chalberg, T.W.; Degli-Esposti, M.A.; et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 2015, 386, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, E.P.; Magno, A.L.; Lai, C.M.; Pierce, C.M.; Degli-Esposti, M.A.; Blumenkranz, M.S.; Constable, I.J. Three-Year Follow-Up of Phase 1 and 2a rAAV.sFLT-1 Subretinal Gene Therapy Trials for Exudative Age-Related Macular Degeneration. Am. J. Ophthalmol. 2019, 204, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Schachar, R.A.; Nduaka, C.I.; Sperling, M.; Basile, A.S.; Klamerus, K.J.; Chi-Burris, K.; Yan, E.; Paggiarino, D.A.; Rosenblatt, I.; et al. Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye 2012, 26, 1099–1105. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Lauer, A.K.; Sohn, E.H.; Mir, T.A.; Naylor, S.; Anderton, M.C.; Kelleher, M.; Harrop, R.; Ellis, S.; Mitrophanous, K.A. Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study. Hum. Gene Ther. 2017, 28, 99–111. [Google Scholar] [CrossRef]
- Piri, N.; Grodsky, J.D.; Kaplan, H.J. Gene therapy for retinitis pigmentosa. Taiwan. J. Ophthalmol. 2021, 11, 348–351. [Google Scholar] [CrossRef]
- Brown, C.; Agosta, P.; McKee, C.; Walker, K.; Mazzella, M.; Alamri, A.; Svinarich, D.; Chaudhry, G.R. Human primitive mesenchymal stem cell-derived retinal progenitor cells improved neuroprotection, neurogenesis, and vision in rd12 mouse model of retinitis pigmentosa. Stem Cell Res. Ther. 2022, 13, 148. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Li, P.; Yao, K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int. J. Mol. Sci. 2022, 23. [Google Scholar] [CrossRef]
- Yang, Y.J.; Peng, J.; Ying, D.; Peng, Q.H. A Brief Review on the Pathological Role of Decreased Blood Flow Affected in Retinitis Pigmentosa. J. Ophthalmol. 2018, 2018, 3249064. [Google Scholar] [CrossRef]
- Zhao, T.; Liang, Q.; Meng, X.; Duan, P.; Wang, F.; Li, S.; Liu, Y.; Yin, Z.Q. Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells Maintains and Partially Improves Visual Function in Patients with Advanced Retinitis Pigmentosa. Stem Cells Dev. 2020, 29, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.J.; Li, S.Y.; Qu, L.H.; Meng, X.H.; Wang, Y.; Xu, H.W.; Liang, Z.Q.; Yin, Z.Q. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res. Ther. 2017, 8, 209. [Google Scholar] [CrossRef]
- Ozmert, E.; Arslan, U. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: Prospective analysis of 1-year results. Stem Cell Res. Ther. 2020, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Rahayu, T.; Menaldi, S.L.; Irawati, Y.; Adriono, G.A.; Presialia, A.; Harini, M.; Friska, D. Validity and reliability of the NEI VFQ-25 questionnaire in Indonesian leprosy patients. Clin. Epidemiol. Glob. Health 2022, 15, 101039. [Google Scholar] [CrossRef]
- Tuekprakhon, A.; Sangkitporn, S.; Trinavarat, A.; Pawestri, A.R.; Vamvanij, V.; Ruangchainikom, M.; Luksanapruksa, P.; Pongpaksupasin, P.; Khorchai, A.; Dambua, A.; et al. Intravitreal autologous mesenchymal stem cell transplantation: A non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res. Ther. 2021, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.Y.; Kulbay, M.; Toameh, D.; Xu, A.Q.; Kalevar, A.; Tran, S.D. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023, 15, 685. [Google Scholar] [CrossRef] [PubMed]
- Mehat, M.S.; Sundaram, V.; Ripamonti, C.; Robson, A.G.; Smith, A.J.; Borooah, S.; Robinson, M.; Rosenthal, A.N.; Innes, W.; Weleber, R.G.; et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology 2018, 125, 1765–1775. [Google Scholar] [CrossRef]
- Sung, Y.; Lee, M.J.; Choi, J.; Jung, S.Y.; Chong, S.Y.; Sung, J.H.; Shim, S.H.; Song, W.K. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br. J. Ophthalmol. 2021, 105, 829–837. [Google Scholar] [CrossRef]
- Brant Fernandes, R.A.; Lojudice, F.H.; Zago Ribeiro, L.; Santos da Cruz, N.F.; Polizelli, M.U.; Cristovam, P.C.; Innocenti, F.; Morimoto, L.; Magalhaes, O., Jr.; Ferraz Sallum, J.M.; et al. TRANSPLANTATION OF SUBRETINAL STEM CELL-DERIVED RETINAL PIGMENT EPITHELIUM FOR STARGARDT DISEASE: A Phase I Clinical Trial. Retina 2023, 43, 263–274. [Google Scholar] [CrossRef]
- Li, S.Y.; Liu, Y.; Wang, L.; Wang, F.; Zhao, T.T.; Li, Q.Y.; Xu, H.W.; Meng, X.H.; Hao, J.; Zhou, Q.; et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years’ follow-up. Cell Prolif. 2021, 54, e13100. [Google Scholar] [CrossRef]
- Parker, M.A.; Erker, L.R.; Audo, I.; Choi, D.; Mohand-Said, S.; Sestakauskas, K.; Benoit, P.; Appelqvist, T.; Krahmer, M.; Segaut-Prevost, C.; et al. Three-Year Safety Results of SAR422459 (EIAV-ABCA4) Gene Therapy in Patients With ABCA4-Associated Stargardt Disease: An Open-Label Dose-Escalation Phase I/IIa Clinical Trial, Cohorts 1-5. Am. J. Ophthalmol. 2022, 240, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, H.W.; Wang, L.; Li, S.Y.; Zhao, C.J.; Hao, J.; Li, Q.Y.; Zhao, T.T.; Wu, W.; Wang, Y.; et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, L.; Fynes, K.; Georgiadis, O.; Kerby, J.; Luo, Y.H.; Ahmado, A.; Vernon, A.; Daniels, J.T.; Nommiste, B.; Hasan, S.M.; et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018, 36, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.C.; Banin, E.; Barak, A.; Boyer, D.S.; Ehrlich, R.; Jaouni, T.; MacDonald, H.R.; Riemann, C.D.; Telander, D.; Mones, J.; et al. Safety and Efficacy of a Phase 1/2a Clinical Trial of Transplanted Allogeneic Retinal Pigmented Epithelium (RPE, OpRegen) Cells in Advanced Dry Age-Related Macular Degeneration (AMD). Investig. Ophthalmol. Vis. Sci. 2022, 63, 1862. [Google Scholar]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Chen, S.; Chan, C.; Palejwala, N.; Ingram, A.; Dang, W.; et al. One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Dang, W.; Lin, C.M.; Mitra, D.; Zhu, D.; Thomas, B.B.; et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 2018, 10, eaao4097. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; He, C.; Lai, P.; Yang, Z.; Liu, Y.; Xu, H.; Lin, X.; Ni, B.; Ju, R.; Yi, W.; et al. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci. Adv. 2022, 8, eabj9617. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, S.; Gao, Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant. 2022, 31, 9636897221133818. [Google Scholar] [CrossRef]
