Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels
Abstract
:1. Introduction
2. Overview of GnIH and Its Impact on the Endocrine System
2.1. GnIH and Its Receptors
2.2. Regulation of the Endocrine System by GnIH
2.2.1. Role of GnIH on the Reproductive Axis
2.2.2. Involvement of GnIH in the Stress Axis
2.2.3. Involvement of GnIH in the Thyroid Axis
3. Metabolic Regulation by Hypothalamic GnIH
3.1. Effect of Central GnIH Administration on Feeding Behavior
3.2. Interaction with the Melanocortin System
3.3. Role of GnIH in Mediating the Effects of Leptin and Ghreilin on Food Intake
4. Metabolic Regulation by Peripheral GnIH
4.1. Effect of Peripheral GnIH Administration
4.2. Adipose Tissue
4.3. Pancreas
4.4. GI Tract
4.5. Liver and Skeletal Muscle
5. Nutritional Status and GnIH: Obesity and Fasting
6. Conclusions
Author Contributions
Funding
Institutional Review Bord Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsutsui, K.; Saigoh, E.; Ukena, K.; Teranishi, H.; Fujisawa, Y.; Kikuchi, M.; Ishii, S.; Sharp, P.J. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. 2000, 275, 661–667. [Google Scholar] [CrossRef]
- Satake, H.; Hisada, M.; Kawada, T.; Minakata, H.; Ukena, K.; Tsutsui, K. Characterization of a cDNA encoding a novel avian hypothalamic neuropeptide exerting an inhibitory effect on gonadotropin release. Biochem. J. 2001, 354, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, T.; Park, M.K. Chicken RFamide-related peptide (GnIH) and two distinct receptor subtypes: Identification, molecular characterization, and evolutionary considerations. J. Reprod. Dev. 2005, 51, 359–377. [Google Scholar] [CrossRef]
- Osugi, T.; Ukena, K.; Bentley, G.E.; O’Brien, S.; Moore, I.T.; Wingfield, J.C.; Tsutsui, K. Gonadotropin-inhibitory hormone in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii): cDNA identification, transcript localization and functional effects in laboratory and field experiments. J. Endocrinol. 2004, 182, 33–42. [Google Scholar] [CrossRef]
- Ubuka, T.; Kim, S.; Huang, Y.C.; Reid, J.; Jiang, J.; Osugi, T.; Chowdhury, V.S.; Tsutsui, K.; Bentley, G.E. Gonadotropin-inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology 2008, 149, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Tobari, Y.; Iijima, N.; Tsunekawa, K.; Osugi, T.; Okanoya, K.; Tsutsui, K.; Ozawa, H. Identification of gonadotropin-inhibitory hormone in the zebra finch (Taeniopygia guttata): Peptide isolation, cDNA cloning and brain distribution. Peptides 2010, 31, 816–826. [Google Scholar] [CrossRef]
- Tsutsui, K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog. Neurobiol. 2009, 88, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Bentley, G.E.; Bedecarrats, G.; Osugi, T.; Ubuka, T.; Kriegsfeld, L.J. Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front. Neuroendocr. 2010, 31, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Ubuka, T.; Bentley, G.E.; Kriegsfeld, L.J. Review: Regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals. Front. Neurosci. 2013, 7, 60. [Google Scholar] [CrossRef]
- Hinuma, S.; Shintani, Y.; Fukusumi, S.; Iijima, N.; Matsumoto, Y.; Hosoya, M.; Fujii, R.; Watanabe, T.; Kikuchi, K.; Terao, Y.; et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2000, 2, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Bonini, J.A.; Jones, K.A.; Adham, N.; Forray, C.; Artymyshyn, R.; Durkin, M.M.; Smith, K.E.; Tamm, J.A.; Boteju, L.W.; Lakhlani, P.P.; et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 2000, 275, 39324–39331. [Google Scholar] [CrossRef]
- Yin, H.; Ukena, K.; Ubuka, T.; Tsutsui, K. A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): Identification, expression and binding activity. J. Endocrinol. 2005, 184, 257–266. [Google Scholar] [CrossRef]
- Mollereau, C.; Mazarguil, H.; Marcus, D.; Quelven, I.; Kotani, M.; Lannoy, V.; Dumont, Y.; Quirion, R.; Detheux, M.; Parmentier, M.; et al. Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur. J. Pharmacol. 2002, 451, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Gouarderes, C.; Mazarguil, H.; Mollereau, C.; Chartrel, N.; Leprince, J.; Vaudry, H.; Zajac, J.M. Functional differences between NPFF1 and NPFF2 receptor coupling: High intrinsic activities of RFamide-related peptides on stimulation of [35S] GTPgammaS binding. Neuropharmacology 2007, 52, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Ubuka, T.; Son, Y.L.; Bentley, G.E.; Millar, R.P.; Tsutsui, K. Gonadotropin-inhibitory hormone (GnIH), GnIH receptor and cell signaling. Gen. Comp. Endocrinol. 2013, 190, 10–17. [Google Scholar] [CrossRef]
