The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation
Abstract
:1. Introduction
2. Characteristics of Cancer Stem Cells
3. Regulation of BMP Signaling by GREM1
3.1. GREM1 Signaling in Cancer
3.2. GREM1 Regulation of CSC Stemness Maintenance
3.3. Impact of GREM1 on Tumor Microenvironment
3.4. GREM1 as a Therapeutic Target in Cancer
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer. Global Cancer Burden Growing, Amidst Mounting Need for Services. Available online: https://www.iarc.who.int/news-events/global-cancer-burden-growing-amidst-mounting-need-for-services/ (accessed on 27 December 2024).
- World Cancer Research Fund. UK Cancer Statistics. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/uk-cancer-statistics/ (accessed on 5 March 2025).
- NHS England. NHS Diagnoses Thousands More Cancers as Cases Rise by 5%. Available online: https://www.england.nhs.uk/2024/10/nhs-diagnoses-thousands-more-cancers-as-cases-rise-by-5/#:~:text=The%20latest%20cancer%20registration%20statistics,2022%2C%20from%20167%2C917%20to%20180%2C877 (accessed on 5 March 2025).
- Tang, Y.; Pu, X.; Yuan, X.; Pang, Z.; Li, F.; Wang, X. Targeting KRASG12D mutation in non-small cell lung cancer: Molecular mechanisms and therapeutic potential. Cancer Gene Ther. 2024, 31, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.Y.; Moon, K.; Song, H.S.; Lee, M.S. Metabolic Regulation by p53: Implications for Cancer Therapy. Mol. Cells 2025, 48, 100198. [Google Scholar] [CrossRef]
- Kumari, R.; Ghava, D.; Rathod, R.; Panda, A.K.; Kumar, S.; Behera, S.K. Molecular Dynamics of Adenomatous Polyposis Coli (APC) Protein and Its Inhibitors: A Special Insight to Colorectal Cancer. Crit. Rev. Oncog. 2025, 30, 91–105. [Google Scholar] [CrossRef]
- Fusco, N.; Malapelle, U. Next-generation sequencing for PTEN testing in HR+/HER2- metastatic breast cancer. Crit. Rev. Oncol. Hematol. 2025, 207, 104626. [Google Scholar] [CrossRef]
- Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Development of an Experimental Model for Analyzing Drug Resistance in Colorectal Cancer. Cancers 2018, 10, 164. [Google Scholar] [CrossRef]
- Yan, K.; Wu, Q.; Yan, D.H.; Lee, C.H.; Rahim, N.; Tritschler, I.; DeVecchio, J.; Kalady, M.F.; Hjelmeland, A.B.; Rich, J.N. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev. 2014, 28, 1085–1100. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, K.; Xi, Q. BMP signaling in cancer stemness and differentiation. Cell Regen. 2023, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Dutton, L.R.; Hoare, O.P.; McCorry, A.M.B.; Redmond, K.L.; Adam, N.E.; Canamara, S.; Bingham, V.; Mullan, P.B.; Lawler, M.; Dunne, P.D.; et al. Fibroblast-derived Gremlin1 localises to epithelial cells at the base of the intestinal crypt. Oncotarget 2019, 10, 4630–4639. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.; Irshad, S.; Bansal, M.; Rafferty, H.; Boitsova, T.; Bardella, C.; Jaeger, E.; Lewis, A.; Freeman-Mills, L.; Giner, F.C.; et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat. Med. 2015, 21, 62–70. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, G.; Guo, M.; Zhu, N.; Chen, X.; Yan, Y.; Li, N.; Yu, W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024, 31, 10732748241274196. [Google Scholar] [CrossRef]
- Shay, J.E.S.; Yilmaz, O.H. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Erdem, M.; Lee, K.H.; Hardt, M.; Regan, J.L.; Kobelt, D.; Walther, W.; Mokrizkij, M.; Regenbrecht, C.; Stein, U. MACC1 Regulates LGR5 to Promote Cancer Stem Cell Properties in Colorectal Cancer. Cancers 2024, 16, 604. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, H.; Liu, Y.; Guo, S.; Yan, Z.; Chen, G.; Wu, Q.; Xu, S.; Zhou, Q.; Liu, L.; et al. Potential markers of cancer stem-like cells in ESCC: A review of the current knowledge. Front. Oncol. 2023, 13, 1324819. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, M.; Hu, Y.; Wei, Y.; Wei, X.; Luo, M. Regulation and signaling pathways in cancer stem cells: Implications for targeted therapy for cancer. Mol. Cancer 2023, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Radak, M.; Fallahi, H. The Epigenetic Regulation of Quiescent in Stem Cells. Glob. Med. Genet. 2023, 10, 339–344. [Google Scholar] [CrossRef]
