REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction
Abstract
:1. Introduction
2. Environmental Risk Factors Leading to Redox Imbalance
2.1. Mechanical Stress
2.1.1. Piezo 1 Channel
2.1.2. TRPV4 Channel
2.1.3. PI3K/Akt Signaling Pathway
2.1.4. RhoA/ROCK Signaling Pathway
2.1.5. YAP/TAZ Signaling Pathway
2.1.6. MAPK Signaling Pathway
2.2. Cigarette Smoking
2.2.1. Cigarette Smoke
2.2.2. Hypoxia
2.2.3. Glucose Starvation
3. Effect of Oxidative Stress on Organelle Redox Imbalance
3.1. Endoplasmic Reticulum
3.2. Mitochondria
3.2.1. Mitochondrial Bioenergetics
3.2.2. Mitochondrial-Mediated Apoptosis
3.3. ER–Mitochondria Crosstalk
3.4. Oxidative Stress Biomarkers
4. Therapeutic Implications
4.1. Targeting Mechanotransduction Pathways to Boost Antioxidant Defense
4.2. Mitigating ER Stress and Mitochondrial Dysfunction
4.3. Therapeutic Strategies for Introducing Universal ROS Scavengers
5. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-PBA | 4-Phenylbutyric Acid |
AF | Annulus Fibrosus |
Cas | Caspase |
CEP | Cartilage Endplate |
COX | Cyclooxygenase |
Cyt C | Cytochrome C |
ECM | Extracellular Matrix |
EGCG | Epigallocatechin Gallate |
ER | Endoplasmic Reticulum |
ERO1 | Endoplasmic Reticulum Oxidase 1 |
ETC | Electron Transport Chain |
FADH2 | Flavin Adenine Dinucleotide |
GPx | Glutathione Peroxidase |
GSH | Glutathione |
H2O2 | Hydrogen Peroxide |
HIF-1 | Hypoxia Inducible Factor-1 |
HO-1 | Heme Oxygenase-1 |
IDD | Intervertebral Disc Degeneration |
IL | Interleukin |
IVD | Intervertebral Disc |
MCU | Mitochondrial Calcium Uniporter |
MMP | Matrix Metalloproteinase |
mPTP | Mitochondrial Permeability Transition Pore |
MSC | Mesenchymal Stem Cell |
NAC | N-Acetylcysteine |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
NOX | NADPH Oxidase |
NP | Nucleus Pulposus |
Nrf2 | Nuclear Factor Erythroid 2 |
O2•− | Superoxide |
OH• | Hydroxyl Radical |
PDI | Protein Disulfide Isomerase |
Prx | Peroxiredoxin |
RNS | Reactive Nitrogen Species |
ROS | Reactive Oxygen Species |
SOD | Superoxide Dismutase |
TCA | Tricarboxylic Acid |
TNF | Tumor Necrosis Factor |
Trx | Thioredoxin |
TrxR | Thioredoxin Reductase |
VDAC | Voltage-Dependent Anion Channel |
References
- Xu, S.; Chen, J.; Wang, C.; Lin, Y.; Huang, W.; Zhou, H.; Ji, W.; Chen, Y. Global, Regional, and National Burden of Low Back Pain for Adults Aged 55 and Older 1990–2021: An Analysis for the Global Burden of Disease Study 2021. BMC Musculoskelet. Disord. 2025, 26, 81. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.N. Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences. J. Bone Jt. Surg. Am. 2006, 88, 21–24. [Google Scholar] [CrossRef]
- Diwan, A.D.; Melrose, J. Intervertebral Disc Degeneration and How It Leads to Low Back Pain. JOR Spine 2022, 6, e1231. [Google Scholar] [CrossRef]
- Fearing, B.V.; Hernandez, P.A.; Setton, L.A.; Chahine, N.O. Mechanotransduction and Cell Biomechanics of the Intervertebral Disc. JOR Spine 2018, 1, e1026. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, C.; Jin, Y.; Wu, O.; Chen, L.; Guo, Z.; Wang, X.; Chen, Q.; Kwan, K.Y.H.; Li, Y.M.; et al. Role of Oxidative Stress in Mitochondrial Dysfunction and Their Implications in Intervertebral Disc Degeneration: Mechanisms and Therapeutic Strategies. J. Orthop. Transl. 2024, 49, 181–206. [Google Scholar] [CrossRef]
- Molladavoodi, S.; McMorran, J.; Gregory, D. Mechanobiology of Annulus Fibrosus and Nucleus Pulposus Cells in Intervertebral Discs. Cell Tissue Res. 2020, 379, 429–444. [Google Scholar] [CrossRef]
- Travascio, F.; Jackson, A.R.; Brown, M.D.; Gu, W.Y. Relationship between Solute Transport Properties and Tissue Morphology in Human Annulus Fibrosus. J. Orthop. Res. 2009, 27, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Newell, N.; Little, J.P.; Christou, A.; Adams, M.A.; Adam, C.J.; Masouros, S.D. Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results. J. Mech. Behav. Biomed. Mater. 2017, 69, 420–434. [Google Scholar] [CrossRef]
- Crump, K.B.; Alminnawi, A.; Bermudez-Lekerika, P.; Compte, R.; Gualdi, F.; McSweeney, T.; Muñoz-Moya, E.; Nüesch, A.; Geris, L.; Dudli, S.; et al. Cartilaginous Endplates: A Comprehensive Review on a Neglected Structure in Intervertebral Disc Research. JOR Spine 2023, 6, e1294. [Google Scholar] [CrossRef]
- Buchweitz, N.; Sun, Y.; Cisewski Porto, S.; Kelley, J.; Niu, Y.; Wang, S.; Meng, Z.; Reitman, C.; Slate, E.; Yao, H.; et al. Regional Structure-Function Relationships of Lumbar Cartilage Endplates. J. Biomech. 2024, 169, 112131. [Google Scholar] [CrossRef]
- Richardson, S.M.; Ludwinski, F.E.; Gnanalingham, K.K.; Atkinson, R.A.; Freemont, A.J.; Hoyland, J.A. Notochordal and Nucleus Pulposus Marker Expression Is Maintained by Sub-Populations of Adult Human Nucleus Pulposus Cells through Aging and Degeneration. Sci. Rep. 2017, 7, 1501. [Google Scholar] [CrossRef] [PubMed]
- Torre, O.M.; Mroz, V.; Bartelstein, M.K.; Huang, A.H.; Iatridis, J.C. Annulus Fibrosus Cell Phenotypes in Homeostasis and Injury: Implications for Regenerative Strategies. Ann. N. Y. Acad. Sci. 2019, 1442, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Bao, R.; Yao, S.; Zhou, C.; Luo, H.; Zhang, Z.; Zhang, H.; Li, Y.; Yan, S.; Yu, H.; et al. Aberrant Spinal Mechanical Loading Stress Triggers Intervertebral Disc Degeneration by Inducing Pyroptosis and Nerve Ingrowth. Sci. Rep. 2021, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- Che, H.; Li, J.; Li, Y.; Ma, C.; Liu, H.; Qin, J.; Dong, J.; Zhang, Z.; Xian, C.J.; Miao, D.; et al. P16 Deficiency Attenuates Intervertebral Disc Degeneration by Adjusting Oxidative Stress and Nucleus Pulposus Cell Cycle. eLife 2020, 9, e52570. [Google Scholar] [CrossRef]
- Fewster, K.M.; Noguchi, M.; Gooyers, C.E.; Wong, A.; Callaghan, J.P. Exploring the Regional Disc Bulge Response of the Cervical Porcine Intervertebral Disc under Varying Loads and Posture. J. Biomech. 2020, 104, 109713. [Google Scholar] [CrossRef]
- Mohd Isa, I.L.; Teoh, S.L.; Mohd Nor, N.H.; Mokhtar, S.A. Discogenic Low Back Pain: Anatomy, Pathophysiology and Treatments of Intervertebral Disc Degeneration. Int. J. Mol. Sci. 2022, 24, 208. [Google Scholar] [CrossRef]
- Kelley, J.; Li, H.; Sun, Y.; Ren, P.; Chen, G.; Sun, S.; Zhao, J.; Buchweitz, N.; Kern, M.; Reitman, C.A.; et al. Endplate Remodeling: A Key Indicator of Cigarette Smoke Exposure-Induced Intervertebral Disc Degeneration in a Male Rat Model. JBMR Plus 2025, 9, ziaf016. [Google Scholar] [CrossRef]
