High-Efficiency Enrichment of Megakaryocytes and Identification of Micromegakaryocytes from Human Bone Marrow by Imaging Flow Cytometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Marrow Samples
2.2. Selection of CD41+ Cells
2.3. Morphological Examination of CD41 Positive Enrichment Efficiency
2.4. Evaluation of CD41 Positive Enrichment Efficiency Using IFC
2.5. Staining Protocol for the MK-Specific IFC Panel
2.6. IFC Configuration and Acquisition
2.7. Gating Strategy
2.8. Image-Based MK Classification Using Artificial Intelligence
3. Results
3.1. CD41 Positive Selection Ensured Enrichment of Megakaryocytic Cells
3.2. Combination of IFC and Image-Based Classification Enabled Effective Identification of MKs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Goldenson, B.; Crispino, J.D. Normal and malignant megakaryopoiesis. Expert. Rev. Mol. Med. 2011, 13, e32. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A. Human marrow megakaryocyte differentiation: Multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood 2004, 104, 2722–2727. [Google Scholar] [CrossRef]
- Tomer, A.; Harker, L.A.; Burstein, S.A. Purification of human megakaryocytes by fluorescence-activated cell sorting. Blood 1987, 70, 1735–1742. [Google Scholar] [CrossRef]
- Tomer, A.; Harker, L.A.; Burstein, S.A. Flow cytometric analysis of normal human megakaryocytes. Blood 1988, 71, 1244–1252. [Google Scholar] [CrossRef]
- Rabellino, E.M.; Levene, R.B.; Leung, L.L.; Nachman, R.L. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J. Exp. Med. 1981, 154, 88–100. [Google Scholar] [CrossRef]
- Phillips, D.R.; Charo, I.F.; Parise, L.V.; Fitzgerald, L.A. The platelet membrane glycoprotein IIb-IIIa complex. Blood 1988, 71, 831–843. [Google Scholar] [CrossRef]
- Levene, R.B.; Lamaziere, J.M.; Broxmeyer, H.E.; Lu, L.; Rabellino, E.M. Human megakaryocytes. V. Changes in the phenotypic profile of differentiating megakaryocytes. J. Exp. Med. 1985, 161, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Ossa, J.E.A.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022, 1, EVIDoa2200008. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef] [PubMed]
- Hasserjian, R.P.; Orazi, A.; Orfao, A.; Rozman, M.; Wang, S.A. The International Consensus Classification of myelodysplastic syndromes and related entities. Virchows Arch. 2023, 482, 39–51. [Google Scholar] [CrossRef]
- Ramos, F.; Fernández-Ferrero, S.; Suárez, D.; Barbón, M.; Rodríguez, J.A.; Gil, S.; Megido, M.; Ciudad, J.; López, N.; del Cañizo, C.; et al. Myelodysplastic syndrome: A search for minimal diagnostic criteria. Leuk. Res. 1999, 23, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, K.; Jabbour, E.; Bueso-Ramos, C.; Pierce, S.; Borthakur, G.; Estrov, Z.; Ravandi, F.; Faderl, S.; Kantarjian, H.; Garcia-Manero, G. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood 2011, 118, 4690–4693. [Google Scholar] [CrossRef]
- Font, P.; Loscertales, J.; Benavente, C.; Bermejo, A.; Callejas, M.; Garcia-Alonso, L.; Garcia-Marcilla, A.; Gil, S.; Lopez-Rubio, M.; Martin, E.; et al. Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification. Ann. Hematol. 2013, 92, 19–24. [Google Scholar] [CrossRef]