- Moller-Hansen, M.; Larsen, A.C.; Toft, P.B.; Lynggaard, C.D.; Schwartz, C.; Bruunsgaard, H.; Haack-Sorensen, M.; Ekblond, A.; Kastrup, J.; Heegaard, S. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocul. Surf. 2021, 19, 43–52. [Google Scholar] [CrossRef]
- Wagner, I.V.; Stewart, M.W.; Dorairaj, S.K. Updates on the Diagnosis and Management of Glaucoma. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 618–635. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Tanna, A.P. Glaucoma. Med. Clin. N. Am. 2021, 105, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Han, Y.; Wang, F.; Su, Y. Progress in exosomes and their potential use in ocular diseases. Int. J. Ophthalmol. 2020, 13, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Chang, X.; Xu, M.; Zhang, M.; Zhang, S.; Wang, Y.; Luo, X.; Xu, J.; Yang, X.; Sun, X. UMSC-derived exosomes promote retinal ganglion cells survival in a rat model of optic nerve crush. J. Chem. Neuroanat. 2019, 96, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Tabak, S.; Schreiber-Avissar, S.; Beit-Yannai, E. Extracellular vesicles have variable dose-dependent effects on cultured draining cells in the eye. J. Cell Mol. Med. 2018, 22, 1992–2000. [Google Scholar] [CrossRef]
- Aketa, N.; Kasai, M.; Noda, S.; Asano, J.; Kunieda, A.; Kawanishi, S.; Maruyama, Y.; Honda, F. Insights into the clinical development of regenerative medical products through a comparison of three cell-based products recently approved for limbal stem cell deficiency. Ocul. Surf. 2023, 29, 220–225. [Google Scholar] [CrossRef]
- Kate, A.; Basu, S. A Review of the Diagnosis and Treatment of Limbal Stem Cell Deficiency. Front. Med. 2022, 9, 836009. [Google Scholar] [CrossRef]
- Ramirez, B.E.; Sanchez, A.; Herreras, J.M.; Fernandez, I.; Garcia-Sancho, J.; Nieto-Miguel, T.; Calonge, M. Stem Cell Therapy for Corneal Epithelium Regeneration following Good Manufacturing and Clinical Procedures. Biomed. Res. Int. 2015, 2015, 408495. [Google Scholar] [CrossRef]
- Campbell, J.D.M.; Ahmad, S.; Agrawal, A.; Bienek, C.; Atkinson, A.; McGowan, N.W.A.; Kaye, S.; Mantry, S.; Ramaesh, K.; Glover, A.; et al. Allogeneic Ex Vivo Expanded Corneal Epithelial Stem Cell Transplantation: A Randomized Controlled Clinical Trial. Stem Cells Transl. Med. 2019, 8, 323–331. [Google Scholar] [CrossRef]
- Kolli, S.; Ahmad, S.; Lako, M.; Figueiredo, F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells 2010, 28, 597–610. [Google Scholar] [CrossRef]
- Burillon, C.; Huot, L.; Justin, V.; Nataf, S.; Chapuis, F.; Decullier, E.; Damour, O. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 2004, 351, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.; Possemiers, T.; Dhubhghaill, S.N.; Leysen, I.; Rozema, J.; Koppen, C.; Timmermans, J.P.; Berneman, Z.; Tassignon, M.J. Results of a phase I/II clinical trial: Standardized, non-xenogenic, cultivated limbal stem cell transplantation. J. Transl. Med. 2014, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Kolli, S.; Ahmad, S.; Mudhar, H.S.; Meeny, A.; Lako, M.; Figueiredo, F.C. Successful application of ex vivo expanded human autologous oral mucosal epithelium for the treatment of total bilateral limbal stem cell deficiency. Stem Cells 2014, 32, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Lee, H.J.; Ryu, J.S.; Kim, Y.H.; Jeon, S.; Oh, J.Y.; Choung, H.K.; Khwarg, S.I.; Wee, W.R.; Kim, M.K. Prospective Clinical Trial of Corneal Reconstruction With Biomaterial-Free Cultured Oral Mucosal Epithelial Cell Sheets. Cornea 2018, 37, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Calonge, M.; Perez, I.; Galindo, S.; Nieto-Miguel, T.; Lopez-Paniagua, M.; Fernandez, I.; Alberca, M.; Garcia-Sancho, J.; Sanchez, A.; Herreras, J.M. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl. Res. 2019, 206, 18–40. [Google Scholar] [CrossRef] [PubMed]
- Alio Del Barrio, J.L.; El Zarif, M.; Azaar, A.; Makdissy, N.; Khalil, C.; Harb, W.; El Achkar, I.; Jawad, Z.A.; de Miguel, M.P.; Alio, J.L. Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus. Am. J. Ophthalmol. 2018, 186, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Alio Del Barrio, J.L.; El Zarif, M.; de Miguel, M.P.; Azaar, A.; Makdissy, N.; Harb, W.; El Achkar, I.; Arnalich-Montiel, F.; Alio, J.L. Cellular Therapy With Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus. Cornea 2017, 36, 952–960. [Google Scholar] [CrossRef]
- El Zarif, M.; Alio, J.L.; Alio Del Barrio, J.L.; Abdul Jawad, K.; Palazon-Bru, A.; Abdul Jawad, Z.; De Miguel, M.P.; Makdissy, N. Corneal Stromal Regeneration Therapy for Advanced Keratoconus: Long-term Outcomes at 3 Years. Cornea 2021, 40, 741–754. [Google Scholar] [CrossRef]
- El Zarif, M.; Jawad, K.A.; Del Barrio, J.L.A.; Jawad, Z.A.; Palazón-Bru, A.; de Miguel, M.P.; Saba, P.; Makdissy, N.; Alió, J.L. Corneal Stroma Cell Density Evolution in Keratoconus Corneas Following the Implantation of Adipose Mesenchymal Stem Cells and Corneal Laminas: An In Vivo Confocal Microscopy Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 22. [Google Scholar] [CrossRef]