- Seo, Y.-S.; Park, J.-M.; Kim, J.-H.; Lee, M.-Y. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants 2023, 12, 1732. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Kelley, J.; Buchweitz, N.; Madden, A.; Fan, H.; Hepfer, G.; Kern, M.; Townsend, D.M.; Ye, T.; Yao, H.; Wu, Y. Effect of Cigarette Smoke Exposure and Cessation on Regional Diffusion Properties in Rat Intervertebral Discs. JOR Spine 2024, 7, e70015. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhou, L.; Lei, Y.; Zhang, Y.; Huang, C. Redox Signaling and Unfolded Protein Response Coordinate Cell Fate Decisions under ER Stress. Redox Biol. 2019, 25, 101047. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Li, S.; Hudlikar, R.; Wang, L.; Shannar, A.; Peter, R.; Chou, P.J.; Kuo, H.-C.D.; Liu, Z.; Kong, A.-N. Redox Signaling, Mitochondrial Metabolism, Epigenetics and Redox Active Phytochemicals. Free Radic. Biol. Med. 2022, 179, 328–336. [Google Scholar] [CrossRef]
- Ye, Z.-W.; Zhang, J.; Townsend, D.M.; Tew, K.D. Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation. Biochim. Biophys. Acta 2015, 1850, 1607–1621. [Google Scholar] [CrossRef]
- Lennicke, C.; Cochemé, H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling and Function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef]
- Holmström, K.M.; Finkel, T. Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, H.; Wang, T.; Zhang, K.; Zhang, Y.; Kang, X. Oxidative Stress in Intervertebral Disc Degeneration: Molecular Mechanisms, Pathogenesis and Treatment. Cell Prolif. 2023, 56, e13448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ye, Z.; Bowers, R.R.; Townsend, D.M.; Tew, K.D. Sulfiredoxin. In Encyclopedia of Signaling Molecules; Choi, S., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 5221–5232. ISBN 978-3-319-67199-4. [Google Scholar]
- Zhang, J.; Ye, Z.-W.; Singh, S.; Townsend, D.M.; Tew, K.D. An Evolving Understanding of the S-Glutathionylation Cycle in Pathways of Redox Regulation. Free Radic. Biol. Med. 2018, 120, 204–216. [Google Scholar] [CrossRef]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of Oxidative Stress as an Anticancer Strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef]
- Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef]
- Wang, D.; He, X.; Zheng, C.; Wang, C.; Peng, P.; Gao, C.; Xu, X.; Ma, Y.; Liu, M.; Yang, L.; et al. Endoplasmic Reticulum Stress: An Emerging Therapeutic Target for Intervertebral Disc Degeneration. Front. Cell Dev. Biol. 2022, 9, 819139. [Google Scholar] [CrossRef]
- Luo, R.; Song, Y.; Liao, Z.; Yin, H.; Zhan, S.; Wang, K.; Li, S.; Li, G.; Ma, L.; Lu, S.; et al. Impaired Calcium Homeostasis via Advanced Glycation End Products Promotes Apoptosis through Endoplasmic Reticulum Stress in Human Nucleus Pulposus Cells and Exacerbates Intervertebral Disc Degeneration in Rats. FEBS J. 2019, 286, 4356–4373. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Tao, F.; Jin, L. Mitochondrial Dysfunction in Intervertebral Disc Degeneration: From Pathogenesis to Therapeutic Target. Oxid. Med. Cell. Longev. 2020, 2020, 8880320. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, H.; Cheng, Y.; Liu, Y.; Hai, Y.; Zhang, Y. The Role of Oxidative Stress in Intervertebral Disc Cellular Senescence. Front. Endocrinol. 2022, 13, 1038171. [Google Scholar] [CrossRef] [PubMed]
- Silwal, P.; Nguyen-Thai, A.M.; Mohammad, H.A.; Wang, Y.; Robbins, P.D.; Lee, J.Y.; Vo, N.V. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023, 13, 686. [Google Scholar] [CrossRef]
- Dou, Y.; Sun, X.; Ma, X.; Zhao, X.; Yang, Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front. Bioeng. Biotechnol. 2021, 9, 592118. [Google Scholar] [CrossRef]
- Setton, L.A.; Chen, J. Mechanobiology of the Intervertebral Disc and Relevance to Disc Degeneration. J. Bone Jt. Surg. Am. 2006, 88, 52–57. [Google Scholar] [CrossRef]
- Wang, B.; Ke, W.; Wang, K.; Li, G.; Ma, L.; Lu, S.; Xiang, Q.; Liao, Z.; Luo, R.; Song, Y.; et al. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. Oxid. Med. Cell. Longev. 2021, 2021, 8884922. [Google Scholar] [CrossRef]
- Liu, C.; Gao, X.; Lou, J.; Li, H.; Chen, Y.; Chen, M.; Zhang, Y.; Hu, Z.; Chang, X.; Luo, M.; et al. Aberrant Mechanical Loading Induces Annulus Fibrosus Cells Apoptosis in Intervertebral Disc Degeneration via Mechanosensitive Ion Channel Piezo1. Arthritis Res. Ther. 2023, 25, 117. [Google Scholar] [CrossRef]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting Integrin Pathways: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2023, 8, 1. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Xie, Z.; Chen, L.; Wu, X. The Hippo Pathway Orchestrates Cytoskeletal Organisation during Intervertebral Disc Degeneration. Acta Histochem. 2021, 123, 151770. [Google Scholar] [CrossRef]
- Korecki, C.L.; MacLean, J.J.; Iatridis, J.C. Dynamic Compression Effects on Intervertebral Disc Mechanics and Biology. Spine 2008, 33, 1403–1409. [Google Scholar] [CrossRef]
- Cazzanelli, P.; Lamoca, M.; Hasler, J.; Hausmann, O.N.; Mesfin, A.; Puvanesarajah, V.; Hitzl, W.; Wuertz-Kozak, K. The Role of miR-155-5p in Inflammation and Mechanical Loading during Intervertebral Disc Degeneration. Cell Commun. Signal. 2024, 22, 419. [Google Scholar] [CrossRef]
- Di, X.; Gao, X.; Peng, L.; Ai, J.; Jin, X.; Qi, S.; Li, H.; Wang, K.; Luo, D. Cellular Mechanotransduction in Health and Diseases: From Molecular Mechanism to Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 282. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liao, J.; Vlashi, R.; Chen, G. Focal Adhesion Kinase (FAK): Its Structure, Characteristics, and Signaling in Skeletal System. Cell. Signal. 2023, 111, 110852. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, K.; Hua, W.; Li, S.; Liu, X.; Song, Y.; Zhang, Y.; Shao, Z.; Li, S.; Yang, C. Fibronectin Induced ITGβ1/FAK-Dependent Apoptotic Pathways Determines the Fate of Degenerative NP Cells. J. Orthop. Res. 2019, 37, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Abdelsaid, M.A.; El-Remessy, A.B. S-Glutathionylation of LMW-PTP Regulates VEGF-Mediated FAK Activation and Endothelial Cell Migration. J. Cell Sci. 2012, 125, 4751–4760. [Google Scholar] [CrossRef]
- Yen, C.-K.; Pan, H.-Y.; Chang, H.-I.; Lu, Y.-C.; Jeng, Y.-R.; Chen, C.-N.; Huang, K.-Y. Low-Frequency Cyclic Stretch Upregulates the Expression of Nuclear Factor Erythroid 2-Related Factor 2 in Human Nucleus Pulposus Cells to Inhibit the Resistin-Induced Interleukin-20 Expression. JOR Spine 2025, 8, e70040. [Google Scholar] [CrossRef]