- Oishi, H.; Klausen, C.; Bentley, G.E.; Osugi, T.; Tsutsui, K.; Gilks, C.B.; Yano, T.; Leung, P.C. The human gonadotropin-inhibitory hormone ortholog RFamide-related peptide-3 suppresses gonadotropin-induced progesterone production in human granulosa cells. Endocrinology 2012, 153, 3435–3445. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.L.; Ubuka, T.; Millar, R.P.; Kanasaki, H.; Tsutsui, K. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LbetaT2 cells. Endocrinology 2012, 153, 2332–2343. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.L.; Ubuka, T.; Soga, T.; Yamamoto, K.; Bentley, G.E.; Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7. FASEB J. 2016, 30, 2198–2210. [Google Scholar] [CrossRef]
- Ubuka, T.; Morgan, K.; Pawson, A.J.; Osugi, T.; Chowdhury, V.S.; Minakata, H.; Tsutsui, K.; Millar, R.P.; Bentley, G.E. Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PLoS ONE 2009, 4, e8400. [Google Scholar] [CrossRef]
- Ubuka, T.; Inoue, K.; Fukuda, Y.; Mizuno, T.; Ukena, K.; Kriegsfeld, L.J.; Tsutsui, K. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 2012, 153, 373–385. [Google Scholar] [CrossRef]
- Yano, T.; Iijima, N.; Kakihara, K.; Hinuma, S.; Tanaka, M.; Ibata, Y. Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res. 2003, 982, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.A.; Tsutsui, K.; Fraley, G.S. Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm. Behav. 2007, 51, 171–180. [Google Scholar] [CrossRef]
- Ukena, K.; Ubuka, T.; Tsutsui, K. Distribution of a novel avian gonadotropin-inhibitory hormone in the quail brain. Cell Tissue Res. 2003, 312, 73–79. [Google Scholar] [CrossRef]
- Ubuka, T.; Ueno, M.; Ukena, K.; Tsutsui, K. Developmental changes in gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica) hypothalamo-hypophysial system. J. Endocrinol. 2003, 178, 311–318. [Google Scholar] [CrossRef]
- Kriegsfeld, L.J.; Mei, D.F.; Bentley, G.E.; Ubuka, T.; Mason, A.O.; Inoue, K.; Ukena, K.; Tsutsui, K.; Silver, R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. USA 2006, 103, 2410–2415. [Google Scholar] [CrossRef] [PubMed]
- Revel, F.G.; Saboureau, M.; Pevet, P.; Simonneaux, V.; Mikkelsen, J.D. RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Endocrinology 2008, 149, 902–912. [Google Scholar] [CrossRef]
- Legagneux, K.; Bernard-Franchi, G.; Poncet, F.; La Roche, A.; Colard, C.; Fellmann, D.; Pralong, F.; Risold, P.Y. Distribution and genesis of the RFRP-producing neurons in the rat brain: Comparison with melanin-concentrating hormone- and hypocretin-containing neurons. Neuropeptides 2009, 43, 13–19. [Google Scholar] [CrossRef]
- Clarke, I.J.; Sari, I.P.; Qi, Y.; Smith, J.T.; Parkington, H.C.; Ubuka, T.; Iqbal, J.; Li, Q.; Tilbrook, A.; Morgan, K.; et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 2008, 149, 5811–5821. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Hu, C. Distribution of gonadotropin-inhibitory hormone (GnIH) in male Luchuan piglets. Gene Expr. Patterns 2018, 28, 42–53. [Google Scholar] [CrossRef]
- Ubuka, T.; Lai, H.; Kitani, M.; Suzuuchi, A.; Pham, V.; Cadigan, P.A.; Wang, A.; Chowdhury, V.S.; Tsutsui, K.; Bentley, G.E. Gonadotropin-inhibitory hormone identification, cDNA cloning, and distribution in rhesus macaque brain. J. Comp. Neurol. 2009, 517, 841–855. [Google Scholar] [CrossRef]
- Ukena, K.; Tsutsui, K. Distribution of novel RFamide-related peptide-like immunoreactivity in the mouse central nervous system. Neurosci. Lett. 2001, 300, 153–156. [Google Scholar] [CrossRef]
- Mason, A.O.; Duffy, S.; Zhao, S.; Ubuka, T.; Bentley, G.E.; Tsutsui, K.; Silver, R.; Kriegsfeld, L.J. Photoperiod and reproductive condition are associated with changes in RFamide-related peptide (RFRP) expression in Syrian hamsters (Mesocricetus auratus). J. Biol. Rhythm. 2010, 25, 176–185. [Google Scholar] [CrossRef]
