Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach
Abstract
:1. Introduction
2. Treatment Landscape for Lung Cancer: Immunotherapy in Context
2.1. Immunotherapy
2.2. Surgery
2.3. Chemotherapy
2.4. Radiotherapy
2.5. Targeted Therapies
Drug Name and Availability in Poland Versus in Selected EU Countries | Poland | Italy | Spain | Sweden | Slovenia | Czechia | Estonia |
---|---|---|---|---|---|---|---|
Osimertinib 2nd line post EGFR TKI, T790M+ | |||||||
Osimertinib 1st line, EGFR M+ | |||||||
Crizotinib 1st line, ALK+ patients | |||||||
Crizotinib any line, ROS+ patients | |||||||
Alectinib 1st line, ALK+ patients | |||||||
Dabrafenib-trametinib BRAF+ patients |
Drug | Targeted Mutation | FDA Approved | Available in EU | Stage in Clinical Trials (If Not FDA Approved) |
---|---|---|---|---|
Gefitinib | EGFR exon 19 deletion/L858R mutation | Yes | Yes | - |
Erlotinib | EGFR exon 19 deletion/L858R mutation | Yes | Yes | - |
Osimertinib | EGFR T790M resistance mutation | Yes | Yes | - |
Alectinib | ALK rearrangements | Yes | Yes | - |
Brigatinib | ALK rearrangements | Yes | Yes | - |
Crizotinib | ALK, ROS1 rearrangements | Yes | Yes | - |
Lorlatinib | ALK rearrangements | Yes | Yes | - |
Sotorasib | KRAS G12C mutation | Yes | Yes | - |
Adagrasib | KRAS G12C mutation | Yes | Yes | - |
Selpercatinib | RET fusions | Yes | Yes | - |
Pralsetinib | RET fusions | Yes | Yes | - |
Capmatinib | MET exon 14 skipping mutation | Yes | Yes | - |
Tepotinib | MET exon 14 skipping mutation | Yes | Yes | - |
Amivantamab | EGFR exon 20 insertion mutation | Yes | Yes | - |
Mobocertinib | EGFR exon 20 insertion mutation | Yes | Yes | - |
Entrectinib | ROS1, neurotrophic tyrosine receptor kinase (NTRK) gene fusions | Yes | Yes | - |
Larotrectinib | NTRK gene fusions | Yes | Yes | - |
Nivolumab | PD-1 (immune checkpoint inhibitor) | Yes | Yes | - |
Pembrolizumab | PD-1 (immune checkpoint inhibitor) | Yes | Yes | - |
Atezolizumab | PD-L1 (immune checkpoint inhibitor) | Yes | Yes | - |
Durvalumab | PD-L1 (immune checkpoint inhibitor) | Yes | Yes | - |
Savolitinib | MET exon 14 skipping mutation | No | No | Phase 2/3 |
Dabrafenib/Trametinib | BRAF V600E mutation | Yes | Yes | - |
2.6. Novel Immunotherapeutic Approaches
3. Problem of Resistance to Immunotherapy in Lung Cancer
3.1. Types of Resistance
3.2. Mechanisms of Resistance
3.2.1. Genomic Alterations and Associated Factors
- ★
- STK11 (LKB1) Mutations
- ★
- KEAP1 Mutations
- ★
- JAK1/2 Mutations
3.2.2. Microbiome Influence
3.2.3. Tumour Microenvironment Factors
- ★
- Cancer-Associated Fibroblasts (CAFs)
- ★
- Immune Cell Composition
- ★
- Hypoxia and Angiogenesis
- ★
- Extracellular Matrix and Signalling Pathways
3.2.4. Comorbidities Impact
3.3. Patient Characteristics Associated with Resistance
3.4. Hyperprogression
3.4.1. Genetic Mutations
- STK11 (LKB1) mutations contribute to an immunosuppressive TME by increasing neutrophil recruitment and proinflammatory cytokine production, leading to poor responses to ICIs and an increased likelihood of hyperprogression [162].
- KEAP1 mutations drive hyperactivation of the NRF2 pathway, which enhances immune evasion and metabolic reprogramming, ultimately supporting tumour growth and ICI resistance [137].
- JAK1/2 mutations impair interferon-gamma signalling, disrupting antigen presentation and T-cell activation. This immune dysfunction can facilitate rapid tumour progression during immunotherapy [137].
3.4.2. Metabolic Dysregulation
3.4.3. Microbial Influences
3.4.4. Epigenetic Modifications
4. Strategies to Overcome Resistance to Immunotherapy
4.1. Combination Therapies
- ★
- Chemotherapy and Immunotherapy Combinations
- ★
- Targeted Therapy Combinations
- ★
- Radiation Therapy Combinations
- ★
- Novel Combinations and Emerging Approaches
4.2. Targeting the Tumour Microenvironment
4.3. Addressing Genomic Alterations
4.4. Impact of Comorbidities
4.5. Novel Biomarkers and Immune Checkpoints
4.6. Liquid Biopsy for Detecting ICI Sensitivity and Resistance Biomarkers
4.7. Adaptive Clinical Trial Designs
4.8. Recent Clinical Trials Targeting Resistance to Immunotherapy in Lung Cancer
5. Future Directions
5.1. Treatment Response and Resistance
5.2. Biological Understanding and Patient Factors
5.3. Future Research Priorities
- Biomarker Development:
- urgent need for reliable biomarker detection,
- potential of liquid biopsy techniques using circulating tumour DNA,
- development of markers for tumour presence, progression, metastases, and treatment response,
- identification of markers to predict treatment benefits and adverse effect risks.
- Treatment Optimization:
- precise dosage administration,
- expansion of pharmacogenetics and pharmacogenomics,
- implementation of genetic testing before drug administration,
- standardization of resistance definitions,
- development of comprehensive genomic profiling with immune gene signatures.
- Novel Therapeutic Approaches:
- personalised cancer vaccine development,
- investigation of epigenetic modulation,
- metabolic manipulation strategies,
- gut microbiome modulation,
- exploration of immunotherapy rechallenge in previously responsive patients.
- Neoantigen Research:
- further investigation into the stochastic nature of neoantigen expression and its targeting potential.
5.4. Future Directions and Remaining Open Questions
- The limited response rate to immunotherapy remains problematic. Although combination therapies demonstrate enhanced efficacy, response rates rarely exceed 50% and are typically substantially lower. PD-1/PD-L1 expression alone proves insufficient as a predictive biomarker for potential responders.
- Even among responsive patients, complete tumour cell elimination is rare, with residual cells potentially facilitating future relapse through the development of resistant clones. Such recurrent tumours frequently exhibit altered immunosuppressive mechanisms and mutational profiles distinct from their progenitor lesions. Consequently, the optimization of first-line therapy, specifically tailored to individual patients, remains crucial.
- The optimal integration of targeted therapy, radiotherapy, chemotherapy, and/or immunotherapy remains undefined. Similarly, the appropriate therapeutic sequence requires clarification, as preliminary data suggest immunotherapy efficacy may be compromised in patients who have undergone chemotherapy due to immune system exhaustion or suppression. The role of neoadjuvant chemotherapy, in particular, warrants further investigation.
- When effective, immunotherapeutic responses demonstrate remarkable durability. However, the biological mechanisms underlying this sustained response remain poorly elucidated and necessitate fundamental scientific investigation. Enhanced comprehension of cancer biology will facilitate more precise targeting of critical nodes within complex pathways.
- The heterogeneity in adverse event severity among patients receiving immunotherapy remains unexplained. This variability may be attributable to intrinsic immune system function, systemic physiological factors, or unidentified environmental variables that have yet to be characterised.
- The etiology of hyperprogressions and severe autoimmune complications following immunotherapy administration remains unclear. A subset of patients experiences rapid deterioration and mortality shortly after immune checkpoint inhibitor initiation. Current knowledge is insufficient to explain this phenomenon adequately or to implement appropriate interventional strategies.
- While it is now widely accepted that tumours express targetable neoantigens, their expression patterns appear stochastic, necessitating substantial additional research in this domain.
- Therapeutic dosage optimization requires precision, yet sufficient data to accomplish this effectively remains lacking. Pharmacogenetics and pharmacogenomics offer promising approaches, though these analyses are not universally implemented. In many regions, they remain insufficiently adopted or are employed reactively following adverse events rather than proactively before treatment initiation.
- There exists an urgent requirement for robust biomarker identification. Emerging diagnostic technologies based on circulating tumour DNA (ctDNA)—termed liquid biopsy—hold significant potential for identifying molecules that serve as biomarkers for tumour presence, progression, metastasis, treatment selection, and therapeutic response monitoring. Specific biomarkers would also facilitate the identification of patients most likely to benefit from therapy while minimising adverse effects.
- Multiple investigations have demonstrated significant sex-based differences in gene expression and methylation status. These findings suggest that therapeutic approaches should be further refined according to patients’ biological sex among other relevant factors. In oncology, precision medicine represents a necessity rather than an optional approach for clinicians or institutions.
- Although numerous factors are known to influence patient response to immunotherapy, our limited understanding of underlying mechanisms limits their clinical application. For instance, low-light conditions are known to induce a more inflammatory microenvironment, potentially enhancing immunotherapeutic efficacy while possibly compromising mental health. Similar considerations apply to caloric restriction.