- O’Donnell, E., 3rd; Munoz, M.; Davis, R.; Bergonio, J.; Randall, R.L.; Tepper, C.; Carr-Ascher, J. Genetic and epigenetic characterization of sarcoma stem cells across subtypes identifies EZH2 as a therapeutic target. NPJ Precis. Oncol. 2025, 9, 7. [Google Scholar] [CrossRef]
- Paschall, A.V.; Liu, K. Epigenetic and Immune Regulation of Colorectal Cancer Stem Cells. Curr. Color. Cancer Rep. 2015, 11, 414–421. [Google Scholar] [CrossRef]
- Caslini, C.; Hong, S.; Ban, Y.J.; Chen, X.S.; Ince, T.A. HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene 2019, 38, 6599–6614. [Google Scholar] [CrossRef]
- Pourmahdi, M.; Saber, A.; Rajabi, A.; Abdolahi, S.; Ebrahimi, P.; Safaralizadeh, R. Key Epigenetic Events Involved in the Maintenance of Breast Cancer Stem Cells. Curr. Stem Cell Res. Ther. 2021, 16, 877–887. [Google Scholar] [CrossRef]
- Sharma, S.; Chung, C.Y.; Uryu, S.; Petrovic, J.; Cao, J.; Rickard, A.; Nady, N.; Greasley, S.; Johnson, E.; Brodsky, O.; et al. Discovery of a highly potent, selective, orally bioavailable inhibitor of KAT6A/B histone acetyltransferases with efficacy against KAT6A-high ER+ breast cancer. Cell Chem. Biol. 2023, 30, 1191–1210.e20. [Google Scholar] [CrossRef]
- Adam, R.C.; Yang, H.; Ge, Y.; Infarinato, N.R.; Gur-Cohen, S.; Miao, Y.; Wang, P.; Zhao, Y.; Lu, C.P.; Kim, J.E.; et al. NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat. Cell Biol. 2020, 22, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Fukui, T.; Kido, A.; Katsuya, N.; Kuraoka, K.; Uraoka, N.; Suzuki, T.; Oka, S.; Kotachi, T.; Ashktorab, H.; et al. Discovering cancer stem-like molecule, nuclear factor I X, using spatial transcriptome in gastric cancer. Cancer Sci. 2024, 115, 3180–3193. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Shukla, N.; Kumari, S.; Ansari, M.S.; Gautam, N.K.; Patel, G.K. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188887. [Google Scholar] [CrossRef]
- Wilczynski, B.; Dabrowska, A.; Kulbacka, J.; Baczynska, D. Chemoresistance and the tumor microenvironment: The critical role of cell-cell communication. Cell Commun. Signal. 2024, 22, 486. [Google Scholar] [CrossRef]
- Caldas-Lopes, E.; Gomez-Arteaga, A.; Guzman, M.L. Approaches to Targeting Cancer Stem Cells in Solid Tumors. Curr. Stem Cell Res. Ther. 2019, 14, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Church, R.H.; Krishnakumar, A.; Urbanek, A.; Geschwindner, S.; Meneely, J.; Bianchi, A.; Basta, B.; Monaghan, S.; Elliot, C.; Stromstedt, M.; et al. Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem. J. 2015, 466, 55–68. [Google Scholar] [CrossRef]
- Todd, G.M.; Gao, Z.; Hyvonen, M.; Brazil, D.P.; Ten Dijke, P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020, 137, 115455. [Google Scholar] [CrossRef]
- Brazil, D.P.; Church, R.H.; Surae, S.; Godson, C.; Martin, F. BMP signalling: Agony and antagony in the family. Trends Cell Biol. 2015, 25, 249–264. [Google Scholar] [CrossRef]
- Gomez-Puerto, M.C.; Iyengar, P.V.; Garcia de Vinuesa, A.; Ten Dijke, P.; Sanchez-Duffhues, G. Bone morphogenetic protein receptor signal transduction in human disease. J. Pathol. 2019, 247, 9–20. [Google Scholar] [CrossRef]
- Sapkota, G.; Alarcon, C.; Spagnoli, F.M.; Brivanlou, A.H.; Massague, J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell 2007, 25, 441–454. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, L.; Miyazawa, K.; Ten Dijke, P. Editorial: TGF-beta and BMP signaling in cancer. Front. Cell Dev. Biol. 2022, 10, 1012326. [Google Scholar] [CrossRef] [PubMed]
- Worthley, D.L.; Churchill, M.; Compton, J.T.; Tailor, Y.; Rao, M.; Si, Y.; Levin, D.; Schwartz, M.G.; Uygur, A.; Hayakawa, Y.; et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015, 160, 269–284. [Google Scholar] [CrossRef]
- Ng, J.Q.; Jafarov, T.H.; Little, C.B.; Wang, T.; Ali, A.M.; Ma, Y.; Radford, G.A.; Vrbanac, L.; Ichinose, M.; Whittle, S.; et al. Loss of Grem1-lineage chondrogenic progenitor cells causes osteoarthritis. Nat. Commun. 2023, 14, 6909. [Google Scholar] [CrossRef]
- The Human Protein Atlas. Brain Tissue Expression of GREM1. Available online: https://www.proteinatlas.org/ENSG00000166923-GREM1/brain (accessed on 5 March 2025).