- Font, P.; Loscertales, J.; Soto, C.; Ricard, P.; Novas, C.M.; Martín-Clavero, E.; López-Rubio, M.; Garcia-Alonso, L.; Callejas, M.; Bermejo, A.; et al. Interobserver variance in myelodysplastic syndromes with less than 5% bone marrow blasts: Unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2% blasts. Ann. Hematol. 2015, 94, 565–573. [Google Scholar] [CrossRef]
- Malcovati, L.; Hellström-Lindberg, E.; Bowen, D.; Adès, L.; Cermak, J.; del Cañizo, C.; Della Porta, M.G.; Fenaux, P.; Gattermann, N.; Germing, U.; et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: Recommendations from the European LeukemiaNet. Blood 2013, 122, 2943–2964. [Google Scholar] [CrossRef]
- Della Porta, M.G.; Travaglino, E.; Boveri, E.; Ponzoni, M.; Malcovati, L.; Papaemmanuil, E.; Rigolin, G.M.; Pascutto, C.; Croci, G.; Gianelli, U.; et al. Minimal morphological criteria for defining bone marrow dysplasia: A basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia 2015, 29, 66–75. [Google Scholar] [CrossRef]
- Goasguen, J.E.; Bennett, J.M.; Bain, B.J.; Brunning, R.D.; Vallespí, M.-T.; Tomonaga, M.; Zini, G.; Renault, A. Quality control initiative on the evaluation of the dysmegakaryopoiesis in myeloid neoplasms: Difficulties in the assessment of dysplasia. Leuk. Res. 2016, 45, 75–81. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Stetler-Stevenson, M.; Arthur, D.C.; Jabbour, N.; Xie, X.Y.; Molldrem, J.; Barrett, A.J.; Venzon, D.; Rick, M.E. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood 2001, 98, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Kern, W.; Westers, T.M.; Bellos, F.; Bene, M.C.; Bettelheim, P.; Brodersen, L.E.; Burbury, K.; Chu, S.; Cullen, M.; Della Porta, M.; et al. Multicenter prospective evaluation of diagnostic potential of flow cytometric aberrancies in myelodysplastic syndromes by theELN iMDSflow working group. Cytom. Part B Clin. Cytom. 2023, 104, 51–65. [Google Scholar] [CrossRef]
- van de Loosdrecht, A.A.; Kern, W.; Porwit, A.; Valent, P.; Kordasti, S.; Cremers, E.; Alhan, C.; Duetz, C.; Dunlop, A.; Hobo, W.; et al. Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet International MDS-Flow Cytometry Working Group. Cytom. Part B Clin. Cytom. 2023, 104, 77–86. [Google Scholar] [CrossRef]
- Kern, W.; Haferlach, C.; Schnittger, S.; Haferlach, T. Clinical utility of multiparameter flow cytometry in the diagnosis of 1013 patients with suspected myelodysplastic syndrome: Correlation to cytomorphology, cytogenetics, and clinical data. Cancer 2010, 116, 4549–4563. [Google Scholar] [CrossRef] [PubMed]
- Della Porta, M.G.; Malcovati, L.; Invernizzi, R.; Travaglino, E.; Pascutto, C.; Maffioli, M.; Gallì, A.; Boggi, S.; Pietra, D.; Vanelli, L.; et al. Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia 2006, 20, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Malcovati, L.; Della Porta, M.G.; Lunghi, M.; Pascutto, C.; Vanelli, L.; Travaglino, E.; Maffioli, M.; Bernasconi, P.; Lazzarino, M.; Invernizzi, R.; et al. Flow cytometry evaluation of erythroid and myeloid dysplasia in patients with myelodysplastic syndrome. Leukemia 2005, 19, 776–783. [Google Scholar] [CrossRef]
- Matarraz, S.; López, A.; Barrena, S.; Fernandez, C.; Jensen, E.; Flores-Montero, J.; Rasillo, A.; Sayagues, J.M.; Sánchez, M.L.; Bárcena, P.; et al. Bone marrow cells from myelodysplastic syndromes show altered immunophenotypic profiles that may contribute to the diagnosis and prognostic stratification of the disease: A pilot study on a series of 56 patients. Cytom. Part B Clin. Cytom. 2010, 78, 154–168. [Google Scholar] [CrossRef]