5.5. Insights from the Genomic Medicine Perspective
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADAMTS | metalloproteinase with thrombospondin motifs |
ALK | anaplastic lymphoma kinase |
CAFs | cancer-associated fibroblasts |
COPD | chronic obstructive pulmonary disease |
ctDNA | circulating tumour DNA |
CTLA-4 | cytotoxic T cell antigen 4 |
DNA | deoxyribonucleic acid |
ECM | extracellular matrix |
EGFR | epidermal growth factor receptor |
EMA | European Medicines Agency |
EU | European Union |
FDA | Food and Drug Administration |
FGF-2 | fibroblast growth factor-2 |
HDAC | histone deacetylase |
HIF | hypoxia-inducible factors |
ICI | immune checkpoint inhibitor |
ICOSL | inducible T-cell costimulator ligand |
IFN | interferon |
KEAP | Kelch-like ECH-associated protein 1 |
KRAS gene | Kirsten rat sarcoma gene |
LC | lung cancer |
MDSC | myeloid-derived suppressor cells |
MEK | mitogen-activated protein kinase |
MET | mesenchymal epithelial transition receptor |
MMPs | matrix metalloproteinases |
NK | natural killer cells |
NSCLC | non-small cell lung cancer |
NTRK | neurotrophic tyrosine receptor kinase |
PD-1/PD-L1 | programmed death protein-1 |
PVR | poliovirus receptor |
RNA | ribonucleic acid |
SCLC | small cell lung cancer |
TGF | Transforming growth factor |
TKI | tyrosine kinase inhibitors |
TME | tumour microenvironment |
VEGF | vascular endothelial growth factor |
VEGFR2 | vascular endothelial growth factor receptor 2 |
References
- Modlińska, A.; Kowalczyk, A. Lung Cancer—Epidemiology, Clinical Symptoms and Social Consequences. Psychoonkologia 2016, 20, 57–65. [Google Scholar] [CrossRef]
- Islami, F.; Torre, L.A.; Jemal, A. Global Trends of Lung Cancer Mortality and Smoking Prevalence. Transl. Lung Cancer Res. 2015, 4, 327–338. [Google Scholar] [PubMed]
- Ma, W.; Gilligan, B.M.; Yuan, J.; Li, T. Current Status and Perspectives in Translational Biomarker Research for PD-1/PD-L1 Immune Checkpoint Blockade Therapy. J. Hematol. Oncol. 2016, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, K.M.; Rennert, P.D.; Freeman, G.J. Combination Cancer Immunotherapy and New Immunomodulatory targets. Nat. Rev. Drug Discov. 2015, 14, 561–584. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman Jeffrey, A.; Atkins, M.B.; et al. Safety, Activity, and Immune Correlates of Anti-PD-1 antibody in Cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Furness, A.J.S.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal Neoantigens Elicit T Cell Immunoreactivity and sensitivity to Immune Checkpoint Blockade. Science (1979) 2016, 351, 1463–1469. [Google Scholar] [CrossRef]
- Fukuda, S.; Suda, K.; Hamada, A.; Tsutani, Y. Recent Advances in Perioperative Immunotherapies in Lung Cancer. Biomolecules 2023, 13, 1377. [Google Scholar] [CrossRef]
- Ren, Z.; Shang, S.; Chen, D. Recent Advances in Immunotherapy for Small Cell Lung Cancer. Curr. Opin. Oncol. 2025, 37, 17–26. [Google Scholar] [CrossRef]
- Dobosz, P.; Stępień, M.; Golke, A.; Dzieciątkowski, T. Challenges of the Immunotherapy: Perspectives and Limitations of the Immune Checkpoint Inhibitor Treatment. Int. J. Mol. Sci. 2022, 23, 2847. [Google Scholar] [CrossRef]
- Putzu, C.; Canova, S.; Paliogiannis, P.; Lobrano, R.; Sala, L.; Cortinovis, D.L.; Colonese, F. Duration of Immunotherapy in Non-Small Cell Lung Cancer Survivors: A Lifelong Commitment? Cancers 2023, 15, 689. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Elements of Cancer Immunity and the Cancer–Immune Set Point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Turnis, M.E.; Andrews, L.P.; Vignali, D.A.A. Inhibitory Receptors as Targets for Cancer Immunotherapy. Eur. J. Immunol. 2015, 45, 1892–1905. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor Mutational Load Predicts Survival after immunotherapy across Multiple Cancer Types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, M.; Wang, Z.; An, D.; Li, B. Adverse Events of Immunotherapy in Non-Small Cell Lung Cancer: A Review and Network Meta-Analysis. Int. Immunopharmacol. 2022, 102, 108353. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Long, G.V.; Scolyer, R.A.; Teng, M.W.L.; Smyth, M.J. Resistance to PD1/PDL1 Checkpoint Inhibition. Cancer Treat. Rev. 2017, 52, 71–81. [Google Scholar] [CrossRef]
- Rapoport, B.L.; Shannon, V.R.; Cooksley, T.; Johnson, D.B.; Anderson, L.; Blidner, A.G.; Tintinger, G.R.; Anderson, R. Pulmonary Toxicities Associated with the Use of Immune Checkpoint Inhibitors: An Update from the Immuno-Oncology Subgroup of the Neutropenia, Infection & Myelosuppression Study Group of the Multinational Association for Supportive Care in Cancer. Front. Pharmacol. 2021, 12, 743582. [Google Scholar]
- Shah, D.; Soper, B.; Shopland, L. Cytokine Release Syndrome and Cancer Immunotherapies—Historical and Promising Futures. Front. Immunol. 2023, 14, 1190379. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The Future of Cancer Treatment: Immunomodulation, CARs and combination Immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [Google Scholar] [CrossRef]
- Adashek, J.J.; Subbiah, I.M.; Matos, I.; Garralda, E.; Menta, A.K.; Ganeshan, D.M.; Subbiah, V. Hyperprogression and Immunotherapy: Fact, Fiction, or alternative Fact? Trends Cancer 2020, 6, 181–191. [Google Scholar] [CrossRef]
- Sehgal, K. Hyperprogression in Patients with Cancer Receiving Immune Checkpoint Inhibitors. JAMA Netw. Open 2021, 4, e211839. [Google Scholar] [CrossRef] [PubMed]
- Britt, A.S.; Huang, C.; Huang, C.H. Hyperprogressive Disease in Non-Small Cell Lung Cancer treated with Immune Checkpoint Inhibitor Therapy, Fact or Myth? Front. Oncol. 2022, 12, 996554. [Google Scholar] [CrossRef] [PubMed]
- Dobosz, P.; Stempor, P.A.; Roszik, J.; Herman, A.; Layani, A.; Berger, R.; Avni, D.; Sidi, Y.; Leibowitz-Amit, R. Checkpoint Genes at the Cancer Side of the Immunological synapse in Bladder Cancer. Transl. Oncol. 2020, 13, 193–200. [Google Scholar] [CrossRef]
- Stempor, P.A.; Avni, D.; Leibowitz, R.; Sidi, Y.; Stepień, M.; Dzieciatkowski, T.; Dobosz, P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer. Int. J. Mol. Sci. 2021, 22, 2553. [Google Scholar] [CrossRef]
- Liu, W.-F.; Quan, B.; Li, M.; Zhang, F.; Hu, K.-S.; Yin, X. PVR-A Prognostic Biomarker Correlated with Immune Cell in Hepatocellular Carcinoma. Diagnostics 2022, 12, 2953. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, J.; Li, X.-P. Research Advances in Immune Checkpoint Drugs for Non-Small Cell Lung Cancer. J. Drug Target. 2023, 31, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung Cancer Immunotherapy: Progress, Pitfalls, and Promises. Mol. Cancer 2023, 22, 40. [Google Scholar] [CrossRef]
- Passaro, A.; Brahmer, J.; Antonia, S.; Mok, T.; Peters, S. Managing Resistance to Immune Checkpoint Inhibitors in Lung Cancer: Treatment and Novel Strategies. J. Clin. Oncol. 2022, 40, 598–610. [Google Scholar] [CrossRef]
- Punekar, S.R.; Shum, E.; Grello, C.M.; Lau, S.C.; Velcheti, V. Immunotherapy in Non-Small Cell Lung Cancer: Past, Present, and Future Directions. Front. Oncol. 2022, 12, 877594. [Google Scholar] [CrossRef]
- Kim, S.I.; Cassella, C.R.; Byrne, K.T. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front. Immunol. 2021, 11, 629722. [Google Scholar] [CrossRef]
- Lieber, A.; Makai, A.; Orosz, Z.; Kardos, T.; Isaac, S.J.; Tornyi, I.; Bittner, N. The Role of Immunotherapy in Early-Stage and Metastatic NSCLC. Pathol. Oncol. Res. 2024, 30, 1611713. [Google Scholar] [CrossRef] [PubMed]