- Tsutsui, K.; Bentley, G.E.; Kriegsfeld, L.J.; Osugi, T.; Seong, J.Y.; Vaudry, H. Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: New key neuropeptides controlling reproduction. J. Neuroendocr. 2010, 22, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Ubuka, T.; Bentley, G.E.; Kriegsfeld, L.J. Gonadotropin-inhibitory hormone (GnIH): Discovery, progress and prospect. Gen. Comp. Endocrinol. 2012, 177, 305–314. [Google Scholar] [CrossRef]
- Tsutsui, K.; Ubuka, T.; Son, Y.L.; Bentley, G.E.; Kriegsfeld, L.J. Contribution of GnIH Research to the Progress of Reproductive Neuroendocrinology. Front. Endocrinol. 2015, 6, 179. [Google Scholar] [CrossRef] [PubMed]
- Kriegsfeld, L.J.; Ubuka, T.; Bentley, G.E.; Tsutsui, K. Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals. Front. Neuroendocr. 2015, 37, 65–75. [Google Scholar] [CrossRef]
- Smith, J.T.; Coolen, L.M.; Kriegsfeld, L.J.; Sari, I.P.; Jaafarzadehshirazi, M.R.; Maltby, M.; Bateman, K.; Goodman, R.L.; Tilbrook, A.J.; Ubuka, T.; et al. Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: A novel medium for seasonal breeding in the sheep. Endocrinology 2008, 149, 5770–5782. [Google Scholar] [CrossRef] [PubMed]
- Kriegsfeld, L.J.; Gibson, E.M.; Williams, W.P.; Zhao, S.; Mason, A.O.; Bentley, G.E.; Tsutsui, K. The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J. Neuroendocr. 2010, 22, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.Z.; Poling, M.C.; Corr, M.; Cornes, P.A.; Augustine, R.A.; Quennell, J.H.; Kauffman, A.S.; Anderson, G.M. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology 2012, 153, 3770–3779. [Google Scholar] [CrossRef]
- Bentley, G.E.; Perfito, N.; Ukena, K.; Tsutsui, K.; Wingfield, J.C. Gonadotropin-inhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chicken-gonadotropin-releasing hormone. J. Neuroendocr. 2003, 15, 794–802. [Google Scholar] [CrossRef]
- Ducret, E.; Anderson, G.M.; Herbison, A.E. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology 2009, 150, 2799–2804. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Dumalska, I.; Morozova, E.; van den Pol, A.N.; Alreja, M. Gonadotropin inhibitory hormone inhibits basal forebrain vGluT2-gonadotropin-releasing hormone neurons via a direct postsynaptic mechanism. J. Physiol. 2009, 587, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Poling, M.C.; Quennell, J.H.; Anderson, G.M.; Kauffman, A.S. Kisspeptin neurones do not directly signal to RFRP-3 neurones but RFRP-3 may directly modulate a subset of hypothalamic kisspeptin cells in mice. J. Neuroendocr. 2013, 25, 876–886. [Google Scholar] [CrossRef]
- Maddineni, S.; Ocon-Grove, O.M.; Krzysik-Walker, S.M.; Hendricks, G.L.; Proudman, J.A.; Ramachandran, R. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: Potential influence of sexual maturation and ovarian steroids. J. Neuroendocr. 2008, 20, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Matsuzaki, T.; Iwasa, T.; Yasui, T.; Irahara, M.; Osugi, T.; Tsutsui, K. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J. Endocrinol. 2008, 199, 105–112. [Google Scholar] [CrossRef]
- Gibson, E.M.; Humber, S.A.; Jain, S.; Williams, W.P.; Zhao, S.; Bentley, G.E.; Tsutsui, K.; Kriegsfeld, L.J. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 2008, 149, 4958–4969. [Google Scholar] [CrossRef] [PubMed]
- Kadokawa, H.; Shibata, M.; Tanaka, Y.; Kojima, T.; Matsumoto, K.; Oshima, K.; Yamamoto, N. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest. Anim. Endocrinol. 2009, 36, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Sari, I.P.; Rao, A.; Smith, J.T.; Tilbrook, A.J.; Clarke, I.J. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 2009, 150, 5549–5556. [Google Scholar] [CrossRef]
- Bentley, G.E.; Ubuka, T.; McGuire, N.L.; Chowdhury, V.S.; Morita, Y.; Yano, T.; Hasunuma, I.; Binns, M.; Wingfield, J.C.; Tsutsui, K. Gonadotropin-inhibitory hormone and its receptor in the avian reproductive system. Gen. Comp. Endocrinol. 2008, 156, 34–43. [Google Scholar] [CrossRef]
- McGuire, N.L.; Bentley, G.E. A functional neuropeptide system in vertebrate gonads: Gonadotropin-inhibitory hormone and its receptor in testes of field-caught house sparrow (Passer domesticus). Gen. Comp. Endocrinol. 2010, 166, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, E.; Yang, C.; Bentley, G.E.; Tsutsui, K.; Kriegsfeld, L.J. RFamide-related peptide and messenger ribonucleic acid expression in mammalian testis: Association with the spermatogenic cycle. Endocrinology 2010, 151, 617–627. [Google Scholar] [CrossRef]