- Sneddon, J.B.; Zhen, H.H.; Montgomery, K.; van de Rijn, M.; Tward, A.D.; West, R.; Gladstone, H.; Chang, H.Y.; Morganroth, G.S.; Oro, A.E.; et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Natl. Acad. Sci. USA 2006, 103, 14842–14847. [Google Scholar] [CrossRef] [PubMed]
- Neckmann, U.; Wolowczyk, C.; Hall, M.; Almaas, E.; Ren, J.; Zhao, S.; Johannessen, B.; Skotheim, R.I.; Bjorkoy, G.; Ten Dijke, P.; et al. GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients. Cell Commun. Signal. 2019, 17, 140. [Google Scholar] [CrossRef]
- Ren, J.; Smid, M.; Iaria, J.; Salvatori, D.C.F.; van Dam, H.; Zhu, H.J.; Martens, J.W.M.; Ten Dijke, P. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019, 21, 109. [Google Scholar] [CrossRef]
- Gao, Z.; Houthuijzen, J.M.; Ten Dijke, P.; Brazil, D.P. GREM1 signaling in cancer: Tumor promotor and suppressor? J. Cell Commun. Signal 2023, 17, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Takeshima, H.; Iida, N.; Hattori, N.; Yamashita, S.; Moro, H.; Yasukawa, Y.; Nishiyama, K.; Hashimoto, T.; Sekine, S.; et al. Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3. Gut 2020, 69, 243–251. [Google Scholar] [CrossRef]
- Tomlinson, I.P.; Carvajal-Carmona, L.G.; Dobbins, S.E.; Tenesa, A.; Jones, A.M.; Howarth, K.; Palles, C.; Broderick, P.; Jaeger, E.E.; Farrington, S.; et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet. 2011, 7, e1002105. [Google Scholar] [CrossRef]
- Lewis, A.; Freeman-Mills, L.; de la Calle-Mustienes, E.; Giraldez-Perez, R.M.; Davis, H.; Jaeger, E.; Becker, M.; Hubner, N.C.; Nguyen, L.N.; Zeron-Medina, J.; et al. A polymorphic enhancer near GREM1 influences bowel cancer risk through differential CDX2 and TCF7L2 binding. Cell Rep. 2014, 8, 983–990. [Google Scholar] [CrossRef]
- Fortini, B.K.; Tring, S.; Devall, M.A.; Ali, M.W.; Plummer, S.J.; Casey, G. SNPs associated with colorectal cancer at 15q13.3 affect risk enhancers that modulate GREM1 gene expression. Hum. Mutat. 2021, 42, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Zou, L.; Ke, J.; Zhang, Y.; Zhu, Y.; Yang, Y.; Gong, Y.; Tian, J.; Zou, D.; et al. A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site. Oncotarget 2017, 8, 61318–61326. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Wen, D.; Xiong, H.; Zhou, Z.; Yan, L. Regulation of Cervical Cancer Development by a Novel Circ_0000212/miR-1236-3p/GREM1 ceRNA Crosstalk. Mol. Biotechnol. 2023, 65, 2086–2098. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Yeh, Y.C.; Shyr, Y.M.; Jan, Y.H.; Chao, Y.; Li, C.P.; Wang, S.E.; Tzeng, C.H.; Chang, P.M.; Liu, C.Y.; et al. Expression of gremlin 1 correlates with increased angiogenesis and progression-free survival in patients with pancreatic neuroendocrine tumors. J. Gastroenterol. 2013, 48, 101–108. [Google Scholar] [CrossRef]
- Lan, L.; Evan, T.; Li, H.; Hussain, A.; Ruiz, E.J.; Zaw Thin, M.; Ferreira, R.M.M.; Ps, H.; Riising, E.M.; Zen, Y.; et al. GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature 2022, 607, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Raja, E.; Komuro, A.; Tanabe, R.; Sakai, S.; Ino, Y.; Saito, N.; Todo, T.; Morikawa, M.; Aburatani, H.; Koinuma, D.; et al. Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene 2017, 36, 4963–4974. [Google Scholar] [CrossRef]