- Doroudian, M.; Zanganeh, S.; Abbasgholinejad, E.; Donnelly, S.C. Nanomedicine in Lung Cancer Immunotherapy. Front. Bioeng. Biotechnol. 2023, 11, 1144653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, J.; Zhang, Y.; Jiang, H.; Liu, D. Revisiting Immune Checkpoint Inhibitors: New Strategies to Enhance Efficacy and Reduce Toxicity. Front. Immunol. 2024, 15, 1490129. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Q.; Shen, J.; Wei, T.; Shen, W.; Zhang, N.; Luo, P.; Zhang, J. The Effect of Smoking on the Immune Microenvironment and Immunogenicity and Its Relationship With the Prognosis of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Front. Cell Dev. Biol. 2021, 9, 745859. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, L.; Han, L.; Zheng, X.; Tong, R.; Li, L.; Bai, L.; Bian, Y. Immune-Related Adverse Events of Immune Checkpoint Inhibitors: A Review. Front. Immunol. 2023, 14, 1167975. [Google Scholar] [CrossRef]
- Predina, J.; Eruslanov, E.; Judy, B.; Kapoor, V.; Cheng, G.; Wang, L.-C.; Sun, J.; Moon, E.K.; Fridlender, Z.G.; Albelda, S.; et al. Changes in the Local Tumor Microenvironment in Recurrent Cancers may Explain the Failure of Vaccines after Surgery. Proc. Natl. Acad. Sci. USA 2013, 110, E415–E424. [Google Scholar] [CrossRef]
- Huynh, C.; Walsh, L.A.; Spicer, J.D. Surgery after Neoadjuvant Immunotherapy in Patients with resectable Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2021, 10, 563–580. [Google Scholar] [CrossRef]
- Forget, P.; Simonet, O.; De Kock, M. Cancer Surgery Induces Inflammation, Immunosuppression and neo-Angiogenesis, but Is It Influenced by Analgesics? F1000Res 2013, 2, 102. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.P.; Gandara, D.R.; Antonia, S.J.; Zielinski, C.; Paz-Ares, L. Non-Small-Cell Lung Cancer: Role of the Immune System and potential for Immunotherapy. J. Thorac. Oncol. 2015, 10, 974–984. [Google Scholar] [CrossRef]
- Rami-Porta, R. The Evolving Concept of Complete Resection in Lung Cancer Surgery. Cancers 2021, 13, 2583. [Google Scholar] [CrossRef]
- Wong, L.-Y.; Dale, R.; Kapula, N.; Elliott, I.A.; Liou, D.Z.; Backhus, L.M.; Lui, N.S.; Shrager, J.B.; Berry, M.F. Impacts of Positive Margins and Surgical Extent on outcomes after Early-Stage Lung Cancer Resection. Ann. Thorac. Surg. 2024, 118, 1126–1134. [Google Scholar] [CrossRef]
- Lee, S.H. Chemotherapy for Lung Cancer in the Era of Personalized Medicine. Tuberc. Respir. Dis. 2019, 82, 179. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Chen, Y.-P.; Li, Y.-Q.; Liu, N.; Ma, J. Chemotherapeutic and Targeted Agents Can Modulate the Tumor Microenvironment and Increase the Efficacy of Immune Checkpoint Blockades. Mol. Cancer 2021, 20, 27. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodriguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.; Tomasik, B.; Atkins, K.; Stawiski, K.; Chałubińska-Fendler, J.; Kozono, D. The Clinician’s Guide to Radiotherapy Complications. Pol. Arch. Intern. Med. 2022, 132, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, Y.; Peng, X.; Xiao, D.; Shi, Y.; Tao, Y. Effects of Radiation Therapy on Tumor Microenvironment: An Updated Review. Chin. Med. J. 2023, 136, 2802–2811. [Google Scholar] [CrossRef]
- Vignard, J.; Mirey, G.; Salles, B. Ionizing-Radiation Induced DNA Double-Strand Breaks: A Direct and Indirect Lighting Up. Radiother. Oncol. 2013, 108, 362–369. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.-D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef]
- Simon Davis, D.A.; Atmosukarto, I.I.; Garrett, J.; Gosling, K.; Syed, F.M.; Quah, B.J. Irradiation Immunity Interactions. J. Med. Imaging Radiat. Oncol. 2022, 66, 519–535. [Google Scholar] [CrossRef]
- Huang, R.-X.; Zhou, P.-K. DNA Damage Response Signaling Pathways and Targets for radiotherapy Sensitization in Cancer. Signal Transduct. Target. Ther. 2020, 5, 60. [Google Scholar] [PubMed]
- Theelen, W.S.M.E.; Chen, D.; Verma, V.; Hobbs, B.P.; Peulen, H.M.U.; Aerts, J.G.J.V.; Bahce, I.; Niemeijer, A.L.N.; Chang, J.Y.; de Groot, P.M.; et al. Pembrolizumab with or without Radiotherapy for Metastatic Non-Small-Cell Lung Cancer: A Pooled Analysis of Two Randomised Trials. Lancet Respir. Med. 2021, 9, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Mayekar, M.K.; Bivona, T.G. Current Landscape of Targeted Therapy in Lung Cancer. Clin. Pharmacol. Ther. 2017, 102, 757–764. [Google Scholar] [CrossRef]
- Sekido, Y.; Fong, K.M.; Minna, J.D. Molecular Genetics of Lung Cancer. Annu. Rev. Med. 2003, 54, 73–87. [Google Scholar] [CrossRef]
- Li, J.W.; Zheng, G.; Kaye, F.J.; Wu, L. PROTAC Therapy as a New Targeted Therapy for Lung Cancer. Mol. Ther. 2023, 31, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Baik, C.; Su, W.-C.; Johnson, M.L.; Hayashi, H.; Nishio, M.; Kim, D.-W.; Koczywas, M.; Gold, K.A.; Steuer, C.E.; et al. Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor-Resistant, EGFR-Mutated Non-Small Cell Lung Cancer. Cancer Discov. 2022, 12, 74–89. [Google Scholar] [CrossRef]
- Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Aix, S.P.; Paz-Ares, L.; Chiu, C.; Park, K.; Novello, S.; Nadal, E.; et al. Ramucirumab plus Erlotinib in Patients with Untreated, EGFR-Mutated, Advanced Non-Small-Cell Lung Cancer (RELAY): A, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 1655–1669. [Google Scholar] [CrossRef]
- Lin, J.J.; Muzikansky, A.; Kennedy, E.; Kuberski, H.; Stober, L.L.; Wanat, A.C.; Azzoli, C.G.; Lennes, I.; Sequist, L.V.; Dagogo-Jack, I.; et al. Safety and Activity of Alectinib plus Bevacizumab in patients with Advanced ALK-Rearranged Non-Small-Cell Lung Cancer: A Phase I/II Study. ESMO Open 2022, 7, 100342. [Google Scholar] [CrossRef]
- Adamek, M.; Biernat, W.; Chorostowska-Wynimko, J.; Didkowska, J.A.; Dziadziuszko, K.; Grodzki, T.; Jassem, J.; Kepka, L.; Kowalski, D.; Krawczyk, P.; et al. Lung Cancer in Poland. J. Thorac. Oncol. 2020, 15, 1271–1276. [Google Scholar] [CrossRef]
- Liu, J.; Xue, L.; Xu, X.; Luo, J.; Zhang, S. FAK-Targeting PROTAC Demonstrates Enhanced Antitumor activity against KRAS Mutant Non-Small Cell Lung Cancer. Exp. Cell Res. 2021, 408, 112868. [Google Scholar] [CrossRef]
- Bond, M.J.; Chu, L.; Nalawansha, D.A.; Li, K.; Crews, C.M. Targeted Degradation of Oncogenic KRASG12C by VHL-Recruiting. ACS Cent. Sci. 2020, 6, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.E.; Minna, J.D. Molecular Biology of Lung Cancer: Clinical Implications. Clin. Chest Med. 2011, 32, 703–740. [Google Scholar] [PubMed]
- Tada, H.; Mitsudomi, T.; Misumi, T.; Sugio, K.; Tsuboi, M.; Okamoto, I.; Iwamoto, Y.; Sakakura, N.; Sugawara, S.; Atagi, S.; et al. Randomized Phase III Study of Gefitinib versus Cisplatin plus vinorelbine for Patients with Resected Stage II-IIIA Non-Small-Cell Lung Cancer with EGFR Mutation (IMPACT). J. Clin. Oncol. 2022, 40, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Hosomi, Y.; Morita, S.; Sugawara, S.; Kato, T.; Fukuhara, T.; Gemma, A.; Takahashi, K.; Fujita, Y.; Harada, T.; Minato, K.; et al. Gefitinib Alone versus Gefitinib plus Chemotherapy For-Small-Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor: NEJ009 Study. J. Clin. Oncol. 2020, 38, 115–123. [Google Scholar] [CrossRef]
- Bareschino, M.A.; Schettino, C.; Troiani, T.; Martinelli, E.; Morgillo, F.; Ciardiello, F. Erlotinib in Cancer Treatment. Ann. Oncol. 2007, 18 (Suppl. 6), vi35–vi41. [Google Scholar] [CrossRef]
- Perez-Soler, R. The Role of Erlotinib (Tarceva, OSI 774) in the Treatment of non-Small Cell Lung Cancer. Clin. Cancer Res. 2004, 10, 4238s–4240s. [Google Scholar] [CrossRef]
- Radonic, T.; Geurts-Giele, W.R.R.; Dubbink, H.J. Response to: RET Fluorescence In Situ Hybridization Analysis Is a Sensitive but Highly Unspecific Screening Method for RET Fusions in Lung Cancer. J. Thorac. Oncol. 2021, 16, e56. [Google Scholar] [CrossRef]