- Weng, J.; He, C.; Lai, P.; Luo, C.; Guo, R.; Wu, S.; Geng, S.; Xiangpeng, A.; Liu, X.; Du, X. Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease. Mol. Ther. 2012, 20, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Andrades, M.; Mata, R.; Gonzalez-Gallardo, M.D.C.; Medialdea, S.; Arias-Santiago, S.; Martinez-Atienza, J.; Ruiz-Garcia, A.; Perez-Fajardo, L.; Lizana-Moreno, A.; Garzon, I.; et al. A study protocol for a multicentre randomised clinical trial evaluating the safety and feasibility of a bioengineered human allogeneic nanostructured anterior cornea in patients with advanced corneal trophic ulcers refractory to conventional treatment. BMJ Open 2017, 7, e016487. [Google Scholar] [CrossRef] [PubMed]
- Limoli, P.G.; Vingolo, E.M.; Limoli, C.; Scalinci, S.Z.; Nebbioso, M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J. Vis. Exp. 2018. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Age-Related Macular Degeneration. Medicines 2020, 7, 16. [Google Scholar] [CrossRef]
- Nittala, M.G.; Uji, A.; Velaga, S.B.; Hariri, A.H.; Naor, J.; Birch, D.G.; Spencer, R.; Leng, T.; Capela, A.; Tsukamoto, A.; et al. Effect of Human Central Nervous System Stem Cell Subretinal Transplantation on Progression of Geographic Atrophy Secondary to Nonneovascular Age-Related Macular Degeneration. Ophthalmol. Retina 2021, 5, 32–40. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Hubschman, J.P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Regillo, C.D.; Lam, B.L.; Eliott, D.; Rosenfeld, P.J.; Gregori, N.Z.; Hubschman, J.P.; Davis, J.L.; Heilwell, G.; Spirn, M.; et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015, 385, 509–516. [Google Scholar] [CrossRef]
- Song, W.K.; Park, K.M.; Kim, H.J.; Lee, J.H.; Choi, J.; Chong, S.Y.; Shim, S.H.; Del Priore, L.V.; Lanza, R. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Rep. 2015, 4, 860–872. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Tan, G.; Hosseini, H.; Nagiel, A. Subretinal Transplantation of Embryonic Stem Cell-Derived Retinal Pigment Epithelium for the Treatment of Macular Degeneration: An Assessment at 4 Years. Investig. Ophthalmol. Vis. Sci. 2016, 57, ORSFc1-9. [Google Scholar] [CrossRef]
- Oner, A.; Gonen, Z.B.; Sevim, D.G.; Smim Kahraman, N.; Unlu, M. Suprachoroidal Adipose Tissue-Derived Mesenchymal Stem Cell Implantation in Patients with Dry-Type Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: 6-Month Follow-Up Results of a Phase 2 Study. Cell Reprogram 2018, 20, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Stargardt Disease. Medicines 2021, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Oner, A.; Gonen, Z.B.; Sinim, N.; Cetin, M.; Ozkul, Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: A phase I clinical safety study. Stem Cell Res. Ther. 2016, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Bauer, G.; Abedi, M.; Pontow, S.; Panorgias, A.; Jonnal, R.; Zawadzki, R.J.; Werner, J.S.; Nolta, J. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: Preliminary phase 1 clinical trial findings. Investig. Ophthalmol. Vis. Sci. 2014, 56, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Constable, I.J.; Blumenkranz, M.S.; Schwartz, S.D.; Barone, S.; Lai, C.M.; Rakoczy, E.P. Gene Therapy for Age-Related Macular Degeneration. Asia Pac. J. Ophthalmol. 2016, 5, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, N.G.; Abboud, E.B.; Nowilaty, S.R.; Alkuraya, H.; Alhommadi, A.; Cai, H.; Hou, R.; Deng, W.T.; Boye, S.L.; Almaghamsi, A.; et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: Results of a phase I trial. Hum. Genet. 2016, 135, 327–343. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Newman, N.J.; Carelli, V.; Moster, M.L.; Biousse, V.; Sadun, A.A.; Klopstock, T.; Vignal-Clermont, C.; Sergott, R.C.; Rudolph, G.; et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci. Transl. Med. 2020, 12, eaaz7423. [Google Scholar] [CrossRef]
- Newman, N.J.; Yu-Wai-Man, P.; Carelli, V.; Moster, M.L.; Biousse, V.; Vignal-Clermont, C.; Sergott, R.C.; Klopstock, T.; Sadun, A.A.; Barboni, P.; et al. Efficacy and Safety of Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy Treated within 6 Months of Disease Onset. Ophthalmology 2021, 128, 649–660. [Google Scholar] [CrossRef]
- Biousse, V.; Newman, N.J.; Yu-Wai-Man, P.; Carelli, V.; Moster, M.L.; Vignal-Clermont, C.; Klopstock, T.; Sadun, A.A.; Sergott, R.C.; Hage, R.; et al. Long-Term Follow-Up After Unilateral Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy: The RESTORE Study. J. Neuroophthalmol. 2021, 41, 309–315. [Google Scholar] [CrossRef]