- Cremers, E.M.; Westers, T.M.; Alhan, C.; Cali, C.; Visser-Wisselaar, H.A.; Chitu, D.A.; van der Velden, V.H.; Marvelde, J.G.T.; Klein, S.K.; Muus, P.; et al. Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes. Haematologica 2017, 102, 320–326. [Google Scholar] [CrossRef]
- Westers, T.M.; Saft, L.; van der Velden, V.H.J.; Marvelde, J.G.T.; Dunlop, A.; Ireland, R.; Valent, P.; Porwit, A.; Béné, M.C.; van de Loosdrecht, A.A. A series of case studies illustrating the role of flow cytometry in the diagnostic work-up of myelodysplastic syndromes. Cytom. Part B Clin. Cytom. 2023, 104, 87–97. [Google Scholar] [CrossRef]
- Westers, T.M.; Cremers, E.M.; Oelschlaegel, U.; Johansson, U.; Bettelheim, P.; Matarraz, S.; Orfao, A.; Moshaver, B.; Brodersen, L.E.; Loken, M.R.; et al. Immunophenotypic analysis of erythroid dysplasia in myelodysplastic syndromes. A report from the IMDSFlow working group. Haematologica 2017, 102, 308–319. [Google Scholar] [CrossRef]
- Mathur, A.; Hong, Y.; Wang, G.; Erusalimsky, J.D. Assays of megakaryocyte development: Surface antigen expression, ploidy, and size. Methods Mol. Biol. 2004, 272, 309–322. [Google Scholar]
- Duetz, C.; Westers, T.M.; van de Loosdrecht, A.A. Clinical Implication of Multi-Parameter Flow Cytometry in Myelodysplastic Syndromes. Pathobiology 2019, 86, 14–23. [Google Scholar] [CrossRef]
- Kalina, T.; Fišer, K.; Pérez-Andrés, M.; Kuzílková, D.; Cuenca, M.; Bartol, S.J.W.; Blanco, E.; Engel, P.; van Zelm, M.C.; on Behalf of the Human Cell Differentiation Molecules (HCDM) Organization. CD Maps—Dynamic Profiling of CD1–CD100 Surface Expression on Human Leukocyte and Lymphocyte Subsets. Front. Immunol. 2019, 10, 2434. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Gale, R.P.; Cui, W.; Cai, W.; Huang, G.; Xu, Z.; Qin, T.; Zhang, Y.; Li, B.; Fang, L.; et al. A systematic classification of megakaryocytic dysplasia and its impact on prognosis for patients with myelodysplastic syndromes. Exp. Hematol. Oncol. 2015, 5, 12. [Google Scholar] [CrossRef]
- Kuriyama, K.; Tomonaga, M.; Matsuo, T.; Glnnai, I.; Ichimaru, M. Diagnostic significance of detecting pseudo-Pelger-Huet anomalies and micro-megakaryocytes in myelodysplastic syndrome. Br. J. Haematol. 1986, 63, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Bain, B.J. The bone marrow aspirate of healthy subjects. Br. J. Haematol. 1996, 94, 206–209. [Google Scholar] [CrossRef]
- Niswander, L.M.; Palis, J.; McGrath, K.E. Imaging Flow Cytometric Analysis of Primary Bone Marrow Megakaryocytes. Methods Mol. Biol. 2016, 1389, 265–277. [Google Scholar] [PubMed]
- Niswander, L.M.; McGrath, K.E.; Kennedy, J.C.; Palis, J. Improved quantitative analysis of primary bone marrow megakaryocytes utilizing imaging flow cytometry. Cytom. Part A 2014, 85, 302–312. [Google Scholar] [CrossRef]
- McGrath, K.E. Utilization of imaging flow cytometry to define intermediates of megakaryopoiesis in vivo and in vitro. J. Immunol. Methods 2015, 423, 45–51. [Google Scholar] [CrossRef]