- Santarpia, M.; Liguori, A.; Karachaliou, N.; Gonzalez-Cao, M.; Daffinà, M.G.; D’Aveni, A.; Marabello, G.; Altavilla, G.; Rosell, R. Osimertinib in the Treatment of Non-Small-Cell Lung Cancer: Design, Development and Place in Therapy. Lung Cancer (Auckl.) 2017, 8, 109–125. [Google Scholar] [CrossRef]
- Carlisle, J.W.; Ramalingam, S.S. Role of Osimertinib in the Treatment of EGFR-Mutation Positive Non-Small-Cell Lung Cancer. Future Oncol. 2019, 15, 805–816. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.-W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Karachaliou, N.; Fernandez Bruno, M.; Bracht, J.W.P.; Rosell, R. Profile of Alectinib for the Treatment of ALK-Positive Non-Small Cell Lung Cancer (NSCLC): Patient Selection and Perspectives. Onco. Targets. Ther. 2019, 12, 4567–4575. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
- Bedi, S.; Khan, S.A.; AbuKhader, M.M.; Alam, P.; Siddiqui, N.A.; Husain, A. A Comprehensive Review on Brigatinib—A Wonder Drug for targeted Cancer Therapy in Non-Small Cell Lung Cancer. Saudi Pharm. J. 2018, 26, 755–763. [Google Scholar] [CrossRef]
- Popat, S.; Brustugun, O.T.; Cadranel, J.; Felip, E.; Garassino, M.C.; Griesinger, F.; Helland, Å.; Hochmair, M.; Pérol, M.; Bent-Ennakhil, N.; et al. Real-World Treatment Outcomes with Brigatinib in Patients with pretreated ALK+ Metastatic Non-Small Cell Lung Cancer. Lung Cancer 2021, 157, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Rudin, C.M. Crizotinib in the Treatment of Non-Small-Cell Lung Cancer. Expert. Opin. Pharmacother. 2012, 13, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Wang, Z.; Wu, G.; Poddubskaya, E.; Mok, T.; Reck, M.; Wakelee, H.; Chiappori, A.A.; Lee, D.H.; Breder, V.; et al. Ensartinib vs Crizotinib for Patients with Anaplastic Lymphoma-Positive Non-Small Cell Lung Cancer: A Randomized Trial. JAMA Oncol. 2021, 7, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Niyibizi, B.A.; Muhizi, E.; Ndoli, D.A.; Rukundo, I.; Muvunyi, T.Z.; Musoni, M.; Dukundane, D.; Rudakemwa, E.; Rubagumya, F.; Van Christ Manirakiza, A. Lung Cancer in Rwanda. J. Thorac. Oncol. 2022, 17, 1074–1077. [Google Scholar] [CrossRef]
- Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.-C.; Gadgeel, S.M.; et al. Lorlatinib in Patients with ALK-Positive Non-Small-Cell Lung Cancer: Results from a Global Phase 2 Study. Lancet Oncol. 2018, 19, 1654–1667. [Google Scholar] [CrossRef]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Lee, A. Sotorasib: A Review in KRAS G12C Mutation-Positive Non-Small Cell Lung Cancer. Target. Oncol. 2022, 17, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Dent, R.; McArthur, H.; Pusztai, L.; Kümmel, S.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Overall Survival with Pembrolizumab in Early-Stage Triple-Negative Breast Cancer. N. Engl. J. Med. 2024, 391, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Riely, G.J.; Gadgeel Shirish, M.; Heist, R.S.; Ou, S.-H.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.-H.I.; Jänne, P.A.; Leal Ticiana, A.; Rybkin, I.I.; Sabari, J.K.; Barve, M.A.; Bazhenova, L.; Johnson, M.L.; Velastegui, K.L.; Cilliers, C.; et al. First-in-Human Phase I/IB Dose-Finding Study of Adagrasib(MRTX849) in Patients with Advanced KRASG12C Solid Tumors(KRYSTAL-1). J. Clin. Oncol. 2022, 40, 2530–2538. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion-Positive-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Tan, D.S.-W.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in Patients with RET Fusion-Positive Non-Small-Cell Lung Cancer: Updated Safety and Efficacy from the registrational LIBRETTO-001 Phase I/II Trial. J. Clin. Oncol. 2023, 41, 385–394. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, J.; Chang, J.; Wang, H.; Fan, Y.; Wang, K.; Wu, G.; Nian, W.; Sun, Y.; Sun, M.; et al. Efficacy and Safety of Pralsetinib in Patients with Advanced Fusion-Positive Non-Small Cell Lung Cancer. Cancer 2023, 129, 3239–3251. [Google Scholar] [CrossRef]
- Gainor, J.F.; Curigliano, G.; Kim, D.-W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; et al. Pralsetinib for RET Fusion-Positive Non-Small-Cell Lung Cancer(ARROW): A Multi-Cohort, Open-Label, Phase 1/2 Study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
- Vansteenkiste, J.F.; Van De Kerkhove, C.; Wauters, E.; Van Mol, P. Capmatinib for the Treatment of Non-Small Cell Lung Cancer. Expert. Rev. Anticancer. Ther. 2019, 19, 659–671. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Cheng, Y.; Zhou, J.; Lu, S.; Zhang, Y.; Zhao, J.; Kim, D.-W.; Soo, R.A.; Kim, S.-W.; Pan, H.; et al. Tepotinib plus Gefitinib in Patients with EGFR-Mutant-Small-Cell Lung Cancer with MET Overexpression or MET and Acquired Resistance to Previous EGFR (INSIGHT Study): An Open-Label, Phase 1b/2, Multicentre, Randomised Trial. Lancet Respir. Med. 2020, 8, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Lee, S.-H.; Kim, S.-Y.; Jeong, S.-Y.; Kim, J.-H.; Pyo, K.-H.; Park, C.-W.; Heo, S.G.; Yun, M.R.; Lim, S.; et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon Insertion-Driven NSCLC. Cancer Discov. 2020, 10, 1194–1209. [Google Scholar] [CrossRef]
- Passaro, A.; Wang, J.; Wang, Y.; Lee, S.-H.; Melosky, B.; Shih, J.-Y.; Wang, J.; Azuma, K.; Juan-Vidal, O.; Cobo, M.; et al. Amivantamab plus Chemotherapy with and without Lazertinib in EGFR-Mutant Advanced NSCLC after Disease Progression on osimertinib: Primary Results from the Phase III MARIPOSA-2 Study. Ann. Oncol. 2024, 35, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion from a Phase I/II Trial. Cancer Discov. 2021, 11, 1688–1699. [Google Scholar] [CrossRef]
- Zhou, C.; Ramalingam, S.S.; Kim, T.M.; Kim, S.-W.; Yang, J.C.-H.; Riely, G.J.; Mekhail, T.; Nguyen, D.; Garcia Campelo, M.R.; Felip, E.; et al. Treatment Outcomes and Safety of Mobocertinib In-Pretreated Patients with EGFR Exon 20-Positive Metastatic Non-Small Cell Lung Cancer: A 1/2 Open-Label Nonrandomized Clinical Trial. JAMA Oncol. 2021, 7, e214761. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Jung, H.A.; Sun, J.-M.; Lee, S.-H.; Ahn, J.S.; Park, K.; Ahn, M.-J. Evaluating Entrectinib as a Treatment Option for Non-Small Cell Lung Cancer. Expert. Opin. Pharmacother. 2020, 21, 1935–1942. [Google Scholar] [CrossRef]
- Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Braud, F.; Rolfo, C.; Ahn, M.-J.; Wolf, J.; et al. Entrectinib in ROS1 Fusion-Positive Non-Small-Cell Lung Cancer: Integrated Analysis of Three Phase 1-2 Trials. Lancet Oncol. 2020, 21, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Tan, D.S.W.; Lassen, U.N.; Leyvraz, S.; Liu, Y.; Patel, J.D.; Rosen, L.; Solomon, B.; Norenberg, R.; Dima, L.; et al. Efficacy and Safety of Larotrectinib in Patients with tropomyosin Receptor Kinase Fusion-Positive Lung Cancers. JCO Precis. Oncol. 2022, 6, e2100418. [Google Scholar] [CrossRef]
- Hong, D.S.; Bauer, T.M.; Lee, J.J.; Dowlati, A.; Brose, M.S.; Farago, A.F.; Taylor, M.; Shaw, A.T.; Montez, S.; Meric-Bernstam, F.; et al. Larotrectinib in Adult Patients with Solid Tumours: A-Centre, Open-Label, Phase I Dose-Escalation Study. Ann. Oncol. 2019, 30, 325–331. [Google Scholar] [CrossRef]
- Gettinger, S.; Rizvi, N.A.; Chow, L.Q.; Borghaei, H.; Brahmer, J.; Ready, N.; Gerber, D.E.; Shepherd, F.A.; Antonia, S.; Goldman, J.W.; et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 2980–2987. [Google Scholar] [CrossRef]