- Yidian, W.; Jihe, K.; Xudong, G.; Daxue, Z.; Mingqiang, L.; Xuewen, K. N-Acetylserotonin Protects Rat Nucleus Pulposus Cells Against Oxidative Stress Injury by Activating the PI3K/AKT Signaling Pathway. World Neurosurg. 2023, 176, e109–e124. [Google Scholar] [CrossRef]
- Zhou, C.; Yao, S.; Fu, F.; Bian, Y.; Zhang, Z.; Zhang, H.; Luo, H.; Ge, Y.; Chen, Y.; Ji, W.; et al. Morroniside Attenuates Nucleus Pulposus Cell Senescence to Alleviate Intervertebral Disc Degeneration via Inhibiting ROS-Hippo-P53 Pathway. Front. Pharmacol. 2022, 13, 942435. [Google Scholar] [CrossRef]
- Coste, B.; Mathur, J.; Schmidt, M.; Earley, T.J.; Ranade, S.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels. Science 2010, 330, 55–60. [Google Scholar] [CrossRef]
- Savadipour, A.; Palmer, D.; Ely, E.V.; Collins, K.H.; Garcia-Castorena, J.M.; Harissa, Z.; Kim, Y.S.; Oestrich, A.; Qu, F.; Rashidi, N.; et al. The Role of PIEZO Ion Channels in the Musculoskeletal System. Am. J. Physiol. Cell Physiol. 2023, 324, C728–C740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Leng, S.; Liu, X.; Hu, X.; Liu, Y.; Li, X.; Feng, Q.; Guo, W.; Li, N.; Sheng, Z.; et al. Ion Channel Piezo1 Activation Aggravates the Endothelial Dysfunction under a High Glucose Environment. Cardiovasc. Diabetol. 2024, 23, 150. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, X.; Chen, Y.; Tang, X.; Qin, Y.; He, M.; Chen, W.; Chen, H. Piezo1 Alleviates Acetaminophen-Induced Acute Liver Injury by Activating Nrf2 and Reducing Mitochondrial Reactive Oxygen Species. Biochem. Biophys. Res. Commun. 2023, 652, 88–94. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Zhang, C.; Yang, W.; Li, C.; Gao, Z.; Pei, K.; Li, Y. Piezo1 Mediates Endothelial Atherogenic Inflammatory Responses via Regulation of YAP/TAZ Activation. Hum. Cell 2022, 35, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, H. Elucidating the Mechanism of IL-1β-Mediated Piezo1 Expression Regulation of Chondrocyte Autophagy and Apoptosis via the PI3K/AKT/mTOR Signaling Pathway. Tissue Cell 2024, 86, 102291. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Leng, P.; Guo, P.; Gao, H.; Liu, Y.; Li, C.; Li, Z.; Zhang, H. G Protein Coupled Estrogen Receptor Attenuates Mechanical Stress-Mediated Apoptosis of Chondrocyte in Osteoarthritis via Suppression of Piezo1. Mol. Med. 2021, 27, 96. [Google Scholar] [CrossRef]
- Shi, S.; Kang, X.-J.; Zhou, Z.; He, Z.-M.; Zheng, S.; He, S.-S. Excessive Mechanical Stress-Induced Intervertebral Disc Degeneration Is Related to Piezo1 Overexpression Triggering the Imbalance of Autophagy/Apoptosis in Human Nucleus Pulpous. Arthritis Res. Ther. 2022, 24, 119. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, X.; Li, S.; Zeng, B.; Yang, J.; Ling, Z.; Liu, X.; Wei, F. Single Impact Injury of Vertebral Endplates Without Structural Disruption, Initiates Disc Degeneration Through Piezo1 Mediated Inflammation and Metabolism Dysfunction. Spine 2022, 47, E203–E213. [Google Scholar] [CrossRef]
- Sun, Y.; Leng, P.; Song, M.; Li, D.; Guo, P.; Xu, X.; Gao, H.; Li, Z.; Li, C.; Zhang, H. Piezo1 Activates the NLRP3 Inflammasome in Nucleus Pulposus Cell-Mediated by Ca2+/NF-κB Pathway. Int. Immunopharmacol. 2020, 85, 106681. [Google Scholar] [CrossRef]
- Xu, H.-g.; Zheng, Q.; Song, J.-x.; Li, J.; Wang, H.; Liu, P.; Wang, J.; Wang, C.-d.; Zhang, X.-l. Intermittent Cyclic Mechanical Tension Promotes Endplate Cartilage Degeneration via Canonical Wnt Signaling Pathway and E-Cadherin/β-Catenin Complex Cross-Talk. Osteoarthr. Cartil. 2016, 24, 158–168. [Google Scholar] [CrossRef]
- Bubolz, A.H.; Mendoza, S.A.; Zheng, X.; Zinkevich, N.S.; Li, R.; Gutterman, D.D.; Zhang, D.X. Activation of Endothelial TRPV4 Channels Mediates Flow-Induced Dilation in Human Coronary Arterioles: Role of Ca2+ Entry and Mitochondrial ROS Signaling. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H634–H642. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Lu, K.; Zhao, Z.; Wang, B.; Liu, H.; Zhang, S.; Liao, J.; Zeng, Y.; Dong, Q.; Zhao, N.; et al. Blockade of Transient Receptor Potential Vanilloid 4 Enhances Antioxidation after Myocardial Ischemia/Reperfusion. Oxid. Med. Cell. Longev. 2019, 2019, 7283683. [Google Scholar] [CrossRef] [PubMed]
- Cambria, E.; Arlt, M.J.E.; Wandel, S.; Krupkova, O.; Hitzl, W.; Passini, F.S.; Hausmann, O.N.; Snedeker, J.G.; Ferguson, S.J.; Wuertz-Kozak, K. TRPV4 Inhibition and CRISPR-Cas9 Knockout Reduce Inflammation Induced by Hyperphysiological Stretching in Human Annulus Fibrosus Cells. Cells 2020, 9, 1736. [Google Scholar] [CrossRef] [PubMed]
- Cambria, E.; Heusser, S.; Scheuren, A.C.; Tam, W.K.; Karol, A.A.; Hitzl, W.; Leung, V.Y.; Müller, R.; Ferguson, S.J.; Wuertz-Kozak, K. TRPV4 Mediates Cell Damage Induced by Hyperphysiological Compression and Regulates COX2/PGE2 in Intervertebral Discs. JOR Spine 2021, 4, e1149. [Google Scholar] [CrossRef]
- Kim, M.K.; Ramachandran, R.; Séguin, C.A. Spatiotemporal and Functional Characterisation of Transient Receptor Potential Vanilloid 4 (TRPV4) in the Murine Intervertebral Disc. Eur. Cell. Mater. 2021, 41, 194–203. [Google Scholar] [CrossRef]
- Mark Kim, M.K.; Lawrence, M.; Quinonez, D.; Brooks, C.; Ramachandran, R.; Séguin, C.A. Transient Receptor Potential Vanilloid 4 Regulates Extracellular Matrix Composition and Mediates Load-Induced Intervertebral Disc Degeneration in a Mouse Model. Osteoarthr. Cartil. 2024, 32, 881–894. [Google Scholar] [CrossRef]
- Easson, G.W.D.; Savadipour, A.; Anandarajah, A.; Iannucci, L.E.; Lake, S.P.; Guilak, F.; Tang, S.Y. Modulation of TRPV4 Protects against Degeneration Induced by Sustained Loading and Promotes Matrix Synthesis in the Intervertebral Disc. FASEB J. 2023, 37, e22714. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, H.; Fu, Y.; Gu, Y.; Zou, H.; Yuan, Y.; Gu, J.; Liu, Z.; Bian, J. Role of PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway in Resveratrol Alleviation of Zearalenone-Induced Oxidative Stress and Apoptosis in TM4 Cells. Toxins 2022, 14, 733. [Google Scholar] [CrossRef]
- Ouyang, Z.-H.; Wang, W.-J.; Yan, Y.-G.; Wang, B.; Lv, G.-H. The PI3K/Akt Pathway: A Critical Player in Intervertebral Disc Degeneration. Oncotarget 2017, 8, 57870–57881. [Google Scholar] [CrossRef]
- Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR Signaling Pathway in Osteoarthritis: A Narrative Review. Osteoarthr. Cartil. 2020, 28, 400–409. [Google Scholar] [CrossRef]