- Kiyohara, M.; Son, Y.L.; Tsutsui, K. Involvement of gonadotropin-inhibitory hormone in pubertal disorders induced by thyroid status. Sci. Rep. 2017, 7, 1042. [Google Scholar] [CrossRef]
- León, S.; García-Galiano, D.; Ruiz-Pino, F.; Barroso, A.; Manfredi-Lozano, M.; Romero-Ruiz, A.; Roa, J.; Vázquez, M.J.; Gaytan, F.; Blomenrohr, M.; et al. Physiological roles of gonadotropin-inhibitory hormone signaling in the control of mammalian reproductive axis: Studies in the NPFF1 receptor null mouse. Endocrinology 2014, 155, 2953–2965. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Oldfield, B.J.; Clarke, I.J. Projections of RFamide-related peptide-3 neurones in the ovine hypothalamus, with special reference to regions regulating energy balance and reproduction. J. Neuroendocr. 2009, 21, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Kirby, E.D.; Geraghty, A.C.; Ubuka, T.; Bentley, G.E.; Kaufer, D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc. Natl. Acad. Sci. USA 2009, 106, 11324–11329. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.L.; Ubuka, T.; Narihiro, M.; Fukuda, Y.; Hasunuma, I.; Yamamoto, K.; Belsham, D.D.; Tsutsui, K. Molecular basis for the activation of gonadotropin-inhibitory hormone gene transcription by corticosterone. Endocrinology 2014, 155, 1817–1826. [Google Scholar] [CrossRef]
- Geraghty, A.C.; Muroy, S.E.; Zhao, S.; Bentley, G.E.; Kriegsfeld, L.J.; Kaufer, D. Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption. Elife 2015, 4, e04316. [Google Scholar] [CrossRef]
- Moustafa, A. Changes in nitric oxide, carbon monoxide, hydrogen sulfide and male reproductive hormones in response to chronic restraint stress in rats. Free Radic. Biol. Med. 2021, 162, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.A.; Song, C.I.; Hughes, J.K.; Kreisman, M.J.; Parra, R.A.; Haisenleder, D.J.; Kauffman, A.S.; Breen, K.M. Acute Psychosocial Stress Inhibits LH Pulsatility and Kiss1 Neuronal Activation in Female Mice. Endocrinology 2017, 158, 3716–3723. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.A.; Hughes, J.K.; Parra, R.A.; Volk, K.M.; Kauffman, A.S. Stress rapidly suppresses in vivo LH pulses and increases activation of RFRP-3 neurons in male mice. J. Endocrinol. 2018, 239, 339–350. [Google Scholar] [CrossRef]
- Mamgain, A.; Sawyer, I.L.; Timajo, D.A.M.; Rizwan, M.Z.; Evans, M.C.; Ancel, C.M.; Inglis, M.A.; Anderson, G.M. RFamide-Related Peptide Neurons Modulate Reproductive Function and Stress Responses. J. Neurosci. 2021, 41, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Calisi, R.M.; Rizzo, N.O.; Bentley, G.E. Seasonal differences in hypothalamic EGR-1 and GnIH expression following capture-handling stress in house sparrows (Passer domesticus). Gen. Comp. Endocrinol. 2008, 157, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Simonin, F.; Schmitt, M.; Laulin, J.-P.; Laboureyras, E.; Jhamandas, J.H.; MacTavish, D.; Matifas, A.; Mollereau, C.; Laurent, P.; Parmentier, M.; et al. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc. Natl. Acad. Sci. USA 2006, 103, 466–471. [Google Scholar] [CrossRef]
- Batool, A.; Naz, R.; Wazir, M.; Azam, A.; Ullah, R.; Wahab, F.; Shahab, M. Acute fasting-induced repression of the hypothalamic-pituitary-gonadal axis is reversed by RF-9 administration in the adult male macaque. Horm. Metab. Res. 2014, 46, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.E.; Benton, N.A.; Russo, K.A.; Klingerman, C.M.; Williams, W.P.; Simberlund, J.; Abdulhay, A.; Brozek, J.M.; Kriegsfeld, L.J. RFamide-related Peptide-3 and the Trade-off Between Reproductive and Ingestive Behavior. Integr. Comp. Biol. 2017, 57, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, V.S.; Tomonaga, S.; Nishimura, S.; Tabata, S.; Cockrem, J.F.; Tsutsui, K.; Furuse, M. Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comp. Biochem. Physiol. Part. A Mol. Integr. Physiol. 2012, 162, 227–233. [Google Scholar] [CrossRef]
- Bahry, M.A.; Yang, H.; Tran, P.V.; Do, P.H.; Han, G.; Eltahan, H.M.; Chowdhury, V.S.; Furuse, M. Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides 2018, 71, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.L.; Ubuka, T.; Tsutsui, K. Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front. Neuroendocr. 2022, 64, 100953. [Google Scholar] [CrossRef] [PubMed]