- Costantini, A.; Julie, C.; Dumenil, C.; Hélias-Rodzewicz, Z.; Tisserand, J.; Dumoulin, J.; Giraud, V.; Labrune, S.; Chinet, T.; Emile, J.-F.; et al. Predictive Role of Plasmatic Biomarkers in Advanced Non-Small Cell Lung Cancer Treated by Nivolumab. Oncoimmunology 2018, 7, e1452581. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Reck, M. Pembrolizumab as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer. Immunotherapy 2018, 10, 93–105. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Cho, B.C.; Reinmuth, N.; Lee, K.H.; Luft, A.; Ahn, M.-J.; van den Heuvel, M.M.; Cobo, M.; Vicente, D.; Smolin, A.; et al. Durvalumab with or without Tremelimumab vs Standard chemotherapy in First-Line Treatment of Metastatic Non-Small Cell Lung: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 661–674. [Google Scholar] [CrossRef]
- Sequist, L.V.; Han, J.-Y.; Ahn, M.-J.; Cho, B.C.; Yu, H.; Kim, S.-W.; Yang, J.C.-H.; Lee, J.S.; Su, W.-C.; Kowalski, D.; et al. Osimertinib plus Savolitinib in Patients with EGFR-Positive, MET-Amplified, Non-Small-Cell Lung cancer after Progression on EGFR Tyrosine Kinase Inhibitors: Interim from a Multicentre, Open-Label, Phase 1b Study. Lancet Oncol. 2020, 21, 373–386. [Google Scholar] [CrossRef]
- Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; et al. Once-Daily Savolitinib in Chinese Patients with Pulmonary Carcinomas and Other Non-Small-Cell Lung Cancers MET Exon 14 Skipping Alterations: A Multicentre, Single-Arm, Open-Label, Phase 2 Study. Lancet Respir. Med. 2021, 9, 1154–1164. [Google Scholar] [CrossRef]
- Ouyang, W.; Hu, J.; Zhang, H.; Xie, C. The Management of Patients with Lung Cancer during the outbreak of Coronavirus Disease 2019. J. Thorac. Oncol. 2020, 15, e106–e107. [Google Scholar] [CrossRef]
- Odogwu, L.; Mathieu, L.; Blumenthal, G.; Larkins, E.; Goldberg, K.B.; Griffin, N.; Bijwaard, K.; Lee, E.Y.; Philip, R.; Jiang, X.; et al. FDA Approval Summary: Dabrafenib and Trametinib for the treatment of Metastatic Non-Small Cell Lung Cancers Harboring BRAF V600E Mutations. Oncologist 2018, 23, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M., Jr.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus Trametinib in Patients with Previously Untreated-Mutant Metastatic Non-Small-Cell Lung Cancer: An-Label, Phase 2 Trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Li, Y.; Tan, J.; Xu, L.; Li, Y. Targeting LAG-3, TIM-3, and TIGIT for Cancer Immunotherapy. J. Hematol. Oncol. 2023, 16, 101. [Google Scholar] [CrossRef]
- Schuler, M.; Cuppens, K.; Plönes, T.; Wiesweg, M.; Du Pont, B.; Hegedus, B.; Köster, J.; Mairinger, F.; Darwiche, K.; Paschen, A.; et al. Neoadjuvant Nivolumab with or without Relatlimab in Resectable Non-Small-Cell Lung Cancer: A Randomized Phase 2 Trial. Nat. Med. 2024, 30, 1602–1611. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Mueller, D.W.; Rafiyan, M.-R.; Kiselicki, D.; Atmaca, A.; Habibzada, T.; Mueller, C.; Brignone, C.; Triebel, F.; Loose, M.; et al. A Soluble LAG-3 Protein (Eftilagimod Alpha) and an anti-PD-L1 Antibody (Avelumab) Tested in a Phase I Trial: A New Combination in Immuno-Oncology. ESMO Open 2023, 8, 101623. [Google Scholar] [CrossRef]
- Lin, C.-C.; Curigliano, G.; Santoro, A.; Kim, D.-W.; Tai, D.; Hodi, F.S.; Wilgenhof, S.; Doi, T.; Sabatos-Peyton, C.; Szpakowski, S.; et al. Sabatolimab in Combination with Spartalizumab in Patients with-Small Cell Lung Cancer or Melanoma Who Received Prior with Anti-PD-1/PD-L1 Therapy: A Phase 2 Multicentre. BMJ Open 2024, 14, e079132. [Google Scholar] [CrossRef]
- Kim, T.W.; Bedard, P.L.; LoRusso, P.; Gordon, M.S.; Bendell, J.; Oh, D.-Y.; Ahn, M.-J.; Garralda, E.; D’Angelo, S.P.; Desai, J.; et al. Anti-TIGIT Antibody Tiragolumab Alone or with Atezolizumab in patients with Advanced Solid Tumors: A Phase 1a/1b Nonrandomized Trial. JAMA Oncol. 2023, 9, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Peters, S.; Runglodvatana, Y.; Li, J.Y.-C.; Fong, C.H.; Ho, G.F.; How, S.H.; Juengsamarn, J.; Todd, T.; Marina, N.; et al. 1461 Phase 2 Randomized Study of Domvanalimab Combined with zimberelimab in Front-Line, PD-(L)1 High, Locally Advanced or metastatic Non-Small Cell Lung Cancer (NSCLC): Results from ARC-10 Part 1. In Proceedings of the Late-Breaking Abstracts; BMJ Publishing Group Ltd.: London, UK, 2024; pp. A1690–A1691. [Google Scholar]
- Kim, C.-G.; Sang, Y.-B.; Lee, J.-H.; Chon, H.-J. Combining Cancer Vaccines with Immunotherapy: Establishing a New Approach. Int. J. Mol. Sci. 2021, 22, 8035. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Rischin, D.; Groenland, S.; Lim, A.; Martin-Liberal, J.; Moreno, V.; Trigo, J.M.; Mathew, M.; Cho, D.; Hansen, A.; et al. 1O Inducible T Cell Co-Stimulatory (ICOS) Receptor, GSK3359609 (GSK609) Alone and Combination with pembrolizumab: Preliminary Results from INDUCE-1 Expansion in Head and Neck Squamous Cell Carcinoma (HNSCC). Ann. Oncol. 2020, 31, S1. [Google Scholar] [CrossRef]
- Atkins, M.B.; Ascierto, P.A.; Feltquate, D.; Gulley, J.L.; Johnson, D.B.; Khushalani Nikhil, I.; Sosman, J.; Yap, T.A.; Kluger, H.; Sullivan, R.J.; et al. Society for Immunotherapy of Cancer (SITC) Consensus Definitions for Resistance to Combinations of Immune Checkpoint Inhibitors with Targeted Therapies. J. Immunother. Cancer 2023, 11, e005923. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, H. Immunotherapy Resistance in Non-Small-Cell Lung Cancer: From Mechanism to Clinical Strategies. Front. Immunol. 2023, 14, 1129465. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter Henry, J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in Combination with Carboplatin plus Nab-Paclitaxel Compared with Chemotherapy Alone as First-Line for Metastatic Non-Squamous Non-Small-Cell Lung Cancer(IMpower130): A Multicentre, Randomised, Open-Label, Phase 3. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Seto, T.; Sam, D.; Pan, M. Mechanisms of Primary and Secondary Resistance to Immune Checkpoint Inhibitors in Cancer. Med. Sci. 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Said, S.S.; Ibrahim, W.N. Cancer Resistance to Immunotherapy: Comprehensive Insights with future Perspectives. Pharmaceutics 2023, 15, 1143. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Hellmann, M.D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell 2020, 37, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Abushukair, H.; Ababneh, O.; Zaitoun, S.; Saeed, A. Primary and Secondary Immune Checkpoint Inhibitors Resistance in colorectal Cancer: Key Mechanisms and Ways to Overcome Resistance. Cancer Treat. Res. Commun. 2022, 33, 100643. [Google Scholar] [CrossRef]
- Bell, H.N.; Zou, W. Beyond the Barrier: Unraveling the Mechanisms of Immunotherapy Resistance. Annu. Rev. Immunol. 2024, 42, 521–550. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo Jennifer, A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef]
- Ricciuti, B.; Lamberti, G.; Puchala Sreekar, R.; Mahadevan, N.R.; Lin, J.-R.; Alessi, J.V.; Chowdhury, A.; Li, Y.Y.; Wang, X.; Spurr, L.; et al. Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L)1 Blockade in Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2024, 42, 1311–1321. [Google Scholar] [CrossRef]
- Ricciuti, B.; Arbour, K.C.; Lin, J.J.; Vajdi, A.; Vokes, N.; Hong, L.; Zhang, J.; Tolstorukov, M.Y.; Li, Y.Y.; Spurr, L.F.; et al. Diminished Efficacy of Programmed Death-(Ligand)1 Inhibition in STK11- and KEAP1-Mutant Lung Adenocarcinoma Is Affected by KRAS Mutation Status. J. Thorac. Oncol. 2022, 17, 399–410. [Google Scholar] [CrossRef]
- Qian, Y.; Galan-Cobo, A.; Guijarro, I.; Dang, M.; Molkentine, D.; Poteete, A.; Zhang, F.; Wang, Q.; Wang, J.; Parra, E.; et al. MCT4-Dependent Lactate Secretion Suppresses Antitumor immunity in LKB1-Deficient Lung Adenocarcinoma. Cancer Cell 2023, 41, 1363–1380.e7. [Google Scholar] [CrossRef]