- Li, M.; Yu, X.; Chen, X.; Jiang, Y.; Zeng, Y.; Ren, R.; Nie, M.; Zhang, Z.; Bao, Y.; Kang, H. Genkwanin Alleviates Intervertebral Disc Degeneration via Regulating ITGA2/PI3K/AKT Pathway and Inhibiting Apoptosis and Senescence. Int. Immunopharmacol. 2024, 133, 112101. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, Y.; Cao, S.; Ren, P.; Shi, H.; Li, H.; Xie, L.; Huang, W.; Shi, B.; Han, J. Cyclic Mechanical Stretch Ameliorates the Degeneration of Nucleus Pulposus Cells through Promoting the ITGA2/PI3K/AKT Signaling Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 6699326. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Z.; Hao, J.; Shen, J. Low Intensity Pulsed Ultrasound Promotes the Extracellular Matrix Synthesis of Degenerative Human Nucleus Pulposus Cells Through FAK/PI3K/Akt Pathway. Spine 2016, 41, E248–E254. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Gan, D.; Luo, F.; Wan, S.; Chen, J.; Wang, A.; Li, B.; Zhu, X. Interaction Mechanisms Between the NOX4/ROS and RhoA/ROCK1 Signaling Pathways as New Anti- Fibrosis Targets of Ursolic Acid in Hepatic Stellate Cells. Front. Pharmacol. 2019, 10, 431. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Jia, Y.; Liu, H.; He, M.; Yang, Y.; Xiao, W.; Li, Y. RhoA/ROCK Pathway: Implication in Osteoarthritis and Therapeutic Targets. Am. J. Transl. Res. 2019, 11, 5324–5331. [Google Scholar]
- Ning, L.; Gao, L.; Zhang, F.; Li, X.; Wang, T. Mechanical Stretch Induces Annulus Fibrosus Cell Senescence through Activation of the RhoA/ROCK Pathway. Biomed Res. Int. 2021, 2021, 5321121. [Google Scholar] [CrossRef]
- Ko, E.; Kim, D.; Min, D.W.; Kwon, S.-H.; Lee, J.-Y. Nrf2 Regulates Cell Motility through RhoA-ROCK1 Signalling in Non-Small-Cell Lung Cancer Cells. Sci. Rep. 2021, 11, 1247. [Google Scholar] [CrossRef]
- Hua, K.-F.; Li, L.-H.; Yu, H.-C.; Wong, W.-T.; Hsu, H.-T. Leptin Induces MMP-1 Expression Through the RhoA/ERK1/2/NF-κB Axis in Human Intervertebral Disc Cartilage Endplate-Derived Stem Cells. J. Inflamm. Res. 2023, 16, 5235–5248. [Google Scholar] [CrossRef]
- Xu, B.; Ju, Y.; Song, G. Role of P38, ERK1/2, Focal Adhesion Kinase, RhoA/ROCK and Cytoskeleton in the Adipogenesis of Human Mesenchymal Stem Cells. J. Biosci. Bioeng. 2014, 117, 624–631. [Google Scholar] [CrossRef]
- Hong, Y.; Sun, Y.; Ainiwaer, M.; Xiao, B.; Zhang, S.; Ning, L.; Zhu, X.; Ji, Y. A Role for YAP/FOXM1/Nrf2 Axis in Oxidative Stress and Apoptosis of Cataract Induced by UVB Irradiation. FASEB J. 2024, 38, e23832. [Google Scholar] [CrossRef]
- Barrera, G.; Cucci, M.A.; Grattarola, M.; Pizzimenti, S. Chapter 15—Nrf2, YAP, Antioxidant Potential, and Cancer. In Cancer, 2nd ed.; Preedy, V.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 159–170. ISBN 978-0-12-819547-5. [Google Scholar]
- Wang, P.; Ni, M.; Tian, Y.; Wang, H.; Qiu, J.; You, W.; Wei, S.; Shi, Y.; Zhou, J.; Cheng, F.; et al. Myeloid Nrf2 Deficiency Aggravates Non-Alcoholic Steatohepatitis Progression by Regulating YAP-Mediated NLRP3 Inflammasome Signaling. iScience 2021, 24, 102427. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Zhang, X.; Luo, W.; Liu, L.; Zhu, Y.; Liu, Q.; Zhang, X. Emerging Role and Function of Hippo-YAP/TAZ Signaling Pathway in Musculoskeletal Disorders. Stem Cell Res. Ther. 2024, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Zheng-wei, S.; Yuan, T.; Chao-shuai, F.; Lei, Z.; Zong-rang, S.; Tuan-jiang, L.; Ding-jun, H. Roles of Hippo–YAP/TAZ Signalling in Intervertebral Disc Degeneration. Biomed. Pharmacother. 2023, 159, 114099. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bai, B.; Hu, Y.; Wang, H.; Liu, N.; Li, Y.; Li, P.; Zhou, G.; Zhou, Q. Hydrostatic Pressure Modulates Intervertebral Disc Cell Survival and Extracellular Matrix Homeostasis via Regulating Hippo-YAP/TAZ Pathway. Stem Cells Int. 2021, 2021, 5626487. [Google Scholar] [CrossRef] [PubMed]
- Croft, A.S.; Roth, Y.; Oswald, K.A.C.; Ćorluka, S.; Bermudez-Lekerika, P.; Gantenbein, B. In Situ Cell Signalling of the Hippo-YAP/TAZ Pathway in Reaction to Complex Dynamic Loading in an Intervertebral Disc Organ Culture. Int. J. Mol. 2021, 22, 13641. [Google Scholar] [CrossRef]
- Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK Signaling by GSTp. EMBO J. 1999, 18, 1321–1334. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Z.; Lyu, C.; Zhang, S.; Wang, D. Andrographolide Inhibits Static Mechanical Pressure-Induced Intervertebral Disc Degeneration via the MAPK/Nrf2/HO-1 Pathway. Drug Des. Devel. Ther. 2023, 17, 535–550. [Google Scholar] [CrossRef]
- Li, Y.; Han, N.; Hou, P.; Zhao, F.-Q.; Liu, H. Roles of MAPK and Nrf2 Signaling Pathways in Quercetin Alleviating Redox Imbalance Induced by Hydrogen Peroxide in Mammary Epithelial Cells. Anim. Nutr. 2024, 1, e1. [Google Scholar] [CrossRef]
- Choi, E.K.; Yeo, J.-S.; Park, C.Y.; Na, H.i.; Lim, J.a.; Lee, J.-E.; Hong, S.W.; Park, S.-S.; Lim, D.G.; Kwak, K.H. Inhibition of Reactive Oxygen Species Downregulates the MAPK Pathway in Rat Spinal Cord after Limb Ischemia Reperfusion Injury. Int. J. Surg. 2015, 22, 74–78. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Liao, H.-Y.; Bai, D.-Y.; Wang, Z.-Q.; Xie, X.-W. MAPK /ERK Signaling Pathway: A Potential Target for the Treatment of Intervertebral Disc Degeneration. Biomed. Pharmacother. 2021, 143, 112170. [Google Scholar] [CrossRef]
- Pratsinis, H.; Papadopoulou, A.; Neidlinger-Wilke, C.; Brayda-Bruno, M.; Wilke, H.-J.; Kletsas, D. Cyclic Tensile Stress of Human Annulus Fibrosus Cells Induces MAPK Activation: Involvement in Proinflammatory Gene Expression. Osteoarthr. Cartil. 2016, 24, 679–687. [Google Scholar] [CrossRef]
- Li, P.; Hou, G.; Zhang, R.; Gan, Y.; Xu, Y.; Song, L.; Zhou, Q. High-Magnitude Compression Accelerates the Premature Senescence of Nucleus Pulposus Cells via the P38 MAPK-ROS Pathway. Arthritis Res. Ther. 2017, 19, 209. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, L.; He, S.; Xia, T. Nucleus Pulposus Cell Senescence Is Regulated by Substrate Stiffness and Is Alleviated by LOX Possibly through the Integrin Β1-P38 MAPK Signaling Pathway. Exp. Cell Res. 2022, 417, 113230. [Google Scholar] [CrossRef]
- Krupkova, O.; Sadowska, A.; Kameda, T.; Hitzl, W.; Hausmann, O.N.; Klasen, J.; Wuertz-Kozak, K. P38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Front. Immunol. 2018, 9, 1706. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, F.; Dobaradaran, S.; De-la-Torre, G.E.; Schmidt, T.C.; Saeedi, R. Content of Toxic Components of Cigarette, Cigarette Smoke vs Cigarette Butts: A Comprehensive Systematic Review. Sci. Total Environ. 2022, 813, 152667. [Google Scholar] [CrossRef] [PubMed]