- Basiji, D.A.; Ortyn, W.E.; Liang, L.; Venkatachalam, V.; Morrissey, P. Cellular Image Analysis and Imaging by Flow Cytometry. Clin. Lab. Med. 2007, 27, 653–670. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Probst, C.E.; Zayats, A.; Davidson, B.; Riedel, M.; Li, Y.; Venkatachalam, V. The in vitro micronucleus assay using imaging flow cytometry and deep learning. NPJ Syst. Biol. Appl. 2021, 7, 20. [Google Scholar] [CrossRef]
- Porwit, A.; McCullough, J.; Erber, W.N. Section A: Normal Blood and Bone Marrow Cells; Elsevier Health Sciences: London, UK, 2011. [Google Scholar]
- Chen, X.; Wood, B.L. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev. 2017, 31, 63–75. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.J.M.; Lhermitte, L.; Böttcher, S.; Almeida, J.; van der Velden, V.H.J.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [PubMed]
- Bush, L.M.; Healy, C.P.; Marvin, J.E.; Deans, T.L. High-throughput enrichment and isolation of megakaryocyte progenitor cells from the mouse bone marrow. Sci. Rep. 2021, 11, 8268. [Google Scholar] [CrossRef]
- Pérez-Ortega, L.; Morales-Camacho, R.M. Nuclear protrusion in dysplastic micromegakaryocytes. Blood 2019, 133, 1164. [Google Scholar] [CrossRef]
- Levine, R.F.; Hazzard, K.C.; Lamberg, J.D. The significance of megakaryocyte size. Blood 1982, 60, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Hybel, T.E.; Jensen, S.H.; Rodrigues, M.A.; Hybel, T.E.; Pedersen, M.N.; Qvick, S.H.; Enemark, M.H.; Bill, M.; Rosenberg, C.A.; Ludvigsen, M. Imaging Flow Cytometry and Convolutional Neural Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic Stem Cells in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2024, 25, 6465. [Google Scholar] [CrossRef]
- Rosenberg, C.A.; Rodrigues, M.A.; Bill, M.; Ludvigsen, M. Comparative analysis of feature-based ML and CNN for binucleated erythroblast quantification in myelodysplastic syndrome patients using imaging flow cytometry data. Sci. Rep. 2024, 14, 9349. [Google Scholar] [CrossRef]
- Probst, C.; Zayats, A.; Venkatachalam, V.; Davidson, B. Advanced Characterization of Silicone Oil Droplets in Protein Therapeutics Using Artificial Intelligence Analysis of Imaging Flow Cytometry Data. J. Pharm. Sci. 2020, 109, 2996–3005. [Google Scholar] [CrossRef]
- Neri, S.; Brandsma, E.T.; Mul, F.P.J.; Kuijpers, T.W.; Matlung, H.L.; van Bruggen, R. An AI-based imaging flow cytometry approach to study erythrophagocytosis. Cytom. Part A 2024, 105, 763–771. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Mendoza, M.G.G.; Kong, R.; Sutton, A.; Pugsley, H.R.; Li, Y.; Hall, B.E.; Fogg, D.; Ohl, L.; Venkatachalam, V. Automation of the Micronucleus Assay Using Imaging Flow Cytometry and Artificial Intelligence. J. Vis. Exp. 2023, e64549. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.M.; Orazi, A. Diagnostic criteria to distinguish hypocellular acute myeloid leukemia from hypocellular myelodysplastic syndromes and aplastic anemia: Recommendations for a standardized approach. Haematologica 2009, 94, 264–268. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Age | Gender | Diagnosis |
---|---|---|---|
1 | 71 | M | MDS |
2 | 79 | M | MDS |
3 | 81 | M | CCUS |
4 | 44 | M | CCUS |
5 | 75 | M | CMML |
6 | 54 | M | AA |
7 | 74 | M | WM |
8 | 77 | F | WM |
9 | 59 | M | HIV |
10 | 87 | M | NC |
11 | 24 | M | Infection |