- Fischer, M.D.; Ochakovski, G.A.; Beier, B.; Seitz, I.P.; Vaheb, Y.; Kortuem, C.; Reichel, F.F.L.; Kuehlewein, L.; Kahle, N.A.; Peters, T.; et al. Changes in Retinal Sensitivity after Gene Therapy in Choroideremia. Retina 2020, 40, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Aleman, T.S.; Huckfeldt, R.M.; Serrano, L.W.; Pearson, D.J.; Vergilio, G.K.; McCague, S.; Marshall, K.A.; Ashtari, M.; Doan, T.M.; Weigel-DiFranco, C.A.; et al. Adeno-Associated Virus Serotype 2-hCHM Subretinal Delivery to the Macula in Choroideremia: Two-Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022, 129, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Schachar, R.A.; Nduaka, C.I.; Sperling, M.; Basile, A.S.; Klamerus, K.J.; Chi-Burris, K.; Yan, E.; Paggiarino, D.A.; Rosenblatt, I.; et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Investig. Ophthalmol. Vis. Sci. 2012, 53, 7666–7674. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N., Jr.; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.D.; Michalakis, S.; Wilhelm, B.; Zobor, D.; Muehlfriedel, R.; Kohl, S.; Weisschuh, N.; Ochakovski, G.A.; Klein, R.; Schoen, C.; et al. Safety and Vision Outcomes of Subretinal Gene Therapy Targeting Cone Photoreceptors in Achromatopsia: A Nonrandomized Controlled Trial. JAMA Ophthalmol. 2020, 138, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Ghoraba, H.H.; Akhavanrezayat, A.; Karaca, I.; Yavari, N.; Lajevardi, S.; Hwang, J.; Regenold, J.; Matsumiya, W.; Pham, B.; Zaidi, M.; et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin. Ophthalmol. 2022, 16, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Caras, I.W.; Collins, L.R.; Creasey, A.A. A stem cell journey in ophthalmology: From the bench to the clinic. Stem Cells Transl. Med. 2021, 10, 1581–1587. [Google Scholar] [CrossRef]
- Miotti, G.; Parodi, P.C.; Zeppieri, M. Stem cell therapy in ocular pathologies in the past 20 years. World J. Stem Cells 2021, 13, 366–385. [Google Scholar] [CrossRef]
- Sanghani, A.; Andriesei, P.; Kafetzis, K.N.; Tagalakis, A.D.; Yu-Wai-Man, C. Advances in exosome therapies in ophthalmology-From bench to clinical trial. Acta Ophthalmol. 2022, 100, 243–252. [Google Scholar] [CrossRef]
- Tomczak, W.; Winkler-Lach, W.; Tomczyk-Socha, M.; Misiuk-Hojlo, M. Advancements in Ocular Regenerative Therapies. Biology 2023, 12, 737. [Google Scholar] [CrossRef] [PubMed]
Anterior Segment | |||||
Disease | Clinical Trials (n) | Strategy (n) | Administration Route (n) | Phase (n) | Status (n) |
LSCD | 26 | LSCs (14) Oral mucosal epithelial sheets (6) Corneal epithelial cells (3) Scaffolds (2) BM-MSCs (1) | Perilimbal (26) | I (5) I/II (8) II (4) II/III (1) III (1) IV (1) NA (6) | Recruiting (5) Active not recruiting (2) Completed (12) Suspended (1) Withdrawn (1) Unknown (4) Not yet recruiting (1) |
Corneal ulcer | 5 | BM-MSCs (2) ASCs (1) MSCs-secretome solution (1) Scaffold (1) | Subconjunctival (2) Topical (1) Perilimbal (1) Artificial cornea transplant (1) | I (1) I/II (1) II (3) | Recruiting (1) Completed (3) Not yet recruiting (1) |
DED | 6 | ASCs (2) Exosomes (2) MSCs (1) Corneal epithelial cells (1) | Transconjunctival (1) Lacrimal gland (1) Topical (4) | Early I (2) I/II (2) II (1) NA (1) | Recruiting (1) Completed (2) Active not recruiting (1) Not yet recruiting (2) |
KC | 2 | Scaffolds + ASCs (2) | Stromal (2) | Early I (1) II (1) | Recruiting (1) Unknown (1) |
FECD | 1 | Gene therapy (1) | Intravitreal (1) | I (1) | Withdrawn (1) |
BLAK | 1 | ASCs | Intralesional (1) | II (1) | Unknown (1) |
Posterior segment | |||||
Disease | n | Strategy (n) | Administration route (n) | Phase (n) | Status (n) |
RP | 56 * | BM-SCs (8) FSCs (13) hESCs (2) BM-HSCs (2) BM-MSCs (1) FSCs + Exosomes (1) HuRPE (1) Scaffolds (2) Gene therapy (25) Gene editing (1) | Subretinal (23) Intravitreal (21) Subtenon (4) Subtenon/IV/Retrobulbar (2) Subtenon/IV (1) Suprachoroidal (1) Peribulbar (2) Unknown (2) | Early I (3) I (11) I/II (22) II (8) II/III (5) III (5) NA (2) | Recruiting (12) Active not recruiting (13) Completed (18) Terminated (3) Unknown (7) Not yet recruiting (2) Enrolling by invitation (1) |
AMD | 52 * | hESCs (14) FSCs (7) BM-HSCs (1) BM-SCs (5) ASCs (1) iPSCs (2) Gene therapy (21) Gene editing (1) | Subretinal (33) Intravitreal (15) Suprachoroidal (1) Subtenon/IV/Retrobulbar (2) Subtenon/IV (1) | Early I (3) I (14) I/II (20) II (8) II/III (1) III (1) NA (5) | Recruiting (19) Enrolling by invitation (2) Active not recruiting (3) Completed (12) Withdrawn (3) Unknown (10) Not yet recruiting (3) |
LCA | 18 * | Gene therapy (17) HuRPE (1) | Subretinal (13) Intravitreal (4) Unknown (1) | Early I (1) I (3) I/II (10) II/III (2) III (1) NA (1) | Recruiting (2) Active not recruiting (5) Completed (7) Terminated (1) Enrolling by invitation (2) Unknown (1) |
LHON | 12 * | Gene therapy (11) BM-SCs (1) | Intravitreal (11) Subtenon/IV/Retrobulbar (1) | I (1) I/II (2) II/III (2) III (4) NA (3) | Recruiting (3) Active not recruiting (3) Completed (4) Not yet recruiting (1) Unknown (1) |
CHM | 10 * | Gene therapy (10) | Subretinal (9) Intravitreal (1) | I (1) I/II (3) II (4) III (2) | Active not recruiting (1) Completed (8) Enrolling by invitation (1) |
SD | 9 * | hESCs (5) BM-SCs (3) Gene therapy (1) | Subretinal (5) Intravitreal (2) Subtenon/IV/Retrobulbar (2) | I (2) I/II (4) II (1) NA (2) | Active not recruiting (1) Completed (3) Recruiting (1) Unknown (4) |
ACHM | 6 | Gene therapy (6) | Subretinal (6) | I/II (6) | Recruiting (1) Active not recruiting (3) Completed (2) |
DME | 6 * | GT (6) | Intravitreal (5) Suprachoroidal (1) | Early I (1) I (2) II (2) III (1) | Completed (2) Recruiting (4) |
DR | 5 * | FSCs (1) BM-HSCs (1) GT (3) | Intravitreal (3) Suprachoroidal (1) Subtenon/IV (1) | I (2) II (3) | Recruiting (3) Active not recruiting (1) Completed (1) |
BCD | 2 | Gene therapy (2) | Subretinal (2) | Early I (2) | Recruiting (2) |
CRVO | 2 | BM-HSCs (2) | Intravitreal (2) | I (1) I/II (2) | Recruiting (1) Enrolling by invitation (1) |
XR | 2 | Gene therapy (2) | Intravitreal (2) | I/II (2) | Active not recruiting (2) |
Glaucoma | 2 | BM-MSCs (1) FSCs (1) | Intravitreal (1) Subtenon (1) | I (2) | Recruiting (1) Completed (1) |
Macular holes | 1 | Exosomes (1) | Intravitreal (1) | I (1) | Active not recruiting (1) |
TON | 1 | FSCs (1) | Unknown | III (1) | Completed (1) |
AION | 1 | BM-MSCs (1) | Intravitreal (1) | II (1) | Active not recruiting (1) |