- Quéméneur, M.; Chifflet, S.; Akrout, F.; Bellaaj-Zouari, A.; Belhassen, M. Impact of Cigarette Butts on Microbial Diversity and Dissolved Trace Metals in Coastal Marine Sediment. Estuar. Coast. Shelf Sci. 2020, 240, 106785. [Google Scholar] [CrossRef]
- Rietbrock, N.; Kunkel, S.; Wörner, W.; Eyer, P. Oxygen-Dissociation Kinetics in the Blood of Smokers and Non-Smokers: Interaction between Oxygen and Carbon Monoxide at the Hemoglobin Molecule. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992, 345, 123–128. [Google Scholar] [CrossRef]
- Tu, J.; Li, W.; Hansbro, P.M.; Yan, Q.; Bai, X.; Donovan, C.; Kim, R.Y.; Galvao, I.; Das, A.; Yang, C.; et al. Smoking and Tetramer Tryptase Accelerate Intervertebral Disc Degeneration by Inducing METTL14-Mediated DIXDC1 M6 Modification. Mol. Ther. 2023, 31, 2524–2542. [Google Scholar] [CrossRef]
- De Geer, C.M. Intervertebral Disk Nutrients and Transport Mechanisms in Relation to Disk Degeneration: A Narrative Literature Review. J. Chiropr. Med. 2018, 17, 97–105. [Google Scholar] [CrossRef]
- Urban, J.P.G.; Smith, S.; Fairbank, J.C.T. Nutrition of the Intervertebral Disc. Spine 2004, 29, 2700–2709. [Google Scholar] [CrossRef]
- Ashinsky, B.G.; Bonnevie, E.D.; Mandalapu, S.A.; Pickup, S.; Wang, C.; Han, L.; Mauck, R.L.; Smith, H.E.; Gullbrand, S.E. Intervertebral Disc Degeneration Is Associated With Aberrant Endplate Remodeling and Reduced Small Molecule Transport. J. Bone Miner. Res. 2020, 35, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-429-14683-1. [Google Scholar]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among Smoking, Oxidative Stress, Inflammation, Macromolecular Damage, and Cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Pryor, W.A.; Church, D.F.; Evans, M.D.; Rice, W.Y.; Hayes, J.R. A Comparison of the Free Radical Chemistry of Tobacco-Burning Cigarettes and Cigarettes That Only Heat Tobacco. Free Radic. Biol. Med. 1990, 8, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.-Y.; Stone, K.; Pryor, W.A. Detection of Free Radicals in Aqueous Extracts of Cigarette Tar by Electron Spin Resonance. Free Radic. Biol. Med. 1995, 19, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Choudhury, A.; Das, A.; Chatterjee, N.S.; Das, T.; Chowdhury, R.; Panda, K.; Banerjee, R.; Chatterjee, I.B. Cigarette Smoke Induces P-Benzoquinone–Albumin Adduct in Blood Serum: Implications on Structure and Ligand Binding Properties. Toxicology 2012, 292, 78–89. [Google Scholar] [CrossRef]
- Mitra, A.; Mandal, A.K. Conjugation of Para-Benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding. J. Am. Soc. Mass Spectrom. 2018, 29, 2048–2058. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyay, R.; Ghosh, A.; Koley, H.; Panda, K.; Roy, S.; Chattopadhyay, D.; Chatterjee, I.B. Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Lung Damage and Prevention by Vitamin C. J. Inflamm. 2008, 5, 21. [Google Scholar] [CrossRef]
- Nakamura, T.; Naguro, I.; Ichijo, H. Iron Homeostasis and Iron-Regulated ROS in Cell Death, Senescence and Human Diseases. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 1398–1409. [Google Scholar] [CrossRef]
- Wang, W.; Jing, X.; Du, T.; Ren, J.; Liu, X.; Chen, F.; Shao, Y.; Sun, S.; Yang, G.; Cui, X. Iron Overload Promotes Intervertebral Disc Degeneration via Inducing Oxidative Stress and Ferroptosis in Endplate Chondrocytes. Free Radic. Biol. Med. 2022, 190, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qin, T.; Han, W.; Zhang, C.; Zhang, X.; Huang, Z.; Wu, Y.; Xu, Y.; Xu, K.; Ye, W. GLS1-Mediated Glutamine Metabolism Mitigates Oxidative Stress-Induced Matrix Degradation, Ferroptosis, and Senescence in Nucleus Pulposus Cells by Modulating Fe2+ Homeostasis. Free Radic. Biol. Med. 2025, 228, 93–107. [Google Scholar] [CrossRef]
- Chang, K.-H.; Park, J.-M.; Lee, C.H.; Kim, B.; Choi, K.-C.; Choi, S.-J.; Lee, K.; Lee, M.-Y. NADPH Oxidase (NOX) 1 Mediates Cigarette Smoke-Induced Superoxide Generation in Rat Vascular Smooth Muscle Cells. Toxicol. Vitro 2017, 38, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Murugesan, P.; Zhang, P.; Xu, S.; Peng, L.; Wang, C.; Cai, H. NADPH Oxidase Isoforms in COPD Patients and Acute Cigarette Smoke-Exposed Mice: Induction of Oxidative Stress and Lung Inflammation. Antioxidants 2022, 11, 1539. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-E.; Lee, I.-T.; Lin, C.-C.; Kou, Y.R.; Yang, C.-M. Cigarette Smoke Particle-Phase Extract Induces HO-1 Expression in Human Tracheal Smooth Muscle Cells: Role of the c-Src/NADPH Oxidase/MAPK/Nrf2 Signaling Pathway. Free Radic. Biol. Med. 2010, 48, 1410–1422. [Google Scholar] [CrossRef]
- Shih, R.-H.; Lee, I.-T.; Hsieh, H.-L.; Kou, Y.R.; Yang, C.-M. Cigarette Smoke Extract Induces HO-1 Expression in Mouse Cerebral Vascular Endothelial Cells: Involvement of c-Src/NADPH Oxidase/PDGFR/JAK2/STAT3 Pathway. J. Cell. Physiol. 2010, 225, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Sundar, I.K.; Maremanda, K.P.; Rahman, I. Mitochondrial Dysfunction Is Associated with Miro1 Reduction in Lung Epithelial Cells by Cigarette Smoke. Toxicol. Lett. 2019, 317, 92–101. [Google Scholar] [CrossRef]
- Naserzadeh, P.; Hosseini, M.-J.; Arbabi, S.; Pourahmad, J. A Comparison of Toxicity Mechanisms of Cigarette Smoke on Isolated Mitochondria Obtained from Rat Liver and Skin. Iran. J. Pharm. Res. 2015, 14, 271–277. [Google Scholar]
- Bazzini, C.; Rossetti, V.; Civello, D.A.; Sassone, F.; Vezzoli, V.; Persani, L.; Tiberio, L.; Lanata, L.; Bagnasco, M.; Paulmichl, M.; et al. Short- and Long-Term Effects of Cigarette Smoke Exposure on Glutathione Homeostasis in Human Bronchial Epithelial Cells. Cell Physiol. 2013, 32, 129–145. [Google Scholar] [CrossRef]
- Joshi, B.; Singh, S.; Sharma, P.; Mohapatra, T.; Kumar, P. Effect of Cigarette Smoking on Selected Antioxidant Enzymes and Oxidative Stress Biomarkers. J. Clin. Diagn. Res. 2020, 14, BC19–BC23. [Google Scholar] [CrossRef]
- Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial Complex III Is Required for Hypoxia-Induced ROS Production and Cellular Oxygen Sensing. Cell Metab. 2005, 1, 401–408. [Google Scholar] [CrossRef]
- Hernansanz-Agustín, P.; Ramos, E.; Navarro, E.; Parada, E.; Sánchez-López, N.; Peláez-Aguado, L.; Cabrera-García, J.D.; Tello, D.; Buendia, I.; Marina, A.; et al. Mitochondrial Complex I Deactivation Is Related to Superoxide Production in Acute Hypoxia. Redox Biol. 2017, 12, 1040–1051. [Google Scholar] [CrossRef]