- Savary, K.; Caglayan, D.; Caja, L.; Tzavlaki, K.; Bin Nayeem, S.; Bergstrom, T.; Jiang, Y.; Uhrbom, L.; Forsberg-Nilsson, K.; Westermark, B.; et al. Snail depletes the tumorigenic potential of glioblastoma. Oncogene 2013, 32, 5409–5420. [Google Scholar] [CrossRef]
- Sato, M.; Kawana, K.; Fujimoto, A.; Yoshida, M.; Nakamura, H.; Nishida, H.; Inoue, T.; Taguchi, A.; Takahashi, J.; Adachi, K.; et al. Clinical significance of Gremlin 1 in cervical cancer and its effects on cancer stem cell maintenance. Oncol. Rep. 2016, 35, 391–397. [Google Scholar] [CrossRef]
- Hong, D.; Liu, T.; Huang, W.; Liao, Y.; Wang, L.; Zhang, Z.; Chen, H.; Zhang, X.; Xiang, Q. Gremlin1 Delivered by Mesenchymal Stromal Cells Promoted Epithelial-Mesenchymal Transition in Human Esophageal Squamous Cell Carcinoma. Cell Physiol. Biochem. 2018, 47, 1785–1799. [Google Scholar] [CrossRef]
- Tindall, R.R.; Faraoni, E.Y.; Li, J.; Zhang, Y.; Ting, S.M.; Okeugo, B.; Zhao, X.; Liu, Y.; Younes, M.; Shen, Q.; et al. Increased Gremlin1 Expression in Pancreatic Ductal Adenocarcinoma Promotes a Fibrogenic Stromal Microenvironment. Pancreas 2024, 53, e808–e817. [Google Scholar] [CrossRef]
- Guan, Y.; Cheng, W.; Zou, C.; Wang, T.; Cao, Z. Gremlin1 promotes carcinogenesis of glioma in vitro. Clin. Exp. Pharmacol. Physiol. 2017, 44, 244–256. [Google Scholar] [CrossRef]
- Verheyden, J.M.; Sun, X. An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 2008, 454, 638–641. [Google Scholar] [CrossRef]
- Zuniga, A.; Laurent, F.; Lopez-Rios, J.; Klasen, C.; Matt, N.; Zeller, R. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds. BMC Dev. Biol. 2012, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cheng, L.; Yan, B.; Zhou, C.; Qian, W.; Xiao, Y.; Qin, T.; Cao, J.; Han, L.; Ma, Q.; et al. Overexpression of Gremlin 1 by sonic hedgehog signaling promotes pancreatic cancer progression. Int. J. Oncol. 2018, 53, 2445–2457. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, J.; Xu, P.; Zhang, K.; Xin, Z.; Zhao, H.; Ji, Z.; Zhang, M.; Wang, D.; He, Y.; et al. Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer. Nat. Cancer 2022, 3, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Katoh, Y.; Katoh, M. Hedgehog target genes: Mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr. Mol. Med. 2009, 9, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Horiuchi, S.; Kuramochi, S.; Kawasaki, T.; Kawasumi, H.; Akiyama, S.; Arai, T.; Morinaga, K.; Kimura, T.; Kiyono, T.; et al. Human intestinal organoid-derived PDGFRalpha + mesenchymal stroma enables proliferation and maintenance of LGR4 + epithelial stem cells. Stem Cell Res. Ther. 2024, 15, 16. [Google Scholar] [CrossRef]
- Mitola, S.; Ravelli, C.; Moroni, E.; Salvi, V.; Leali, D.; Ballmer-Hofer, K.; Zammataro, L.; Presta, M. Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 2010, 116, 3677–3680. [Google Scholar] [CrossRef]
- Chiodelli, P.; Mitola, S.; Ravelli, C.; Oreste, P.; Rusnati, M.; Presta, M. Heparan sulfate proteoglycans mediate the angiogenic activity of the vascular endothelial growth factor receptor-2 agonist gremlin. Arter. Thromb. Vasc. Biol. 2011, 31, e116–e127. [Google Scholar] [CrossRef]
- Dutton, L.R.; O’Neill, C.L.; Medina, R.J.; Brazil, D.P. No evidence of Gremlin1-mediated activation of VEGFR2 signaling in endothelial cells. J. Biol. Chem. 2019, 294, 18041–18045. [Google Scholar] [CrossRef]