- Marinelli, D.; Mazzotta, M.; Scalera, S.; Terrenato, I.; Sperati, F.; D’Ambrosio, L.; Pallocca, M.; Corleone, G.; Krasniqi, E.; Pizzuti, L.; et al. KEAP1-Driven Co-Mutations in Lung Adenocarcinoma unresponsive to Immunotherapy despite High Tumor Mutational Burden. Ann. Oncol. 2020, 31, 1746–1754. [Google Scholar] [CrossRef]
- Tanaka, I.; Koyama, J.; Itoigawa, H.; Hayai, S.; Morise, M. Metabolic Barriers in Non-Small Cell Lung Cancer with LKB1 and/or KEAP1 Mutations for Immunotherapeutic Strategies. Front. Oncol. 2023, 13, 1249237. [Google Scholar] [CrossRef]
- Best, S.A.; Gubser, P.M.; Sethumadhavan, S.; Kersbergen, A.; Negrón Abril, Y.L.; Goldford, J.; Sellers, K.; Abeysekera, W.; Garnham, A.L.; McDonald, J.A.; et al. Glutaminase Inhibition Impairs CD8 T Cell Activation in STK11-/Lkb1-Deficient Lung Cancer. Cell Metab. 2022, 34, 874–887.e6. [Google Scholar] [CrossRef]
- Zavitsanou, A.-M.; Pillai, R.; Hao, Y.; Wu, W.L.; Bartnicki, E.; Karakousi, T.; Rajalingam, S.; Herrera, A.; Karatza, A.; Rashidfarrokhi, A.; et al. KEAP1 Mutation in Lung Adenocarcinoma Promotes Immune evasion and Immunotherapy Resistance. Cell Rep. 2023, 42, 113295. [Google Scholar] [CrossRef]
- Fountzilas, E.; Kurzrock, R.; Vo, H.H.; Tsimberidou, A.-M. Wedding of Molecular Alterations and Immune Checkpoint Blockade: Genomics as a Matchmaker. J. Natl. Cancer Inst. 2021, 113, 1634–1647. [Google Scholar] [CrossRef]
- Ramapriyan, R.; Caetano, M.S.; Barsoumian, H.B.; Mafra, A.C.P.; Zambalde, E.P.; Menon, H.; Tsouko, E.; Welsh James, W.; Cortez, M.A. Altered Cancer Metabolism in Mechanisms of Immunotherapy Resistance. Pharmacol. Ther. 2019, 195, 162–171. [Google Scholar] [CrossRef]
- Otegui, N.; Houry, M.; Arozarena, I.; Serrano, D.; Redin, E.; Exposito, F.; Leon, S.; Valencia, K.; Montuenga, L.; Calvo, A. Cancer Cell-Intrinsic Alterations Associated with an immunosuppressive Tumor Microenvironment and Resistance to immunotherapy in Lung Cancer. Cancers 2023, 15, 3076. [Google Scholar] [CrossRef]
- Koyama, S.; Akbay, E.A.; Li, Y.Y.; Aref, A.R.; Skoulidis, F.; Herter-Sprie, G.S.; Buczkowski, K.A.; Liu, Y.; Awad, M.M.; Denning, W.L.; et al. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and proinflammatory Cytokine Production to Suppress T-Cell activity in the Lung Tumor Microenvironment. Cancer Res. 2016, 76, 999–1008. [Google Scholar] [CrossRef]
- Iwan, E.; Grenda, A.; Bomba, A.; Bielińska, K.; Wasyl, D.; Kieszko, R.; Rolska-Kopińska, A.; Chmielewska, I.; Krawczyk, P.; Rybczyńska-Tkaczyk, K.; et al. Gut Resistome of NSCLC Patients Treated with Immunotherapy. Front. Genet. 2024, 15, 1378900. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, D. Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacol. Ther. 2021, 221, 107753. [Google Scholar] [CrossRef]
- Wong, K.Y.; Cheung, A.H.-K.; Chen, B.; Chan, W.N.; Yu, J.; Lo, K.W.; Kang, W.; To, K.F. Cancer-Associated Fibroblasts in Nonsmall Cell Lung Cancer: From Molecular Mechanisms to Clinical Implications. Int. J. Cancer 2022, 151, 1195–1215. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Xu, J. Cancer-Associated Fibroblasts: A Versatile Mediator in Tumor Progression, Metastasis, and Targeted Therapy. Cancer Metastasis Rev. 2024, 43, 1095–1116. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chung, J.Y.-F.; Li, C.; Wu, Y.; Qiao, G.; To, K.-F.; Tang, P.M.-K. Cellular Dynamics of Tumor Microenvironment Driving Immunotherapy Resistance in Non-Small-Cell Lung Carcinoma. Cancer Lett. 2024, 604, 217272. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, W.; Dong, Y.; Hu, J.; Wei, K.; Yang, S.; Lai, X.; Tang, H. Hypoxia Induces Tumor Cell Growth and Angiogenesis in Non-Small Cell Lung Carcinoma via the Akt-PDK1-HIF1α-YKL-40 Pathway. Transl. Cancer Res. 2020, 9, 2904–2918. [Google Scholar] [CrossRef]
- Ngaha, T.Y.S.; Zhilenkova, A.V.; Essogmo, F.E.; Uchendu, I.K.; Abah, M.O.; Fossa, L.T.; Sangadzhieva, Z.D.; D Sanikovich, V.; S Rusanov, A.; N Pirogova, Y.; et al. Angiogenesis in Lung Cancer: Understanding the Roles of Growth Factors. Cancers 2023, 15, 4648. [Google Scholar] [CrossRef]
- Bielenberg, D.R.; Zetter, B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015, 21, 267–273. [Google Scholar] [CrossRef]
- Chen, G.; Wu, K.; Li, H.; Xia, D.; He, T. Role of Hypoxia in the Tumor Microenvironment and Targeted Therapy. Front. Oncol. 2022, 12, 961637. [Google Scholar] [CrossRef]
- Parker, A.L.; Cox, T.R. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front. Oncol. 2020, 10, 1766. [Google Scholar] [CrossRef]
- Saito, A.; Horie, M.; Nagase, T. TGF-β Signaling in Lung Health and Disease. Int. J. Mol. Sci. 2018, 19, 2460. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zheng, L.; Xu, X.; Jin, J.; Li, X.; Zhou, L. The Impact of Chronic Obstructive Pulmonary Disease on the Risk of Immune-Related Pneumonitis in Lung Cancer Patients Undergoing Immunotherapy: A Systematic Review and Meta-Analysis. BMC Pulm. Med. 2024, 24, 393. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhao, X.; Wang, G. Risk Factors for Immune Checkpoint Inhibitor-Related Pneumonitis in Cancer Patients: A Systemic Review and Meta-Analysis. Respiration 2022, 101, 1035–1050. [Google Scholar] [CrossRef]
- Mark, N.M.; Kargl, J.; Busch, S.E.; Yang, G.H.Y.; Metz, H.E.; Zhang, H.; Hubbard, J.J.; Pipavath, S.N.J.; Madtes David, K.; Houghton, A.M. Chronic Obstructive Pulmonary Disease Alters Immune Cell Composition and Immune Checkpoint Inhibitor Efficacy In-Small Cell Lung Cancer. Am. J. Respir. Crit. Care Med. 2018, 197, 325–336. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, S.; Xu, C.; Wang, Z.; Su, X.; Zeng, D.; Long, H.; Zhu, B. Effect of Comorbidity on Outcomes of Patients with Advanced Non-Small Cell Lung Cancer Undergoing Anti-PD1 Immunotherapy. Med. Sci. Monit. 2020, 26, e922576. [Google Scholar] [CrossRef]
- Jaiyesimi, I.A.; Leighl, N.B.; Ismaila, N.; Alluri, K.; Florez, N.; Gadgeel, S.; Masters, G.; Schenk, E.L.; Schneider, B.J.; Sequist, L.; et al. Therapy for Stage IV Non-Small Cell Lung Cancer without Driver: ASCO Living Guideline, Version 2023.3. J. Clin. Oncol. 2024, 42, e23–e43. [Google Scholar] [CrossRef]
- Hamilton, G.; Rath, B. Immunotherapy for Small Cell Lung Cancer: Mechanisms Of. Expert. Opin. Biol. Ther. 2019, 19, 423–432. [Google Scholar] [CrossRef]
- Shah, S.; Wood, K.; Labadie, B.; Won, B.; Brisson, R.; Karrison, T.; Hensing, T.; Kozloff, M.; Bao, R.; Patel, J.D.; et al. Clinical and Molecular Features of Innate and Acquired to Anti-PD-1/PD-L1 Therapy in Lung Cancer. Oncotarget 2018, 9, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Isomoto, K.; Haratani, K.; Tsujikawa, T.; Makutani, Y.; Kawakami, H.; Takeda, M.; Yonesaka, K.; Tanaka, K.; Iwasa, T.; Hayashi, H.; et al. Mechanisms of Primary and Acquired Resistance to Immune Inhibitors in Advanced Non-Small Cell Lung Cancer: A Immunohistochemistry-Based Single-Cell Analysis. Lung Cancer 2022, 174, 71–82. [Google Scholar] [CrossRef]
- Hiltbrunner, S.; Cords, L.; Kasser, S.; Freiberger, S.N.; Kreutzer, S.; Toussaint Nora, C.; Grob, L.; Opitz, I.; Messerli, M.; Zoche, M.; et al. Acquired Resistance to Anti-PD1 Therapy in Patients with NSCLC Associates with Immunosuppressive T Cell Phenotype. Nat. Commun. 2023, 14, 5154. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.H.; Lee, H.Y.; Lee, S.-H.; Kim, H.S.; Lee, S.; Cha, H.; Hong, S.; Kim, K.; Seo, S.W.; et al. Comprehensive Clinical and Genetic Characterization of hyperprogression Based on Volumetry in Advanced Non-Small Cell Cancer Treated with Immune Checkpoint Inhibitor. J. Thorac. Oncol. 2019, 14, 1608–1618. [Google Scholar] [CrossRef]