- McGuire, N.L.; Koh, A.; Bentley, G.E. The direct response of the gonads to cues of stress in a temperate songbird species is season-dependent. PeerJ 2013, 1, e139. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.J.; Bartolini, D.; Conductier, G.; Henry, B.A. Stress Increases Gonadotropin Inhibitory Hormone Cell Activity and Input to GnRH Cells in Ewes. Endocrinology 2016, 157, 4339–4350. [Google Scholar] [CrossRef]
- Samson, W.K.; Keown, C.; Samson, C.K.; Samson, H.W.; Lane, B.; Baker, J.R.; Taylor, M.M. Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion. Endocrine 2003, 20, 59–66. [Google Scholar] [CrossRef]
- Kim, J.S.; Brownjohn, P.W.; Dyer, B.S.; Beltramo, M.; Walker, C.S.; Hay, D.L.; Painter, G.F.; Tyndall, J.D.; Anderson, G.M. Anxiogenic and Stressor Effects of the Hypothalamic Neuropeptide RFRP-3 Are Overcome by the NPFFR Antagonist GJ14. Endocrinology 2015, 156, 4152–4162. [Google Scholar] [CrossRef]
- Prevot, V.; Croix, D.; Bouret, S.; Dutoit, S.; Tramu, G.; Stefano, G.B.; Beauvillain, J.C. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: Implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 1999, 94, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, T.; Hirunagi, K.; Ebihara, S.; Yoshimura, T. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 2004, 145, 4264–4267. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, T.; Yasuo, S.; Hirunagi, K.; Ebihara, S.; Yoshimura, T. T(3) implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res. 2006, 324, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Morton, G.J.; Meek, T.H.; Schwartz, M.W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 2014, 15, 367–378. [Google Scholar] [CrossRef]
- Roh, E.; Song, D.K.; Kim, M.S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 2016, 48, e216. [Google Scholar] [CrossRef]
- Tachibana, T.; Sato, M.; Takahashi, H.; Ukena, K.; Tsutsui, K.; Furuse, M. Gonadotropin-inhibiting hormone stimulates feeding behavior in chicks. Brain Res. 2005, 1050, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.J.; Smith, J.T.; Henry, B.A.; Oldfield, B.J.; Stefanidis, A.; Millar, R.P.; Sari, I.P.; Chng, K.; Fabre-Nys, C.; Caraty, A.; et al. Gonadotropin-inhibitory hormone is a hypothalamic peptide that provides a molecular switch between reproduction and feeding. Neuroendocrinology 2012, 95, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Fraley, G.S.; Coombs, E.; Gerometta, E.; Colton, S.; Sharp, P.J.; Li, Q.; Clarke, I.J. Distribution and sequence of gonadotropin-inhibitory hormone and its potential role as a molecular link between feeding and reproductive systems in the Pekin duck (Anas platyrhynchos domestica). Gen. Comp. Endocrinol. 2013, 184, 103–110. [Google Scholar] [CrossRef]
- McConn, B.; Wang, G.; Yi, J.; Gilbert, E.R.; Osugi, T.; Ubuka, T.; Tsutsui, K.; Chowdhury, V.S.; Furuse, M.; Cline, M.A. Gonadotropin-inhibitory hormone-stimulation of food intake is mediated by hypothalamic effects in chicks. Neuropeptides 2014, 48, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, S.; Narimatsu, Y.; Fukumura, K.; Iwakoshi-Ukena, E.; Furumitsu, M.; Ukena, K. Effects of Chronic Intracerebroventricular Infusion of RFamide-Related Peptide-3 on Energy Metabolism in Male Mice. Int. J. Mol. Sci. 2020, 21, 8606. [Google Scholar] [CrossRef] [PubMed]
- Cazarez-Marquez, F.; Milesi, S.; Laran-Chich, M.P.; Klosen, P.; Kalsbeek, A.; Simonneaux, V. Kisspeptin and RFRP3 modulate body mass in Phodopus sungorus via two different neuroendocrine pathways. J. Neuroendocr. 2019, 31, e12710. [Google Scholar] [CrossRef]
- Cázarez-Márquez, F.; Laran-Chich, M.P.; Klosen, P.; Kalsbeek, A.; Simonneaux, V. RFRP3 increases food intake in a sex-dependent manner in the seasonal hamster Phodopus sungorus. J. Neuroendocr. 2020, 32, e12845. [Google Scholar] [CrossRef]