- Mercurio, A.M. VEGF/Neuropilin Signaling in Cancer Stem Cells. Int. J. Mol. Sci. 2019, 20, 490. [Google Scholar] [CrossRef] [PubMed]
- Groppe, J.; Greenwald, J.; Wiater, E.; Rodriguez-Leon, J.; Economides, A.N.; Kwiatkowski, W.; Baban, K.; Affolter, M.; Vale, W.W.; Izpisua Belmonte, J.C.; et al. Structural basis of BMP signaling inhibition by Noggin, a novel twelve-membered cystine knot protein. J. Bone Jt. Surg. Am. 2003, 85 (Suppl. 3), 52–58. [Google Scholar] [CrossRef]
- Tarragona, M.; Pavlovic, M.; Arnal-Estape, A.; Urosevic, J.; Morales, M.; Guiu, M.; Planet, E.; Gonzalez-Suarez, E.; Gomis, R.R. Identification of NOG as a specific breast cancer bone metastasis-supporting gene. J. Biol. Chem. 2012, 287, 21346–21355. [Google Scholar] [CrossRef]
- Choi, S.; Yu, J.; Park, A.; Dubon, M.J.; Do, J.; Kim, Y.; Nam, D.; Noh, J.; Park, K.S. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci. Rep. 2019, 9, 11724. [Google Scholar] [CrossRef] [PubMed]
- Berglar, I.; Hehlgans, S.; Wehle, A.; Roth, C.; Herold-Mende, C.; Rodel, F.; Kogel, D.; Linder, B. CHRDL1 Regulates Stemness in Glioma Stem-like Cells. Cells 2022, 11, 3917. [Google Scholar] [CrossRef] [PubMed]
- Sosa, J.; Oyelakin, A.; Sinha, S. The Reign of Follistatin in Tumors and Their Microenvironment: Implications for Drug Resistance. Biology 2024, 13, 130. [Google Scholar] [CrossRef]
- Wu, Y.; Clark, K.C.; Niranjan, B.; Chueh, A.C.; Horvath, L.G.; Taylor, R.A.; Daly, R.J. Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts. Mol. Oncol. 2023, 17, 469–486. [Google Scholar] [CrossRef]
- Karagiannis, G.S.; Berk, A.; Dimitromanolakis, A.; Diamandis, E.P. Enrichment map profiling of the cancer invasion front suggests regulation of colorectal cancer progression by the bone morphogenetic protein antagonist, gremlin-1. Mol. Oncol. 2013, 7, 826–839. [Google Scholar] [CrossRef]
- Dai, S.; Xu, F.; Xu, X.; Huang, T.; Wang, Y.; Wang, H.; Xie, Y.; Yue, L.; Zhao, W.; Xia, Y.; et al. miR-455/GREM1 axis promotes colorectal cancer progression and liver metastasis by affecting PI3K/AKT pathway and inducing M2 macrophage polarization. Cancer Cell Int. 2024, 24, 235. [Google Scholar] [CrossRef]
- Kapoor, V.N.; Muller, S.; Keerthivasan, S.; Brown, M.; Chalouni, C.; Storm, E.E.; Castiglioni, A.; Lane, R.; Nitschke, M.; Dominguez, C.X.; et al. Gremlin 1(+) fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat. Immunol. 2021, 22, 571–585. [Google Scholar] [CrossRef]
- Davis, J.M.; Cheng, B.; Drake, M.M.; Yu, Q.; Yang, B.; Li, J.; Liu, C.; Younes, M.; Zhao, X.; Bailey, J.M.; et al. Pancreatic stromal Gremlin 1 expression during pancreatic tumorigenesis. Genes Dis. 2022, 9, 108–115. [Google Scholar] [CrossRef]
- Gentles, A.J.; Hui, A.B.; Feng, W.; Azizi, A.; Nair, R.V.; Bouchard, G.; Knowles, D.A.; Yu, A.; Jeong, Y.; Bejnood, A.; et al. A human lung tumor microenvironment interactome identifies clinically relevant cell-type cross-talk. Genome Biol. 2020, 21, 107. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Yan, E.; Wang, N. Evaluation of GREM1 and THBS2 as prognostic markers in in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 7849–7856. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Y.; Hua, Y.; Cui, M.; Wang, M.; Gao, J.; Liu, Q.; Liao, Q. GREM1 is a novel serum diagnostic marker and potential therapeutic target for pancreatic ductal adenocarcinoma. Front. Oncol. 2022, 12, 968610. [Google Scholar] [CrossRef]