Anterior Segment | ||||
Therapy | Ocular Condition | Description | Main Outcomes | Ref. |
Cell therapy | LSCD | Autologous and allogeneic stem cell therapy by corneal limbal epithelial transplantation in patients with LSCD. | Similar survival of autografts and allografts. High success rate, with a substantial improvement in symptoms, quality of life, vision, and epithelial quality. | [204] |
Allogeneic transplantation of corneal limbal stem cells cultured on an amniotic membrane in patients with bilateral LSCD. | Significant, sustained improvements in corneal epithelium, conjunctivalization, neovascularization, opacification, and conjunctival hyperemia were found. Significant improvements in visual acuity were also observed. | [205] | ||
Ex vivo, expanded autologous limbal stem cell transplant on human amniotic membrane in patients with unilateral LSCD. | Satisfactory ocular surface reconstruction occurred in all eyes. All patients showed an improvement in vision impairment and pain scores, while most experienced an improvement in visual acuity. | [206] | ||
Autologous or allogenic transplantation of limbal stem cells in patients with unilateral or bilateral LSCD, respectively. | Most patients were graded as anatomically successful based on the persistence of continuous epithelial surface. Only in patients anatomically successful was amelioration of visual acuity and pain found. | [209] | ||
Transplantation of a cultured autologous oral mucosal epithelial cell sheet in patients with LSCD. | Treatment was well tolerated, with 75% of patients having successful grafting after 360 days. Most patients showed an improvement in corneal ulcers and a decrease in the severity of punctate epithelial keratopathy. | [207] | ||
Transplantation of cultured autologous multilayered oral mucosal epithelium sheets in two patients with bilateral total LSCD. | Successful reversal of LSCD in the treated eyes was achieved for up to 24 months. Improvement in visual acuity and pain was observed. | [210] | ||
Transplantation of autologous cultured oral mucosal cell sheets in patients with total bilateral LSCD. | All treated eyes experienced a complete reepithelization of the corneal surface in the first week. A restoral of corneal transparency was shown, with a subsequent important improvement of visual acuity in all the treated eyes. During the 14 month follow-up, corneal transparency was maintained, and no complications were recorded. | [208] | ||
Transplantation of autologous cultured oral mucosal epithelial cell sheets in patients with total bilateral LSCD. | Most eyes achieved successful ocular surface reconstruction, with a complete stable epithelialization at 53.6 days on average. Some visual improvement was achieved. Expression of corneal cytokeratins in the grafts was demonstrated. No complications were observed. | [211] | ||
Trial comparing allogeneic BM-MSCs transplantation vs. cultivated limbal epithelial transplantation in patients with LSCD. | Both methods had similar high success rates (between 70% and 85%), with concurrent improvements in corneal epithelial phenotype. No adverse events related to the cell products occurred. | [212] | ||
KC | Transplantation of decellularized human corneal stromal laminas with or without ASC recellularization in the corneal stroma of patients with advanced keratoconus. | All patients had an improvement in visual parameters, refractive sphere, corneal thickness, and spherical aberration. | [213] | |
Corneal stroma implantation of autologous ASCs in patients with advanced keratoconus. | No complications occurred. All patients had improved visual function. Central corneal thickness showed an improvement using corneal OCT. Patchy hyperreflective areas in the stroma demonstrated new collagen production. Survival of the implanted cells was confirmed with confocal biomicroscopy. | [214] | ||
3-year clinical outcomes of transplantation of decellularized human corneal stromal laminas with or without ASC recellularization in the corneal stroma of patients with advanced KC. | Significant improvement in visual acuity was observed in all groups but an increase in central corneal thickness was only observed in the groups which received a decellularized or recellularized stromal lamina but not in the one which received ASCs alone. No complications were observed at the 3 year follow-up. | [215] | ||
Implantation of ASCs, corneal decellularized laminas or ASCs recellularized corneal laminas in corneas with advanced keratoconus. | Overall gradual significant increase in anterior and posterior cellularity in patients’ stroma. The increase was significantly higher in the patients which received ASC recellularized laminas. | [216] | ||
DED | Injection of allogeneic ASCs into the lacrimal gland in patients with aqueous-deficient DED. | Improvements in DED symptoms, tear film stability and tear production occurred. No adverse events occurred. | [196] | |
Intravenous infusion of allogeneic BM-MSCs in patients with refractory DED secondary to chronic GVHD. | An amelioration in symptoms was observed in more than half of the patients, along with increased tear secretion. | [217] | ||
BK | Anterior chamber injection of allogenous human corneal endothelial cells (CECs) supplemented with a ROCK inhibitor for the treatment of bullous keratopathy. | An increase in CEC density was found in all patients and most had an improvement in visual acuity of two or more lines. | [218] | |