- Cázarez-Márquez, F.; Eliveld, J.; Ritsema, W.; Foppen, E.; Bossenbroek, Y.; Pelizzari, S.; Simonneaux, V.; Kalsbeek, A. Role of central kisspeptin and RFRP-3 in energy metabolism in the male Wistar rat. J. Neuroendocr. 2021, 33, e12973. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, A.; Laszlo, K.; Galosi, R.; Toth, K.; Ollmann, T.; Peczely, L.; Lenard, L. Microinjection of RFRP-1 in the central nucleus of amygdala decreases food intake in the rat. Brain Res. Bull. 2012, 88, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Guan, X.M.; Martin, W.J.; McDonald, T.P.; Clements, M.K.; Jiang, Q.; Zeng, Z.; Jacobson, M.; Williams, D.L.; Yu, H.; et al. Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J. Biol. Chem. 2001, 276, 36961–36969. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, J.S.; Coleman, H.A.; Enriori, P.J.; Parkington, H.C.; Li, Q.; Pereira, A.; Cowley, M.A.; Clarke, I.J. Paradoxical effect of gonadotrophin-inhibiting hormone to negatively regulate neuropeptide Y neurones in mouse arcuate nucleus. J. Neuroendocr. 2013, 25, 1308–1317. [Google Scholar] [CrossRef]
- Fu, L.Y.; van den Pol, A.N. Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J. Neurosci. 2010, 30, 10205–10219. [Google Scholar] [CrossRef]
- Leon, S.; Velasco, I.; Vázquez, M.J.; Barroso, A.; Beiroa, D.; Heras, V.; Ruiz-Pino, F.; Manfredi-Lozano, M.; Romero-Ruiz, A.; Sanchez-Garrido, M.A.; et al. Sex-Biased Physiological Roles of NPFF1R, the Canonical Receptor of RFRP-3, in Food Intake and Metabolic Homeostasis Revealed by its Congenital Ablation in mice. Metab. Clin. Exp. 2018, 87, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Poling, M.C.; Shieh, M.P.; Munaganuru, N.; Luo, E.; Kauffman, A.S. Examination of the influence of leptin and acute metabolic challenge on RFRP-3 neurons of mice in development and adulthood. Neuroendocrinology 2014, 100, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.Z.; Harbid, A.A.; Inglis, M.A.; Quennell, J.H.; Anderson, G.M. Evidence that hypothalamic RFamide related peptide-3 neurones are not leptin-responsive in mice and rats. J. Neuroendocr. 2014, 26, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Cowley, M.A.; Smith, R.G.; Diano, S.; Tschop, M.; Pronchuk, N.; Grove, K.L.; Strasburger, C.J.; Bidlingmaier, M.; Esterman, M.; Heiman, M.L.; et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003, 37, 649–661. [Google Scholar] [CrossRef]
- Lu, S.; Guan, J.L.; Wang, Q.P.; Uehara, K.; Yamada, S.; Goto, N.; Date, Y.; Nakazato, M.; Kojima, M.; Kangawa, K.; et al. Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci. Lett. 2002, 321, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, H.; Kitamura, Y.; Hosono, T.; Kintaka, Y.; Seki, M.; Takenoya, F.; Hori, Y.; Nonaka, N.; Arata, S.; Shioda, S. Visualization of ghrelin-producing neurons in the hypothalamic arcuate nucleus using ghrelin-EGFP transgenic mice. Regul. Pept. 2008, 145, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Celik, O.; Celik, N.; Aydin, S.; Aygun, B.K.; Haberal, E.T.; Kuloglu, T.; Ulas, M.; Aktun, L.H.; Acet, M.; Celik, S. Ghrelin action on GnRH neurons and pituitary gonadotropes might be mediated by GnIH-GPR147 system. Horm. Mol. Biol. Clin. Investig. 2016, 25, 121–128. [Google Scholar] [CrossRef]
- Singh, P.; Anjum, S.; Srivastava, R.K.; Tsutsui, K.; Krishna, A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front. Neuroendocr. 2022, 65, 100979. [Google Scholar] [CrossRef] [PubMed]
- van Harmelen, V.; Dicker, A.; Sjolin, E.; Blomqvist, L.; Wiren, M.; Hoffstedt, J.; Ryden, M.; Arner, P. Effects of pain controlling neuropeptides on human fat cell lipolysis. Int. J. Obes. 2010, 34, 1333–1340. [Google Scholar] [CrossRef]
- Huo, K.; Li, X.; Hu, W.; Song, X.; Zhang, D.; Zhang, X.; Chen, X.; Yuan, J.; Zuo, J.; Wang, X. RFRP-3, the Mammalian Ortholog of GnIH, Is a Novel Modulator Involved in Food Intake and Glucose Homeostasis. Front. Endocrinol. 2020, 11, 194. [Google Scholar] [CrossRef]
- Lefrere, I.; De Coppet, P.; Camelin, J.C.; Le Lay, S.; Mercier, N.; Elshourbagy, N.; Bril, A.; Berrebi-Bertrand, I.; Feve, B.; Krief, S. Neuropeptide AF and FF modulation of adipocyte metabolism. Primary insights from functional genomics and effects on beta-adrenergic responsiveness. J. Biol. Chem. 2002, 277, 39169–39178. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Yu, X.; Jia, A.; Ming, J.; Ji, Q. RFamide-related peptide-3 promotes alpha TC1 clone 6 cell survival likely via GPR147. Peptides 2018, 107, 39–44. [Google Scholar] [CrossRef]
- Li, X.; Su, J.; Lei, Z.; Zhao, Y.; Jin, M.; Fang, R.; Zheng, L.; Jiao, Y. Gonadotropin-inhibitory hormone (GnIH) and its receptor in the female pig: cDNA cloning, expression in tissues and expression pattern in the reproductive axis during the estrous cycle. Peptides 2012, 36, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Gospodarska, E.; Kozak, L.P.; Jaroslawska, J. Isolation and identification of endogenous RFamide-related peptides 1 and 3 in the mouse hypothalamus. J. Neuroendocr. 2019, 31, e12668. [Google Scholar] [CrossRef]