- Li, G.; Choi, J.E.; Kryczek, I.; Sun, Y.; Liao, P.; Li, S.; Wei, S.; Grove, S.; Vatan, L.; Nelson, R.; et al. Intersection of Immune and Oncometabolic Pathways Drives Cancer during Immunotherapy. Cancer Cell 2023, 41, 304–322.e7. [Google Scholar] [CrossRef] [PubMed]
- Salous, T.; Shukla, N.A.; Althouse, S.K.; Perkins, S.M.; Furqan, M.; Leal, T.; Traynor, A.M.; Feldman, L.E.; Hanna, N.H.; Durm, G.A. A Phase 2 Trial of Chemotherapy plus Pembrolizumab in patients with Advanced Non-Small Cell Lung Cancer Previously Treated with a PD-1 or PD-L1 Inhibitor: Big Ten Cancer Research BTCRC-LUN15-029. Cancer 2023, 129, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.-L.; Fitzgerald, B.G.; Paz-Ares, L.; Cappuzzo, F.; Jänne, P.A.; Peters, S.; Hirsch, F.R. New Promises and Challenges in the Treatment of Advanced Non-Small-Cell Lung Cancer. Lancet 2024, 404, 803–822. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Fletcher, R.; Yu, J.; Zhang, L. Immunogenic Effects of Chemotherapy-Induced Tumor Cell Death. Genes Dis. 2018, 5, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, Y.; He, P.; Shao, B.; Liu, F.; Xiang, Z.; Yang, T.; Zeng, Y.; He, T.; Ma, J.; et al. Effective Combinations of Immunotherapy and Radiotherapy for cancer Treatment. Front. Oncol. 2022, 12, 809304. [Google Scholar] [CrossRef]
- Spigel, D.; Jotte, R.; Nemunaitis, J.; Shum, M.; Schneider, J.; Goldschmidt, J.; Eisenstein, J.; Berz, D.; Seneviratne, L.; Socoteanu, M.; et al. Randomized Phase 2 Studies of Checkpoint Inhibitors Alone or in combination with Pegilodecakin in Patients with Metastatic NSCLC (CYPRESS 1 and CYPRESS 2). J. Thorac. Oncol. 2021, 16, 327–333. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Hou, L.; Xu, Z.; Liu, Y.; Wang, X. Nanoparticles Overcome Adaptive Immune Resistance and Enhance Immunotherapy via Targeting Tumor Microenvironment in Lung Cancer. Front. Pharmacol. 2023, 14, 1130937. [Google Scholar] [CrossRef]
- Herbst, R.S.; Majem, M.; Barlesi, F.; Carcereny, E.; Chu, Q.; Monnet, I.; Sanchez-Hernandez, A.; Dakhil, S.; Camidge, D.R.; Winzer, L.; et al. COAST: An Open-Label, Phase II, Multidrug Platform Study of durvalumab Alone or in Combination with Oleclumab or monalizumab in Patients with Unresectable, Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 3383–3393. [Google Scholar] [CrossRef]
- Yuan, J.; Khilnani, A.; Brody, J.; Andtbacka, R.H.I.; Hu-Lieskovan, S.; Luke Jason, J.; Diab, A.; Marabelle, A.; Snyder, A.; Cao, Z.A.; et al. Current Strategies for Intratumoural Immunotherapy—Beyond immune Checkpoint Inhibition. Eur. J. Cancer 2021, 157, 493–510. [Google Scholar] [CrossRef]
- Kim, J.; Hong, J.; Lee, J.; Fakhraei Lahiji, S.; Kim, Y.-H. Recent Advances in Tumor Microenvironment-Targeted Nanomedicine Delivery Approaches to Overcome Limitations of Immune Checkpoint-Based Immunotherapy. J. Control. Release 2021, 332, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Isla, D.; Sánchez, A.; Casal, J.; Cobo, M.; Majem, M.; Reguart, N.; Zugazagoitia, J.; Bernabé, R. PD-1/PD-L1 Inhibitors as Monotherapy in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer Patients with high PD-L1 Expression: An Expert Position Statement. J. Clin. Med. 2023, 12, 5063. [Google Scholar] [CrossRef]
- Zhou, G.-W.; Xiong, Y.; Chen, S.; Xia, F.; Li, Q.; Hu, J. Anti-PD-1/PD-L1 Antibody Therapy for Pretreated Advanced Nonsmall-Cell Lung Cancer. Medicine 2016, 95, e4611. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, H.; Cao, H.; Mao, J.; Chen, X.; Wang, L.; Zhang, N.; Luo, P.; Xue, J.; et al. Liquid Biopsy for Human Cancer: Cancer Screening, Monitoring, and Treatment. MedComm 2024, 5, e564. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Yadav, P. Liquid Biopsy in Cancer Management: Integrating Diagnostics and Clinical Applications. Pract. Lab. Med. 2025, 43, e00446. [Google Scholar] [CrossRef]
- Fatima, S.; Ma, Y.; Safrachi, A.; Haider, S.; Spring, K.J.; Vafaee, F.; Scott, K.F.; Roberts, T.L.; Becker, T.M.; de Souza, P. Harnessing Liquid Biopsies to Guide Immune Checkpoint Inhibitor Therapy. Cancers 2022, 14, 1669. [Google Scholar] [CrossRef] [PubMed]
- Adhit, K.K.; Wanjari, A.; Menon, S.; K, S. Liquid Biopsy: An Evolving Paradigm for Non-Invasive Disease Diagnosis and Monitoring in Medicine. Cureus 2023, 15, e50176. [Google Scholar] [CrossRef]
- Borea, R.; Reduzzi, C. The Growing Field of Liquid Biopsy and Its Snowball Effect on Reshaping Cancer Management. J. Liq. Biopsy 2025, 8, 100293. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, D.; Guo, H.; Ma, W. Beyond Blood: Advancing the Frontiers of Liquid Biopsy in Oncology and Personalized Medicine. Cancer Sci. 2024, 115, 1060–1072. [Google Scholar] [CrossRef]
- Rother, C.; John, T.; Wong, A. Biomarkers for Immunotherapy Resistance in Non-Small Cell Lung Cancer. Front. Oncol. 2024, 14, 1489977. [Google Scholar] [CrossRef]
- Frisone, D.; Friedlaender, A.; Addeo, A.; Tsantoulis, P. The Landscape of Immunotherapy Resistance in NSCLC. Front. Oncol. 2022, 12, 817548. [Google Scholar] [CrossRef]
- Agarwala, Y.; Brauns, T.A.; Sluder, A.E.; Poznansky, M.C.; Gemechu, Y. Targeting Metabolic Pathways to Counter Cancer Immunotherapy Resistance. Trends Immunol. 2024, 45, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Korn, E.L.; Freidlin, B. Adaptive Clinical Trials: Advantages and Disadvantages of various Adaptive Design Elements. J. Natl. Cancer Inst. 2017, 109, djx013. [Google Scholar] [CrossRef]
- Ghorani, E.; Quartagno, M.; Blackhall, F.; Gilbert, D.C.; O’Brien, M.; Ottensmeier, C.; Pizzo, E.; Spicer, J.; Williams, A.; Badman, P.; et al. REFINE-Lung Implements a Novel Multi-Arm Randomised Trial Design to Address Possible Immunotherapy Overtreatment. Lancet Oncol. 2023, 24, e219–e227. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.L.; Ivy, S.P.; Dixon, E.L.; Gravell, A.E.; Reeves, S.A.; Rosner, G.L. Challenges and Opportunities in Adapting Clinical Trial design for Immunotherapies. Clin. Cancer Res. 2017, 23, 4950–4958. [Google Scholar] [CrossRef]
- Boyer, M.; Şendur, M.A.N.; Rodriguez-Abreu, D.; Park, K.; Lee, D.H.; Çiçin, I.; Yumuk, P.F.; Orlandi, F.J.; Leal, T.A.; Molinier, O.; et al. Pembrolizumab plus Ipilimumab or Placebo for Metastatic-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score 50%: Randomized, Double-Blind Phase III KEYNOTE-598. J. Clin. Oncol. 2021, 39, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Senan, S.; Okamoto, I.; Lee, G.-W.; Chen, Y.; Niho, S.; Mak, G.; Yao, W.; Shire, N.; Jiang, H.; Cho, B.C. Design and Rationale for a Phase III, Randomized, Placebo-Controlled Trial of Durvalumab with or without tremelimumab after Concurrent Chemoradiotherapy for patients with Limited-Stage Small-Cell Lung Cancer: The ADRIATIC Study. Clin. Lung Cancer 2020, 21, e84–e88. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.V.; Reck, M.; Mansfield, A.S.; Mok, T.; Scherpereel, A.; Reinmuth, N.; Garassino, M.C.; De Castro Carpeno, J.; Califano, R.; Nishio, M.; et al. Updated Overall Survival and PD-L1 Subgroup Analysis of patients with Extensive-Stage Small-Cell Lung Cancer treated with Atezolizumab, Carboplatin, and Etoposide (IMpower133). J. Clin. Oncol. 2021, 39, 619–630. [Google Scholar] [CrossRef]
- Peters, S.; Pujol, J.-L.; Dafni, U.; Dómine, M.; Popat, S.; Reck, M.; Andrade, J.; Becker, A.; Moro-Sibilot, D.; Curioni-Fontecedro, A.; et al. Consolidation Nivolumab and Ipilimumab versus Observation in Limited-Disease Small-Cell Lung Cancer after Chemo-Radiotherapy- Results from the Randomised Phase II ETOP/IFCT 4-12 STIMULI Trial. Ann. Oncol. 2022, 33, 67–79. [Google Scholar] [CrossRef]