- Semenza, G.L.; Wang, G.L. A Nuclear Factor Induced by Hypoxia via de Novo Protein Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation. Mol. Cell. Biol. 1992, 12, 5447–5454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ludden, C.M.; Cullen, A.J.; Tew, K.D.; Branco de Barros, A.L.; Townsend, D.M. Nuclear Factor Kappa B Expression in Non-Small Cell Lung Cancer. Biomed. Pharmacother. 2023, 167, 115459. [Google Scholar] [CrossRef]
- Qanungo, S.; Uys, J.D.; Manevich, Y.; Distler, A.M.; Shaner, B.; Hill, E.G.; Mieyal, J.J.; Lemasters, J.J.; Townsend, D.M.; Nieminen, A.-L. N-Acetyl-L-Cysteine Sensitizes Pancreatic Cancers to Gemcitabine by Targeting the NFκB Pathway. Biomed. Pharmacother. 2014, 68, 855–864. [Google Scholar] [CrossRef]
- Chandel, N.S.; McClintock, D.S.; Feliciano, C.E.; Wood, T.M.; Melendez, J.A.; Rodriguez, A.M.; Schumacker, P.T. Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-Inducible Factor-1α during Hypoxia. J. Biol. Chem. 2000, 275, 25130–25138. [Google Scholar] [CrossRef] [PubMed]
- Ravi; Singh, J. Redox Imbalance and Hypoxia-Inducible Factors: A Multifaceted Crosstalk. FEBS J. 2025; early view. [Google Scholar] [CrossRef] [PubMed]
- Onukwufor, J.O.; Farooqi, M.A.; Vodičková, A.; Koren, S.A.; Baldzizhar, A.; Berry, B.J.; Beutner, G.; Porter, G.A.; Belousov, V.; Grossfield, A.; et al. A Reversible Mitochondrial Complex I Thiol Switch Mediates Hypoxic Avoidance Behavior in C. Elegans. Nat. Commun. 2022, 13, 2403. [Google Scholar] [CrossRef]
- Paddenberg, R.; Goldenberg, A.; Faulhammer, P.; Braun-Dullaeus, R.C.; Kummer, W. Mitochondrial Complex II Is Essential for Hypoxia-Induced ROS Generation and Vasoconstriction in the Pulmonary Vasculature. In Chemoreception; Pequignot, J.-M., Gonzalez, C., Nurse, C.A., Prabhakar, N.R., Dalmaz, Y., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2003; Volume 536, pp. 163–169. ISBN 978-1-4613-4873-3. [Google Scholar]
- Marshall, C.; Mamary, A.J.; Verhoeven, A.J.; Marshall, B.E. Pulmonary Artery NADPH-Oxidase Is Activated in Hypoxic Pulmonary Vasoconstriction. Am. J. Respir. Cell Mol. Biol. 1996, 15, 633–644. [Google Scholar] [CrossRef]
- Xia, T.; Cheng, H.; Zhu, Y. Knockdown of Hypoxia-Inducible Factor-1 Alpha Reduces Proliferation, Induces Apoptosis and Attenuates the Aggressive Phenotype of Retinoblastoma WERI-Rb-1 Cells under Hypoxic Conditions. Ann. Clin. Lab. Sci. 2014, 44, 134–144. [Google Scholar]
- Averill-Bates, D. Reactive Oxygen Species and Cell Signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, L.Z.; Cheng, J.-T.; Lam, W.S.T.; Ma, X.; Xiang, X.; Wong, A.L.-A.; Goh, B.C.; Gong, Q.; Sethi, G.; et al. Targeting Hypoxia-Inducible Factor-1-Mediated Metastasis for Cancer Therapy. Antioxid. Redox Signal. 2021, 34, 1484–1497. [Google Scholar] [CrossRef]
- Mäkinen, S.; Sree, S.; Ala-Nisula, T.; Kultalahti, H.; Koivunen, P.; Koistinen, H.A. Activation of the Hypoxia-Inducible Factor Pathway by Roxadustat Improves Glucose Metabolism in Human Primary Myotubes from Men. Diabetologia 2024, 67, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Sen, B.; Benoit, B.; Brand, M.D. Hypoxia Decreases Mitochondrial ROS Production in Cells. Free Radic. Biol. Med. 2024, 224, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Circu, M.L.; Maloney, R.E.; Aw, T.Y. Low Glucose Stress Decreases Cellular NADH and Mitochondrial ATP in Colonic Epithelial Cancer Cells: Influence of Mitochondrial Substrates. Chem.-Biol. Interact. 2017, 264, 16–24. [Google Scholar] [CrossRef]
- Raut, G.K.; Chakrabarti, M.; Pamarthy, D.; Bhadra, M.P. Glucose Starvation-Induced Oxidative Stress Causes Mitochondrial Dysfunction and Apoptosis via Prohibitin 1 Upregulation in Human Breast Cancer Cells. Free Radic. Biol. Med. 2019, 145, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Gibson, S.B. Starvation-Induced Autophagy Is Regulated by Mitochondrial Reactive Oxygen Species Leading to AMPK Activation. Cell. Signal. 2013, 25, 50–65. [Google Scholar] [CrossRef]
- Owada, S.; Shimoda, Y.; Tsuchihara, K.; Esumi, H. Critical Role of H2O2 Generated by NOX4 during Cellular Response under Glucose Deprivation. PLoS ONE 2013, 8, e56628. [Google Scholar] [CrossRef]
- Jeon, S.-M.; Chandel, N.S.; Hay, N. AMPK Regulates NADPH Homeostasis to Promote Tumour Cell Survival during Energy Stress. Nature 2012, 485, 661–665. [Google Scholar] [CrossRef]
- Ren, Y.; Shen, H.-M. Critical Role of AMPK in Redox Regulation under Glucose Starvation. Redox Biol. 2019, 25, 101154. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Kim, J.H.; Park, Y.S.; Luo, X.; Zhang, L.; Ku, J.-L.; Choudry, M.H.A.; Lee, Y.J. Glucose Deprivation-Induced Endoplasmic Reticulum Stress Response Plays a Pivotal Role in Enhancement of TRAIL Cytotoxicity. J. Cell. Physiol. 2021, 236, 6666–6677. [Google Scholar] [CrossRef]
- Sciarretta, S.; Zhai, P.; Shao, D.; Zablocki, D.; Nagarajan, N.; Terada, L.S.; Volpe, M.; Sadoshima, J. Activation of NADPH Oxidase 4 in the Endoplasmic Reticulum Promotes Cardiomyocyte Autophagy and Survival During Energy Stress Through the Protein Kinase RNA-Activated-Like Endoplasmic Reticulum Kinase/Eukaryotic Initiation Factor 2α/Activating Transcription Factor 4 Pathway. Circ. Res. 2013, 113, 1253–1264. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zheng, Y.; Guan, Y.; Yang, P.; Chen, X.; Peng, C.; He, J.; Ai, Y.; Wu, S.; et al. Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation. Mol. Cell 2018, 69, 480–492.e7. [Google Scholar] [CrossRef] [PubMed]
- Iliadis, S.; Papanikolaou, N.A. Reactive Oxygen Species Mechanisms That Regulate Protein–Protein Interactions in Cancer. Int. J. Mol. Sci. 2024, 25, 9255. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Jing, X.; Guo, J.; Yao, X.; Guo, F. Mitophagy in Degenerative Joint Diseases. Autophagy 2021, 17, 2082–2092. [Google Scholar] [CrossRef]
- Feng, C.; Yang, M.; Lan, M.; Liu, C.; Zhang, Y.; Huang, B.; Liu, H.; Zhou, Y. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. Oxid. Med. Cell. Longev. 2017, 2017, 5601593. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.S.; Blower, M.D. The Endoplasmic Reticulum: Structure, Function and Response to Cellular Signaling. Cell. Mol. Life Sci. 2016, 73, 79–94. [Google Scholar] [CrossRef]
- Yao, D.; Chen, E.; Li, Y.; Wang, K.; Liao, Z.; Li, M.; Huang, L. The Role of Endoplasmic Reticulum Stress, Mitochondrial Dysfunction and Their Crosstalk in Intervertebral Disc Degeneration. Cell. Signal. 2024, 114, 110986. [Google Scholar] [CrossRef]
- Shergalis, A.G.; Hu, S.; Bankhead, A.; Neamati, N. Role of the ERO1-PDI Interaction in Oxidative Protein Folding and Disease. Pharmacol. Ther. 2020, 210, 107525. [Google Scholar] [CrossRef]