Specificity | Fluorophore/Stain | Clone | Vendor | Cat # | Titer | Quantity * |
---|---|---|---|---|---|---|
CD41 | PE | MWReg30 | BioLegend | 133905 | 1:20 | 5 µL |
CD45 | KrO | J33 | Beckman Coulter | PN A966416 | 1:40 | 2.5 µL |
DNA | DRAQ5 | NA | eBioScience | 65-0880-92 | NA | 2.5 µM |
Viability | ZG | NA | BioLegend | 423112 | 1:200 | 0.5 µL |
Specificity | Fluorophore/Stain | Clone | Vendor | Cat # | Titer | Quantity * |
---|---|---|---|---|---|---|
CD41 | PE | HIP8 | BioLegend | 303706 | NA | 3 µg/mL |
CD45 | SBV515 | F10-89-4 | Bio-Rad Laboratories | MCA87SBV515 | 1:20 | 5 µL |
CD3 | BV605 | SK7 | BioLegend | 344836 | 1:80 | 1.25 µL |
CD19 | BV605 | HIB19 | BioLegend | 302244 | 1:160 | 0.625 µL |
CD15 | BV605 | W6D3 | BioLegend | 323032 | 1:40 | 2.5 µL |
CD64 | BV605 | 10.1 | BioLegend | 305034 | 1:40 | 2.5 µL |
DNA | DRAQ5 | NA | eBioScience | 65-0880-92 | NA | 1.25 µM |
Viability | ZN | NA | BioLegend | 423105 | 1:400 | 0.25 µL |
Model Class | Training Data | Validation Data | Testing Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Objects (N) | Precision (%) | Recall (%) | F1 (%) | Objects (N) | Precision (%) | Recall (%) | F1 (%) | Objects (N) | Precision (%) | Recall (%) | F1 (%) | |
CD41+ cells | 305 | 99.0 | 95.1 | 97.0 | 54 | 100.0 | 96.3 | 98.1 | 53 | 96.3 | 98.1 | 97.2 |
CD41− cells | 305 | 95.3 | 99.0 | 97.1 | 38 | 95.0 | 100.0 | 97.4 | 39 | 97.4 | 94.9 | 96.1 |
Weighted average | 610 | 97.1 | 97.0 | 97.0 | 92 | 97.9 | 97.8 | 97.8 | 92 | 96.8 | 96.7 | 96.7 |
Model Class | Manual Evaluation | |||||||
---|---|---|---|---|---|---|---|---|
ID5 CMML | ID7 WM | |||||||
Objects (N) | Precision (%) | Recall (%) | F1 (%) | Objects (N) | Precision (%) | Recall (%) | F1 (%) | |
CD41+ cells | 83 | 89.2 | 90.4 | 89.8 | 123 | 84.3 | 87.0 | 85.6 |
CD41− cells | 102 | 93.1 | 92.2 | 92.6 | 133 | 87.6 | 85.0 | 86.3 |
Weighted average | 185 | 91.1 | 91.3 | 91.2 | 256 | 85.9 | 86.0 | 85.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen, M.N.; Hybel, T.E.; Bjerre, J.H.; Hammer, A.S.B.; Bohn, A.B.; Bill, M.; Rosenberg, C.A.; Ludvigsen, M. High-Efficiency Enrichment of Megakaryocytes and Identification of Micromegakaryocytes from Human Bone Marrow by Imaging Flow Cytometry. Cells 2025, 14, 588. https://doi.org/10.3390/cells14080588
Pedersen MN, Hybel TE, Bjerre JH, Hammer ASB, Bohn AB, Bill M, Rosenberg CA, Ludvigsen M. High-Efficiency Enrichment of Megakaryocytes and Identification of Micromegakaryocytes from Human Bone Marrow by Imaging Flow Cytometry. Cells. 2025; 14(8):588. https://doi.org/10.3390/cells14080588
Chicago/Turabian StylePedersen, Maya Nautrup, Trine Engelbrecht Hybel, Jens Haugbølle Bjerre, Anne Sofie Borg Hammer, Anja Bille Bohn, Marie Bill, Carina Agerbo Rosenberg, and Maja Ludvigsen. 2025. "High-Efficiency Enrichment of Megakaryocytes and Identification of Micromegakaryocytes from Human Bone Marrow by Imaging Flow Cytometry" Cells 14, no. 8: 588. https://doi.org/10.3390/cells14080588
APA StylePedersen, M. N., Hybel, T. E., Bjerre, J. H., Hammer, A. S. B., Bohn, A. B., Bill, M., Rosenberg, C. A., & Ludvigsen, M. (2025). High-Efficiency Enrichment of Megakaryocytes and Identification of Micromegakaryocytes from Human Bone Marrow by Imaging Flow Cytometry. Cells, 14(8), 588. https://doi.org/10.3390/cells14080588