Exosomes | DED | Topical administration of miR-204-containing MSC exosomes (as eye drops) in patients with refractory GVHD-associated DED. | Substantial relief in DED symptoms, reduced de-epithelization evidenced by fluorescein staining, improved tear quality and secretion evidenced by TBUT and Schirmers’ test, respectively. | [194] |
Scaffolds | Corneal ulcer | Study protocol of bioengineered human allogeneic anterior corneas. The corneas were constructed with limbal epithelial cells and stromal fibroblasts from cadaveric donors using a biodegradable scaffold of agarose and fibrin. The constructed corneas were transplanted to patients with refractory severe trophic corneal ulcers. | NA. Only the study protocol was published, clinical results are pending. | [219] |
Posterior segment | ||||
Therapy | Ocular condition | Description | Main outcomes | Ref. |
Cell therapy | Wet AMD | Subretinal (submacular) transplantation of hESC-derived human RPE cells in patients with wet AMD after removal of the neovascular membrane. | Follow-up at 12 months showed evidence of formation of a new RPE-like cell layer in damaged areas. Limited functional improvement was observed. | [188] |
Subretinal transplantation of an hESC-derived human RPE patch, consisting of an RPE monolayer on a coated synthetic basement membrane in patients with severe wet AMD. | Evidence of successful delivery of the RPE patch and a visual acuity gain of +20 letters over the 12 month follow-up. | [189] | ||
Dry AMD | Subretinal transplantation of hESCs-derived allogenic RPE cells (OpRegen) in patients with advanced dry AMD or geographical atrophy | Good toleration with no unexpected adverse events. Improvement in baseline visual acuity was found in some patients and persistence of the transplanted cells was suggested via imaging. | [190] | |
1 year follow-up of the subretinal transplantation of an hESCs-derived RPE cell implant on an ultrathin parylene substrate in patients with advanced dry AMD. | More than half the patients reported at least one serious adverse event. No significant visual acuity improvements were observed, although some treated eyes experienced a >5-letter gain. | [191] | ||
Subretinal transplantation of an hESCs-derived RPE monolayer implant in patients with severe dry AMD. | Integration of the implant was demonstrated with OCT. Visual acuity did not improve in most patients, but no progression of vision loss was recorded in the implanted eyes. | [192] | ||
Suprachoroidal transplantation of autologous adipocytes, ASCs, and platelets in patients with dry AMD. | Patients were transplanted with all the three treatments. An improvement of more than 30% in visual acuity was observed at 180 days. | [220] | ||
SCOTS clinical trial for AMD. Different arms which combined retrobulbar, sub-tenon, intravitreal, subretinal, and intravenous administration of autologous BM-SCs in patients with dry AMD. | Most eyes showed a significant improvement in visual acuity (average 27.6%). No complications were observed. | [221] | ||
Subretinal transplantation of Human Central Nervous System Stem Cells (HuCNS-SCs) in patients with geographic atrophy due to dry AMD. | Changes in geographic atrophy areas were not found; nonetheless, the growth rate was significantly slower when compared with control eyes. | [222] | ||
SD and AMD | Subretinal transplantation of hESC-derived human RPE cells in patients with SD or AMD. | Good integration of cells into the host RPE layer. No signs of hyperproliferation, tumorigenicity, ectopic tissue formation or apparent rejection were found. Improvement in visual acuity was not clear, but little amelioration in visual acuity was found. | [223] | |
22 month follow-up of subretinal transplantation of hESC-derived human RPE cells in patients with SD or AMD. | Evidence of medium-term to long-term graft safety and survival. No evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues were found. Most patients had patches of increasing subretinal pigmentation. Visual acuity improved in some eyes. | [224] | ||
Subretinal transplantation of hESC-derived human RPE cells in patients with SD or AMD. | No evidence of adverse proliferation, tumorigenicity, ectopic tissue formation, or other safety issues was found. Visual acuity improved 9–19 letters in most patients. | [225] | ||
Subretinal transplantation of hESC-derived human RPE cells in patients with SD or dry AMD. | No adverse events related to the cell therapy were found. A significant improvement in visual acuity was found in AMD patients at 12 months. Improvements were also found in SD patients but due to the small sample size statistical analysis was not possible. | [226] | ||
Suprachoroidal implantation of ASCs in patients with dry AMD or Stargardt’s disease. | No systemic or ocular complications. Improvement in visual acuity, visual field, and multifocal ERG was found in all patients. | [227] | ||
SD | Subretinal transplantation of hESC-derived human RPE cells in patients with SD. | Dose-dependent development of areas of subretinal hyperpigmentation. No evidence of hyperproliferation or rejection. No significant improvements in visual acuity. Microperimetry found no evidence of benefit at the 12 month follow-up. | [183] | |
Subretinal transplantation of hESC-derived RPE cells in patients with SD. | No serious adverse events were reported during the 3 year follow-up. Most patients did not show an improvement in visual acuity but treated eyes showed a slow-down in the progression of the disease. | [184] | ||
Subretinal transplantation of hESC-derived RPE cells in patients with SD. | No adverse events occurred within the 12-month follow-up; nonetheless, no significant increases in visual acuity were observed. | [185] | ||