- Anjum, S.; Krishna, A.; Tsutsui, K. Possible Role of GnIH as a Mediator between Adiposity and Impaired Testicular Function. Front. Endocrinol. 2016, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Chen, L.; Song, X.; Zhang, X.; Xu, W.; Han, D.; Zuo, J.; Hu, W.; Shi, Y.; Cao, Y.; et al. Possible Role of GnIH as a Novel Link between Hyperphagia-Induced Obesity-Related Metabolic Derangements and Hypogonadism in Male Mice. Int. J. Mol. Sci. 2022, 23, 8066. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Song, X.; Han, D.; Han, K.; Xu, W.; Luo, R.; Cao, Y.; Shi, Y.; Liu, C.; et al. Peripheral Gonadotropin-Inhibitory Hormone (GnIH) Acting as a Novel Modulator Involved in Hyperphagia-Induced Obesity and Associated Disorders of Metabolism in an In Vivo Female Piglet Model. Int. J. Mol. Sci. 2022, 23, 13956. [Google Scholar] [CrossRef]
- Xu, C.; Han, D.; Song, X.; Zhang, X.; Liu, C.; Zhang, J.; Shen, B.; Li, Z.; Ma, R.; Li, Y.; et al. The possibly role of GnIH in stress and gut dysfunction in chicken. Poult. Sci. 2024, 103, 103757. [Google Scholar] [CrossRef]
- De Jong, K.A.; Siddig, S.; Pfeifer, A.; Nikolaev, V.O. The role of compartmentalized beta-AR/cAMP signaling in the regulation of lipolysis in white and brown adipocytes. FEBS J. 2025, 292, 261–271. [Google Scholar] [CrossRef]
- Granata, R.; Settanni, F.; Trovato, L.; Gallo, D.; Gesmundo, I.; Nano, R.; Gallo, M.P.; Bergandi, L.; Volante, M.; Alloatti, G.; et al. RFamide peptides 43RFa and 26RFa both promote survival of pancreatic beta-cells and human pancreatic islets but exert opposite effects on insulin secretion. Diabetes 2014, 63, 2380–2393. [Google Scholar] [CrossRef] [PubMed]
- Benton, N.A.; Russo, K.A.; Brozek, J.M.; Andrews, R.J.; Kim, V.J.; Kriegsfeld, L.J.; Schneider, J.E. Food restriction-induced changes in motivation differ with stages of the estrous cycle and are closely linked to RFamide-related peptide-3 but not kisspeptin in Syrian hamsters. Physiol. Behav. 2018, 190, 43–60. [Google Scholar] [CrossRef]
- Klingerman, C.M.; Williams, W.P.; Simberlund, J.; Brahme, N.; Prasad, A.; Schneider, J.E.; Kriegsfeld, L.J. Food Restriction-Induced Changes in Gonadotropin-Inhibiting Hormone Cells are Associated with Changes in Sexual Motivation and Food Hoarding, but not Sexual Performance and Food Intake. Front. Endocrinol. 2011, 2, 101. [Google Scholar] [CrossRef] [PubMed]
- Lynn, S.E.; Perfito, N.; Guardado, D.; Bentley, G.E. Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata). Gen. Comp. Endocrinol. 2015, 215, 1–9. [Google Scholar] [CrossRef]
- Tang, F.; Hsieh, A.C.; Lee, C.P.; Baconshone, J. Interaction of cold and starvation in the regulation of plasma corticosterone levels in the male rat. Horm. Metab. Res. 1984, 16, 445–448. [Google Scholar] [CrossRef]
- Pirke, K.M.; Spyra, B. Catecholamine turnover in the brain and the regulation of luteinizing hormone and corticosterone in starved male rats. Acta Endocrinol. 1982, 100, 168–176. [Google Scholar] [CrossRef]
- Palmblad, J.; Levi, L.; Burger, A.; Melander, A.; Westgren, U.; von Schenck, H.; Skude, G. Effects of total energy withdrawal (fasting) on thelevels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3, and rT3 in healthy males. Acta Med. Scand. 1977, 201, 15–22. [Google Scholar] [CrossRef]
Animal Models | Injection | Metabolic Effects | Ref. |
---|---|---|---|
Male domestic chicken chick | Single ICV (0.3, 0.9, or 2.6 nmol) | • Increased food intake at 1 and 2 h | [78] |
Single ICV of anti-GnIH antiserum | • Reduction in food deprivation-induced feeding • No effect on ad libitum feeding | ||
Male domestic chicken chick | Single ICV (0.9, 2.6, or 7.8 nmol) | • Increased food intake at 0.5 to 2 h • No effect on water intake • Increased feeding pecks at 5 min to 30 min | [81] |
Adult male Pekin duck | Single ICV (100 ng) | • Increased food intake at 2 h | [80] |
Adult male mouse | Single ICV (25, 50, or 100 ng) | • Increased food intake at 0.5, 1, 2 h | [79] |
Adult male mouse | ICV (6 nmol/day) for 13 days | • Increased food intake, BW, BAT and liver mass • No effects on WATs and muscle mass • Decreased O2/CO2 metabolism, energy expenditure, and core body temperature 1 • No effects on locomotor activity | [82] |