- Neal, J.; Pavlakis, N.; Kim, S.-W.; Goto, Y.; Lim, S.M.; Mountzios, G.; Fountzilas, E.; Mochalova, A.; Christoph, D.C.; Bearz, A.; et al. CONTACT-01: A Randomized Phase III Trial of Atezolizumab + Cabozantinib versus Docetaxel for Metastatic Non-Small Cell Lung Cancer after a Checkpoint Inhibitor and Chemotherapy. J. Clin. Oncol. 2024, 42, 2393–2403. [Google Scholar] [CrossRef]
- Borghaei, H.; de Marinis, F.; Dumoulin, D.; Reynolds, C.; Theelen, W.S.M.E.; Percent, I.; Gutierrez Calderon, V.; Johnson, M.L.; Madroszyk-Flandin, A.; Garon, E.B.; et al. SAPPHIRE: Phase III Study of Sitravatinib plus Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. Ann. Oncol. 2024, 35, 66–76. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Maas, L.; Abedpour, N.; Cartolano, M.; Kaiser, L.; Fischer, R.N.; Scheel, A.H.; Weber, J.-P.; Hellmich, M.; Bosco, G.; et al. Evolutionary Trajectories of Small Cell Lung Cancer under Therapy. Nature 2024, 627, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Liu, J.; Chen, C.; Zheng, T.; Li, C.; Huang, J. Prediction of Lung Cancer Metastasis by Gene Expression. Comput. Biol. Med. 2023, 153, 106490. [Google Scholar] [CrossRef] [PubMed]
- Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The Lung Microenvironment: An Important Regulator of Tumour Growth and Metastasis. Nat. Rev. Cancer 2019, 19, 9–31. [Google Scholar] [CrossRef]
- Wang, L.; Jia, Q.; Chu, Q.; Zhu, B. Targeting Tumor Microenvironment for Non-Small Cell Lung Cancer Immunotherapy. Chin. Med. J. Pulm. Crit. Care Med. 2023, 1, 18–29. [Google Scholar] [CrossRef]
Target | Drug | Trial Phase | Population | Key Findings |
---|---|---|---|---|
LAG-3 | Relatlimab | Phase I/II | Advanced NSCLC | Combined with nivolumab: improved progression-free survival (PFS) in PD-L1-positive tumours. Median PFS: 6.4 months. |
LAG-3 | Eftilagimod alpha (IMP321) | Phase II | NSCLC, first-line | Combined with pembrolizumab: 47% disease control rate (DCR), well-tolerated. |
TIM-3 | Sabatolimab (MBG453) | Phase I | Advanced solid tumours, including NSCLC | Early safety and efficacy data suggest manageable toxicity; limited antitumour activity as monotherapy. |
TIM-3 | TSR-022 | Phase I/II | NSCLC | Combined with anti-PD-1: objective response rate (ORR) 25% in heavily pretreated patients. |
TIGIT | Tiragolumab | Phase II | NSCLC, PD-L1-positive | Combined with atezolizumab: PFS benefit (5.6 months vs. 3.9 months) compared to atezolizumab alone. |
TIGIT | Domvanalimab | Phase II | Advanced NSCLC | Combined with zimberelimab: ORR of 27.3%, encouraging safety profile. |
ICOS | GSK3359609 | Phase I | Advanced solid tumours, including NSCLC | Partial responses observed; limited monotherapy efficacy but potential in combinations. |
Mutation | Metabolic Changes | Therapeutic Strategies |
---|---|---|
STK11 (LKB1) |
|
|
KEAP1 |
|
|
JAK1/2 |
|
|
Trial Name and Reference | Cancer Type | Investigated Treatment Regimen | Phase | Study Population | Results | Overcoming Resistance Strategy |
---|---|---|---|---|---|---|
CheckMate 227 [157] | NSCLC | Nivolumab + Ipilimumab vs. Chemotherapy | III | Patients with Stage IV or recurrent NSCLC who had not received prior systemic therapy | Significantly improved overall survival on combination of nivolumab and ipilimumab compared to chemotherapy alone | Multiple immune checkpoints |
KEYNOTE-598 [187] | NSCLC | Pembrolizumab + Ipilimumab vs. Pembrolizumab | III | Patients with previously untreated metastatic NSCLC with a PD-L1 tumour proportion score (TPS) ≥ 50% and no sensitising EGFR or ALK aberrations | Lack of improved efficacy and greater toxicity of combination therapy | Multiple immune checkpoints |
ADRIATIC [188] | SCLC | ICI maintenance therapy—Durvalumab (+Tremelimumab) | III | Patients with limited-stage small-cell lung cancer (LS-SCLC) who have not progressed after concurrent chemoradiotherapy (cCRT) | Trial is ongoing | Multiple immune checkpoints |
IMpower133 [189] | SCLC | Atezolizumab + Carboplatin + Etoposide vs. Carboplatin + Etoposide | III | Patients with previously untreated extensive-stage small-cell (ES-SCLC) lung cancer | Combination of atezolizumab with carboplatin and etoposide as a new standard of care for first-line treatment of ES-SCLC. | Enhanced immune response |
STIMULI [190] | SCLC | Consolidation Immunotherapy with Nivolumab + Ipilimumab | II | Patients with limited-stage small-cell lung cancer (LS-SCLC) who had not progressed after concurrent chemoradiotherapy (cCRT) and prophylactic cranial irradiation (PCI) | The trial did not meet its primary endpoint of improving progression-free survival (PFS) | Multiple immune checkpoints |
CONTACT-01 [191] | NSCLC | Atezolizumab + Cabozantinib vs. Docetaxel | III | Patients with metastatic non-small cell lung cancer (NSCLC) who had progressed after prior treatment with a checkpoint inhibitor and platinum-containing chemotherapy | Not significantly improved OS but significantly improved PFS | Combining immune checkpoint inhibition with the anti-angiogenic and immunomodulatory effects of cabozatinib |
SAPPHIRE [192] | NSCLC | Sitravatinib + Nivolumab vs. Docetaxel | III | Patients with advanced nonsquamous non-small cell lung cancer (NSCLC) who had progressed after prior treatment with a checkpoint inhibitor and platinum-containing chemotherapy | No significant improvement of OS or PFS in Sitravatinib + Nivolumab group compared to Docetaxel | Combining immune checkpoint inhibition with the with immunomodulatory effects of sitravatinib |
EGFR mutations | Patients with activating EGFR mutations (e.g., exon 19 deletion, L858R) respond well to EGFR TKIs like Gefitinib and Erlotinib. Mutations like T790M drive resistance, but Osimertinib is effective against this mutation. |
ALK rearrangements | Found in about 3–7% of NSCLC, these rearrangements respond to ALK inhibitors like Alectinib and Crizotinib. Newer agents like Lorlatinib work against ALK inhibitor-resistant mutations. |
KRAS mutations | The KRAS G12C mutation was historically undruggable, but Sotorasib and Adagrasib are now effective therapies for this subset. |
MET exon 14 skipping | Therapies like Capmatinib and Tepotinib target this mutation, which occurs in about 3–4% of NSCLC. |
RET and ROS1 fusions | Drugs such as Selpercatinib and Crizotinib target fusions in these genes. Entrectinib also targets NTRK gene fusions, which occur less frequently. |
PD-1/PD-L1 inhibitors | Immunotherapies like Pembrolizumab, Nivolumab, and Atezolizumab are approved based on high PD-L1 expression and have become standard treatments for NSCLC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, P.; Stępień, M.; Chowaniec, H.; Kalyta, K.; Czerniak, J.; Borowczyk, M.; Dwojak, E.; Mroczek, M.; Dworacki, G.; Ślubowska, A.; et al. Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach. Cells 2025, 14, 587. https://doi.org/10.3390/cells14080587
Zieliński P, Stępień M, Chowaniec H, Kalyta K, Czerniak J, Borowczyk M, Dwojak E, Mroczek M, Dworacki G, Ślubowska A, et al. Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach. Cells. 2025; 14(8):587. https://doi.org/10.3390/cells14080587
Chicago/Turabian StyleZieliński, Paweł, Maria Stępień, Hanna Chowaniec, Kateryna Kalyta, Joanna Czerniak, Martyna Borowczyk, Ewa Dwojak, Magdalena Mroczek, Grzegorz Dworacki, Antonina Ślubowska, and et al. 2025. "Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach" Cells 14, no. 8: 587. https://doi.org/10.3390/cells14080587
APA StyleZieliński, P., Stępień, M., Chowaniec, H., Kalyta, K., Czerniak, J., Borowczyk, M., Dwojak, E., Mroczek, M., Dworacki, G., Ślubowska, A., Markiewicz, H., Ałtyn, R., & Dobosz, P. (2025). Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach. Cells, 14(8), 587. https://doi.org/10.3390/cells14080587