5 year follow-up of hESC-derived RPE cells subretinal transplantation in patients with SD. | No long-term adverse events were noted. All operated eyes had a transiently increased or stable visual function 1–4 months after transplantation. Maintained morphological and functional changes were found in the RPE layer. | [186] | ||
SCOTS clinical trial. Different arms which combined retrobulbar, sub-tenon, intravitreal, subretinal, and intravenous administration of autologous BM-SCs in patients with SD. | Most eyes showed a significant improvement (average 17.96%) in average central vision. No adverse events were found. | [228] | ||
RP | Intravitreal injection of BM-MSCs in patients with advanced RP. | Several adverse events were found, such as posterior synechiae, cystoid macular edema, flat choroidal detachment, and intraocular lens displacement, none which remained at the 12 month follow-up. Slight improvement of visual acuity was found but returned to baseline within 12 months. | [181] | |
Subretinal implantation of ASCs in patients with end-stage RP. | Most patients had ocular complications including choroidal neovascular membrane and epiretinal membrane. No significant improvements in visual acuity and ERG were observed. | [229] | ||
Intravenous infusion of UCMSCs in patients with advanced RP. | Visual acuity improved in most patients in the first 3 months and was improved or maintained for 12 months. The NEI VFQ-25 scores were significantly better during the first 3 months. No serious adverse effects occurred. | [177] | ||
Subretinal transplantation of fetal retinal progenitor cells in patients with advanced RP. | A significant improvement in visual acuity was observed in some patients; also, an increase in retinal sensitivity of pupillary response was shown between the 2 and 6 month follow-up. Nonetheless, these improvements faded at the 12 month follow-up. Integration of the transplanted cells was confirmed with OCT. No complications were reported. | [178] | ||
1 year follow-up of subtenon transplantation of UCMSCs in RP patients with different autosomal dominant or recessive and X-linked genotypes. | An improvement in outer retinal thickness was observed. Both autosomal dominant and recessive patients experienced a significant improvement in visual acuity, fundus perimetry deviation index, and ERG parameters at the 6 and 12 month follow-up, contrary to X-linked genotypes which did not. No complications were observed during the 1 year follow-up period. | [179] | ||
Retinal diseases | Intravitreal injection of autologous BM-HSCs in patients with irreversible ischemic or degenerative retinal conditions, including retinal vascular occlusion, hereditary or dry AMD, or RP. | No long-term ocular adverse events were noted. A slight improvement in visual acuity was recorded in most patients. Macular function in dry AMD patients worsened while the patient with retinal vascular occlusion showed a progressive improvement. | [230] | |
Gene therapy | Wet AMD | Subretinal injection of an rAAV.sFlt-1 adeno-associated viral vector containing an anti-vascular endothelial growth factor agent, sFLt-1, for the treatment of wet AMD. | rAAV.sFlt-1 was well tolerated, had a favorable safety profile, and decreased the need of ranibizumab injections. | [231] |
Combination therapy of subretinal ranibizumab and rAAV.sFlt-1 adeno-associated viral vector, which contains the sFLt-11 gene, for the treatment of wet AMD. | Patients receiving combination therapy required less ranibizumab injections than patients receiving ranibizumab alone (control group). BCVA was improved or maintained in 56% of patients in the combination group, compared to 36% in the control group. Adverse events were mainly procedure related and were self-resolved. | [168] | ||
Single subretinal injection of the rAAV.sFLT-1 adeno-associated viral vector, containing the sFLt-1 gene, for the treatment of wet AMD. | Adverse events were procedure related and were self-resolved. A slight visual acuity improvement was observed, and most patients did not require any anti-VEGF rescue injections in the 1 year follow-up. | [169] | ||
3 year follow-up of combination therapy of subretinal ranibizumab and rAAV.sFlt-1 adeno-associated viral vector for the treatment of wet AMD. | rAAV.sFLT-1 delivery was safe and well tolerated; nonetheless, no significant improvements or maintenance of visual acuity was found between the treatment and control groups. | [170] | ||
Single intravitreal injection of PF-04523655, a small interfering ribonucleic acid (siRNA) targeting the RTP801 gene, in patients with wet AMD. | PF-04523655 was generally safe and well tolerated. There were no dose-limiting toxicities. Efficacy of the treatment is not discussed. | [171] | ||
Subretinal injection of a lentiviral Equine Infectious Anemia Virus (EIAV) vector expressing angiostatin and endostatin (RetinoStat®) in patients with advanced wet AMD. | A dose-related increase in aqueous humor levels of angiostatin and endostatin was shown among patients, which was maintained in some patients at the 2.5 year follow-up, with some still showing expression at 4 years. The EIAV vector was shown to be safe although no significant changes in lesion sizes were found. | [172] | ||
SD | Subretinal injection of the EIAV-ABCA4 vector, containing the ABCA4 gene, in adults with SD due to ABCA4 mutations. | No improvements in visual function tests were noted. A subset of the treated eyes showed an exacerbation of retinal pigment epithelium atrophy. Chronic ocular hypertension, a serious adverse effect related to the treatment, occurred in one patient. | [187] | |