- Ciuclan, L.; Sheppard, K.; Dong, L.; Sutton, D.; Duggan, N.; Hussey, M.; Simmons, J.; Morrell, N.W.; Jarai, G.; Edwards, M.; et al. Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice. Am. J. Pathol. 2013, 183, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.C.; Hewett, D.R.; Panagopoulos, V.; Plakhova, N.; Opperman, K.S.; Bradey, A.L.; Mrozik, K.M.; Vandyke, K.; Mukherjee, S.; Davies, G.C.G.; et al. Targeted Disruption of Bone Marrow Stromal Cell-Derived Gremlin1 Limits Multiple Myeloma Disease Progression In Vivo. Cancers 2020, 12, 2149. [Google Scholar] [CrossRef]
- UCB. Ginisortamab (UCB6114). Available online: https://www.ucb.com/innovation/clinical-studies/clinical-studies-index/Ginisortamab%20%28UCB6114%29 (accessed on 5 March 2025).
- Kim, M.; Yoon, S.; Lee, S.; Ha, S.A.; Kim, H.K.; Kim, J.W.; Chung, J. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion. PLoS ONE 2012, 7, e35100. [Google Scholar] [CrossRef]
- ClinicalTrials. A First-in-Human, Phase 1 Study of TST003 in Subjects with Solid Tumors. Available online: https://clinicaltrials.gov/study/NCT05731271?intr=GREM1&rank=2 (accessed on 5 March 2025).
- Economides, A.N.; Idone, V.J.; Morton, L.C. Human Antibodies to grem1. U.S. Patent US20160024195A1, 13 August 2019. Available online: https://patents.google.com/patent/US20160024195A1/en (accessed on 5 March 2025).
- Liao, Y.; Zhou, D.; Wang, P.; Yang, M.; Jiang, N. Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Discov. 2022, 8, 292. [Google Scholar] [CrossRef]
- Ge, C.; Huang, M.; Han, Y.; Shou, C.; Li, D.; Zhang, Y. Demethyleneberberine Alleviates Pulmonary Fibrosis through Disruption of USP11 Deubiquitinating GREM1. Pharmaceuticals 2024, 17, 279. [Google Scholar] [CrossRef]
- Deng, T.; Yan, G.; Song, X.; Xie, L.; Zhou, Y.; Li, J.; Hu, X.; Li, Z.; Hu, J.; Zhang, Y.; et al. Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc. Natl. Acad. Sci. USA 2018, 115, 4678–4683. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Cai, G.; Huang, P. Circ_DOCK1 regulates USP11 through miR-132-3p to control colorectal cancer progression. World J. Surg. Oncol. 2021, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Yan, H.; Zhang, K.; Liu, Y. Upregulation of USP11 promotes epithelial-to-mesenchymal transition by deubiquitinating Snail in ovarian cancer. Oncol. Rep. 2019, 41, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; De, S.; Brazil, D.P. The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation. Cells 2025, 14, 578. https://doi.org/10.3390/cells14080578
Gao Y, De S, Brazil DP. The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation. Cells. 2025; 14(8):578. https://doi.org/10.3390/cells14080578
Chicago/Turabian StyleGao, Yuhan, Swapnali De, and Derek P. Brazil. 2025. "The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation" Cells 14, no. 8: 578. https://doi.org/10.3390/cells14080578
APA StyleGao, Y., De, S., & Brazil, D. P. (2025). The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation. Cells, 14(8), 578. https://doi.org/10.3390/cells14080578