SD-adapted male hamster | ICV (8.25 pmol/h) for 5 weeks | • Increased BW and food intake • Increased circulating insulin and leptin • No effects on hypothalamic metabolic genes 2 | [83] |
SD-adapted female hamster | • No effects on BW, food intake, circulating insulin/leptin, and hypothalamic metabolic genes | ||
Male hamster | Single ICV (0.5 or 1.5 µg) | • No effect on food intake regardless of LD or SD | [84] |
Female hamster | • Increased food intake in both LD (0.5 µg) and SD (1.5 µg), and NPY expression at 3 h | ||
Adult male rat | Single ICV (100 or 500 ng) | • Increased food intake at 2 h • No effect on BW at 24 h | [22] |
Adult male rat | ICV (1 µg/h) for 5 days | • Increased food and water intake • No effects on whole-body energy expenditure and BAT thermogenesis | [79] |
Adult male rat | Single ICV (50 or 250 pmol) | • No effect on food intake | [85] |
Adult male rat | Intra-amygdaloid microinjection of RFRP-1 (37.8 pmol) | • Decreased liquid food intake over 1 h • No effect on locomotor activity | [86] |
RF9 (41.4 pmol) + RFRP-1 | • Prevents RFRP-1 effect on food intake | ||
Ovariectomized adult female sheep | ICV (40 µg/h) for 4 h | • Increased food intake at 2, 4 h • No effects on thermogenesis of muscle and visceral WAT | [79] |
Adult male cynomolgus macaque monkey | ICV (3 µg/kg/h) for 9 days | • Increased food intake | [79] |
Tissue | Subject | Expression of GnIH or GnIH-Rs | Method | Ref. | |
---|---|---|---|---|---|
Adipose tissue | Human | Tissue | GPR147/GPR74 | RT-PCR | [98] |
Mature adipocyte | GPR147/GPR74 | Western | |||
Rat | Tissue | GPR147 | RT-PCR, Western | [99] | |
Mouse | Tissue | GPR147/GPR74 | RT-PCR | Figure 1 | |
Japanese quail | Tissue | GPR147 | RT-PCR | Figure 1 | |
Mouse 3T3-L1 1 | Mature adipocyte 2 | GPR147/GPR74 | RT-PCR | [100] | |
Pancreas | Piglet | Islet | GnIH | Immunostaining | [29] |
Rat | Tissue | GnIH and GPR147 | RT-PCR, Western, Immunostaining | [99] | |
Mouse | Islet | GPR147 | Immunostaining | [101] | |
Mouse αTC1 1 | α-cells of islet | GPR147 | RT-PCR, Immunostaining | [101] | |
GI tract | Piglet | Esophagus, stomach, small and large intestine | GnIH | Immunostaining | [29] |
Female pig | Intestine | GPR147 | RT-PCR | [102] | |
Mouse | Stomach, ileum, and colon | GnIH and GPR147 | RT-PCR | [103] | |
Liver | Rat | Tissue | GPR147 | RT-PCR, Western | [99] |
Skeletal muscle | Rat | Tissue | GPR147 | RT-PCR, Western | [99] |
Animal Models | IP Injection of GnIH | Metabolic Effects | Ref. |
---|---|---|---|
Female domestic chicken | 30 nmol × twice/day for 14 days | • Disrupts the physical and chemical barriers of the intestine • Increased intestinal inflammation | [107] |
Male mouse | 20 ng, 200 ng, or 2 µg/day for 8 days | • Increased food intake • Increased BW • Increased WAT mass | [104] |
Male mouse | 20 µg × twice/day for 21 days | • Increased food intake and BW • Increased liver and eWAT mass • Decreased testis mass • Glucose intolerance and insulin resistance | [105] |
Rat (male and female mixed population) | 1 or 10 µg × twice/day for 14 days | • Increased food intake during photophase • Increased meal frequency • Increased BW • Glucose intolerance and insulin resistance • Increased inflammation in liver, skeletal muscle, or WAT | [99] |
Female piglet | 0.1 or 1 mg × twice/day for 14 days | • Increased food intake and BW • Increased organ mass in pancreas, pgWAT, iWAT and liver • Glucose intolerance • Altered gene expression in liver, pgWAT, and iWAT related to lipid and glucose metabolism | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.L.; Meddle, S.L.; Tobari, Y. Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells 2025, 14, 267. https://doi.org/10.3390/cells14040267
Son YL, Meddle SL, Tobari Y. Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells. 2025; 14(4):267. https://doi.org/10.3390/cells14040267
Chicago/Turabian StyleSon, You Lee, Simone L. Meddle, and Yasuko Tobari. 2025. "Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels" Cells 14, no. 4: 267. https://doi.org/10.3390/cells14040267
APA StyleSon, Y. L., Meddle, S. L., & Tobari, Y. (2025). Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells, 14(4), 267. https://doi.org/10.3390/cells14040267