RP | Single subretinal injection of the AAV8-coRPGR adeno-associated viral vector, containing the RPGR gene, in patients with X-linked R due to RPGR mutations. | A subset of patients demonstrated visual gains in the treated eyes, which were maintained up to six months. Retinal inflammation was observed in the patients that received the higher doses and was responsive to steroids. Other than the dose-dependent retinal inflammation, treatment proved to be safe. | [232] | |
Subretinal injection of the rAAV2-VMD2-hMERTK adeno-associated viral vector, containing the MERTK gene, in patients with MERTK-associated RP. | rAAV2-VMD2-hMERTK injection was not associated with any serious side effects. A subset of patients reported improved vision on examination. One patient had a dramatic response to treatment, with a visual acuity of <20/6400, to 20/125 after a week, but worsened over time. | [233] | ||
LHON | REVERSE clinical trial. Single intravitreal injection of the rAAV2/2-ND4 adeno-associated vector, containing the mitochondrial ND4 gene, in patients with vision loss due to LHON. | Although the injection was only in one eye, sustained vision improvement was observed in both eyes. This finding suggested a transfer of the vector to the contralateral eye, which was later demonstrated in non-human primates. | [234] | |
RESCUE clinical trial. Single intravitreal injection of rAAV2/2-ND4 adeno-associated vector, containing the mitochondrial ND4 gene, in patients with vision loss ≤6 months from onset due to LHON. | Both treated and untreated eyes’ visual acuity continued to deteriorate comparably. No significant improvements in visual acuity occurred. | [235] | ||
RESTORE study. Long-term follow-up study of RESCUE and REVERSE clinical trials. In both trials, a single intravitreal injection of rAAV2/2-ND4 was administered to LHON patients. | The analyses combined the results of both trials. A progressive and sustained visual acuity improvement from 12 to 51 months after vision loss onset was observed. A clinically meaningful improvement in quality of life was also shown. | [236] | ||
CHM | THOR trial. Subretinal injection of the AAV2-REP1 adeno-associated viral vector, containing the CHM gene, in patients with choroideremia. | Maintenance or minor improvements in visual acuity were recorded. Mean retinal sensitivity, peak retinal sensitivity, and gaze fixation area also improved in most patients. Adverse events were related to the surgical procedure. | [237] | |
Subretinal (subfoveal) injection of AAV2-hCHM adeno-associated viral vector, containing the CHM gene, in patients with choroideremia. | No vector-related or systemic toxicities were noted. No improvements in visual acuity, visual sensitivity, nor in rate of disease progression were observed. Serious adverse events occurred and included acute foveal thinning and macular hole. | [238] | ||
Subretinal (subfoveal) injection of AAV.REP1 adeno-associated viral vector encoding the REP1 gene in patients with choroideremia. | An improvement in visual acuity was observed in most patients, with the more severe cases being the ones which benefited the most. An improvement in mean retinal sensitivity was also noted and was dose dependent. | [239] | ||
DME | Intravitreal injection of PF-04523655, a small interfering ribonucleic acid (siRNA), targeting the RTP801 gene, compared to laser photocoagulation, in patients with diabetic macular edema. | The injection of PF-04523655 was generally safe and well tolerated and, in comparison to laser photocoagulation, showed a dose-related greater improvement in visual acuity. No serious adverse events were related to the siRNA treatment. | [240] | |
LCA | Subretinal injection of the AAV2.hRPE65v2 adeno-associated viral vector, carrying the RPE65 gene, in patients with LCA. | There was a significant improvement in the pupillary light reflex in the treated eyes. There was also an improvement in visual acuity, visual field area, and a decrease in nystagmus. There were no serious adverse events. | [241] | |
ACHM | Subretinal injection of the AAV8.CNGA3 adeno-associated viral vector, containing the CNGA3 gene, in patients with CNGA3-associated achromatopsia. | Minor but significant improvements in visual acuity, contrast sensitivity, and color vision were recorded. Treatment demonstrated a good safety profile. | [242] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santa Cruz-Pavlovich, F.J.; Bolaños-Chang, A.J.; Del Rio-Murillo, X.I.; Aranda-Preciado, G.A.; Razura-Ruiz, E.M.; Santos, A.; Navarro-Partida, J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024, 13, 179. https://doi.org/10.3390/cells13020179
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells. 2024; 13(2):179. https://doi.org/10.3390/cells13020179
Chicago/Turabian StyleSanta Cruz-Pavlovich, Francisco J., Andres J. Bolaños-Chang, Ximena I. Del Rio-Murillo, Guillermo A. Aranda-Preciado, Esmeralda M. Razura-Ruiz, Arturo Santos, and Jose Navarro-Partida. 2024. "Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care" Cells 13, no. 2: 179. https://doi.org/10.3390/cells13020179
APA StyleSanta Cruz-Pavlovich, F. J., Bolaños-Chang, A. J., Del Rio-Murillo, X. I., Aranda-Preciado, G. A., Razura-Ruiz, E. M., Santos, A., & Navarro-Partida, J. (2024). Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells, 13(2), 179. https://doi.org/10.3390/cells13020179