- Ron, D.; Walter, P. Signal Integration in the Endoplasmic Reticulum Unfolded Protein Response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529. [Google Scholar] [CrossRef]
- Cao, S.S.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef]
- Zito, E.; Melo, E.P.; Yang, Y.; Wahlander, Å.; Neubert, T.A.; Ron, D. Oxidative Protein Folding by an Endoplasmic Reticulum-Localized Peroxiredoxin. Mol. Cell 2010, 40, 787–797. [Google Scholar] [CrossRef]
- Tavender, T.J.; Bulleid, N.J. Peroxiredoxin IV Protects Cells from Oxidative Stress by Removing H2O2 Produced during Disulphide Formation. J. Cell Sci. 2010, 123, 2672–2679. [Google Scholar] [CrossRef]
- Netto, L.E.S.; Antunes, F. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction. Mol. Cells 2016, 39, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Delaunay-Moisan, A.; Appenzeller-Herzog, C. The Antioxidant Machinery of the Endoplasmic Reticulum: Protection and Signaling. Free Radic. Biol. Med. 2015, 83, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Eid, S.A.; Savelieff, M.G.; Eid, A.A.; Feldman, E.L. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System. Antioxid. Redox Signal. 2022, 37, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-F.; Ma, Z.; Liu, Z.; Terada, L.S. Nox4-Derived H2O2 Mediates Endoplasmic Reticulum Signaling through Local Ras Activation. Mol. Cell. Biol. 2010, 30, 3553–3568. [Google Scholar] [CrossRef]
- Booth, D.M.; Enyedi, B.; Geiszt, M.; Várnai, P.; Hajnóczky, G. Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface. Mol. Cell 2016, 63, 240–248. [Google Scholar] [CrossRef]
- Bánsághi, S.; Golenár, T.; Madesh, M.; Csordás, G.; RamachandraRao, S.; Sharma, K.; Yule, D.I.; Joseph, S.K.; Hajnóczky, G. Isoform- and Species-Specific Control of Inositol 1,4,5-Trisphosphate (IP3) Receptors by Reactive Oxygen Species. J. Biol. Chem. 2014, 289, 8170–8181. [Google Scholar] [CrossRef]
- Marchi, S.; Patergnani, S.; Missiroli, S.; Morciano, G.; Rimessi, A.; Wieckowski, M.R.; Giorgi, C.; Pinton, P. Mitochondrial and Endoplasmic Reticulum Calcium Homeostasis and Cell Death. Cell Calcium 2018, 69, 62–72. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Riaz, T.A.; Kim, H.-R.; Chae, H.-J. The Aftermath of the Interplay between the Endoplasmic Reticulum Stress Response and Redox Signaling. Exp. Mol. Med. 2021, 53, 151–167. [Google Scholar] [CrossRef]
- Eletto, D.; Chevet, E.; Argon, Y.; Appenzeller-Herzog, C. Redox Controls UPR to Control Redox. J. Cell Sci. 2014, 127, 3649–3658. [Google Scholar] [CrossRef]
- Victor, P.; Sarada, D.; Ramkumar, K.M. Crosstalk between Endoplasmic Reticulum Stress and Oxidative Stress: Focus on Protein Disulfide Isomerase and Endoplasmic Reticulum Oxidase 1. Eur. J. Pharmacol. 2021, 892, 173749. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.M.; Pincus, D.; Gotthardt, K.; Gallagher, C.M.; Walter, P. Endoplasmic Reticulum Stress Sensing in the Unfolded Protein Response. Cold Spring Harb. Perspect. Biol. 2013, 5, a013169. [Google Scholar] [CrossRef]
- Koenig, M.N.; Naik, E.; Rohrbeck, L.; Herold, M.J.; Trounson, E.; Bouillet, P.; Thomas, T.; Voss, A.K.; Strasser, A.; Coultas, L. Pro-Apoptotic BIM Is an Essential Initiator of Physiological Endothelial Cell Death Independent of Regulation by FOXO3. Cell Death Differ. 2014, 21, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.X.C.; Nabeebaccus, A.A.; Shah, A.M.; Camargo, L.L.; Filho, S.V.; Lopes, L.R. Endoplasmic Reticulum Stress and Nox-Mediated Reactive Oxygen Species Signaling in the Peripheral Vasculature: Potential Role in Hypertension. Antioxid. Redox Signal. 2014, 20, 121–134. [Google Scholar] [CrossRef]
- Chaube, R.; Werstuck, G.H. Mitochondrial ROS versus ER ROS: Which Comes First in Myocardial Calcium Dysregulation? Front. Cardiovasc. Med. 2016, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Evangelista, A.; Cohen, R.A. Targeting the Redox Regulation of SERCA in Vascular Physiology and Disease. Curr. Opin. Pharmacol. 2010, 10, 133–138. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Q.; Ren, Q.; Luo, L.; Ji, G.; Zheng, T. Endoplasmic Reticulum Stress Associates with the Development of Intervertebral Disc Degeneration. Front. Endocrinol. 2023, 13, 1094394. [Google Scholar] [CrossRef]
- Sharifi, S.; Bulstra, S.K.; Grijpma, D.W.; Kuijer, R. Treatment of the Degenerated Intervertebral Disc; Closure, Repair and Regeneration of the Annulus Fibrosus. J. Tissue Eng. Regen. Med. 2015, 9, 1120–1132. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Shi, Q.; Lu, W.W.; Cheung, K.C.M.; Darowish, M.; Li, T.-F.; Dong, Y.-F.; Zhou, C.-J.; Zhou, Q.; Hu, Z.-J.; et al. Cervical Intervertebral Disc Degeneration Induced by Unbalanced Dynamic and Static Forces: A Novel In Vivo Rat Model. Spine 2006, 31, 1532–1538. [Google Scholar] [CrossRef]
- Kang, H.; Dong, Y.; Peng, R.; Liu, H.; Guo, Q.; Song, K.; Zhu, M.; Yu, K.; Wu, W.; Li, F. Inhibition of IRE1 Suppresses the Catabolic Effect of IL-1β on Nucleus Pulposus Cell and Prevents Intervertebral Disc Degeneration In Vivo. Biochem Pharmacol. 2022, 197, 114932. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Zhao, C.-Q.; Jiang, L.-S.; Dai, L.-Y. Lentiviral shRNA Silencing of CHOP Inhibits Apoptosis Induced by Cyclic Stretch in Rat Annular Cells and Attenuates Disc Degeneration in the Rats. Apoptosis 2011, 16, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Peng, Y.; Li, J.; Wang, Z.; Chen, S.; Qing, X.; Pu, F.; Lei, M.; Shao, Z. Reactive Oxygen Species Regulate Endoplasmic Reticulum Stress and ER-Mitochondrial Ca2+ Crosstalk to Promote Programmed Necrosis of Rat Nucleus Pulposus Cells under Compression. Oxid. Med. Cell. Longev. 2021, 2021, 8810698. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Lu, H.; Chen, M.; Yao, H.; Zhao, H. Oxidative Stress Participates in Age-Related Changes in Rat Lumbar Intervertebral Discs. Arch. Gerontol. Geriatr. 2014, 59, 665–669. [Google Scholar] [CrossRef]
- Hogg, N.; Darley-Usmar, V.M.; Wilson, M.T.; Moncada, S. Production of Hydroxyl Radicals from the Simultaneous Generation of Superoxide and Nitric Oxide. Biochem. J. 1992, 281 Pt 2, 419–424. [Google Scholar] [CrossRef]
- Poveda, L.; Hottiger, M.; Boos, N.; Wuertz, K. Peroxynitrite Induces Gene Expression in Intervertebral Disc Cells. Spine 2009, 34, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Fujita, N.; Hosogane, N.; Watanabe, K.; Ishii, K.; Toyama, Y.; Takubo, K.; Horiuchi, K.; Miyamoto, T.; Nakamura, M.; et al. Excessive Reactive Oxygen Species Are Therapeutic Targets for Intervertebral Disc Degeneration. Arthritis Res. Ther. 2015, 17, 316. [Google Scholar] [CrossRef]
- Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-Mediated Coupling of Endoplasmic Reticulum and Mitochondrial Ca2+ Channels. J. Cell Biol. 2006, 175, 901–911. [Google Scholar] [CrossRef]
- Nasto, L.A.; Robinson, A.R.; Ngo, K.; Clauson, C.L.; Dong, Q.; St. Croix, C.; Sowa, G.; Pola, E.; Robbins, P.D.; Kang, J.; et al. Mitochondrial-Derived Reactive Oxygen Species (ROS) Play a Causal Role in Aging-Related Intervertebral Disc Degeneration. J. Orthop. Res. 2013, 31, 1150–1157. [Google Scholar] [CrossRef]
- Lee, S.H.; Duron, H.E.; Chaudhuri, D. Beyond the TCA Cycle: New Insights into Mitochondrial Calcium Regulation of Oxidative Phosphorylation. Biochem. Soc. Trans. 2023, 51, 1661–1673. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef]
- Sena, L.A.; Chandel, N.S. Physiological Roles of Mitochondrial Reactive Oxygen Species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, B.C.; Chang, C.J. Chemistry and Biology of Reactive Oxygen Species in Signaling or Stress Responses. Nat. Chem. Biol. 2011, 7, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.L.; Liu, Y.; Van Remmen, H. Complex III Releases Superoxide to Both Sides of the Inner Mitochondrial Membrane. J. Biol. Chem. 2004, 279, 49064–49073. [Google Scholar] [CrossRef]
- Ma, T.; Du, J.; Zhang, Y.; Wang, Y.; Wang, B.; Zhang, T. GPX4-Independent Ferroptosis—A New Strategy in Disease’s Therapy. Cell Death Discov. 2022, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Findlay, V.J.; Townsend, D.M.; Morris, T.E.; Fraser, J.P.; He, L.; Tew, K.D. A Novel Role for Human Sulfiredoxin in the Reversal of Glutathionylation. Cancer Res. 2006, 66, 6800–6806. [Google Scholar] [CrossRef]
- Lei, K.; Townsend, D.M.; Tew, K.D. Protein Cysteine Sulfinic Acid Reductase (Sulfiredoxin) as a Regulator of Cell Proliferation and Drug Response. Oncogene 2008, 27, 4877–4887. [Google Scholar] [CrossRef] [PubMed]
- Lyamzaev, K.G.; Panteleeva, A.A.; Simonyan, R.A.; Avetisyan, A.V.; Chernyak, B.V. Mitochondrial Lipid Peroxidation Is Responsible for Ferroptosis. Cells 2023, 12, 611. [Google Scholar] [CrossRef]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Rottenberg, H.; Hoek, J.B. The Path from Mitochondrial ROS to Aging Runs through the Mitochondrial Permeability Transition Pore. Aging Cell 2017, 16, 943–955. [Google Scholar] [CrossRef]
- Ding, F.; Shao, Z.-W.; Yang, S.-H.; Wu, Q.; Gao, F.; Xiong, L.-M. Role of Mitochondrial Pathway in Compression-Induced Apoptosis of Nucleus Pulposus Cells. Apoptosis 2012, 17, 579–590. [Google Scholar] [CrossRef]
- Chen, J.-W.; Ni, B.-B.; Li, B.; Yang, Y.-H.; Jiang, S.-D.; Jiang, L.-S. The Responses of Autophagy and Apoptosis to Oxidative Stress in Nucleus Pulposus Cells: Implications for Disc Degeneration. Cell Physiol. Biochem. 2014, 34, 1175–1189. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Rong, Z.; Zeng, M.; Cao, Y.; Gong, X.; Lin, L.; Chen, Y.; Cao, W.; Zhu, L.; Dong, W. Pyrroloquinoline Quinone Protects Nucleus Pulposus Cells from Hydrogen Peroxide-Induced Apoptosis by Inhibiting the Mitochondria-Mediated Pathway. Eur. Spine J. 2015, 24, 1702–1710. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, T.; Chen, J.; Shao, Z.; Wang, K.; Yan, Y.; Wu, C.; Lin, J.; Wang, H.; Gao, W.; et al. Parkin-Mediated Mitophagy as a Potential Therapeutic Target for Intervertebral Disc Degeneration. Cell Death Dis. 2018, 9, 980. [Google Scholar] [CrossRef]
- Chen, S.; Lv, X.; Hu, B.; Zhao, L.; Li, S.; Li, Z.; Qing, X.; Liu, H.; Xu, J.; Shao, Z. Critical Contribution of RIPK1 Mediated Mitochondrial Dysfunction and Oxidative Stress to Compression-Induced Rat Nucleus Pulposus Cells Necroptosis and Apoptosis. Apoptosis 2018, 23, 299–313. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Ma, K.; Lv, X.; Lin, H.; Hu, B.; He, R.; Shao, Z. CsA Attenuates Compression-Induced Nucleus Pulposus Mesenchymal Stem Cells Apoptosis via Alleviating Mitochondrial Dysfunction and Oxidative Stress. Life Sci. 2018, 205, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.; Zhang, M.; Li, Z.; Liu, B.; Liu, H.; Hao, J.; Li, X. Synergistic Mechanism between the Endoplasmic Reticulum and Mitochondria and Their Crosstalk with Other Organelles. Cell Death Discov. 2023, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Siegenthaler, K.D.; Sevier, C.S. Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria. Chem. Res. Toxicol. 2019, 32, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Li, Y. Mitochondrial Dynamics in Health and Disease: Mechanisms and Potential Targets. Signal Transduct. Target. Ther. 2023, 8, 333. [Google Scholar] [CrossRef]
- Xu, H.; Guan, N.; Ren, Y.-L.; Wei, Q.-J.; Tao, Y.-H.; Yang, G.-S.; Liu, X.-Y.; Bu, D.-F.; Zhang, Y.; Zhu, S.-N. IP3R-Grp75-VDAC1-MCU Calcium Regulation Axis Antagonists Protect Podocytes from Apoptosis and Decrease Proteinuria in an Adriamycin Nephropathy Rat Model. BMC Nephrol. 2018, 19, 140. [Google Scholar] [CrossRef]
- Kim, H.; Tu, H.-C.; Ren, D.; Takeuchi, O.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.-D.; Cheng, E.H.-Y. Stepwise Activation of BAX and BAK by tBID, BIM, and PUMA Initiates Mitochondrial Apoptosis. Mol. Cell 2009, 36, 487–499. [Google Scholar] [CrossRef]
- Zhao, C.-Q.; Zhang, Y.-H.; Jiang, S.-D.; Jiang, L.-S.; Dai, L.-Y. Both Endoplasmic Reticulum and Mitochondria Are Involved in Disc Cell Apoptosis and Intervertebral Disc Degeneration in Rats. Age 2010, 32, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J. Malondialdehyde as Biomarker of Oxidative Damage to Lipids Caused by Smoking. Clin. Chim. Acta 2007, 380, 50–58. [Google Scholar] [CrossRef]
- Fahn, H.J.; Wang, L.S.; Kao, S.H.; Chang, S.C.; Huang, M.H.; Wei, Y.H. Smoking-Associated Mitochondrial DNA Mutations and Lipid Peroxidation in Human Lung Tissues. Am. J. Respir. Cell Mol. Biol. 1998, 19, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Cheng, Z.; Wang, J.; Feng, X.; Hua, W.; Luo, R.; Wang, B.; Liao, Z.; Ma, L.; Li, G.; et al. Allicin Attenuated Advanced Oxidation Protein Product-Induced Oxidative Stress and Mitochondrial Apoptosis in Human Nucleus Pulposus Cells. Oxid. Med. Cell. Longev. 2020, 2020, 6685043. [Google Scholar] [CrossRef]
- Lin, S.-P.; Tu, C.; Huang, W.; Wu, Y.; Lin, P.-Y.; Ye, S.; Long, Y.; Xu, W.; Chen, S.; Wen, Y.-S.; et al. Acute-Phase Serum Superoxide Dismutase Level as a Predictive Biomarker for Stroke-Associated Infection. Int. J. Neurosci. 2020, 130, 186–192. [Google Scholar] [CrossRef]
- Leite Pereira, C.; Grad, S.; Gonçalves, R.M. Biomarkers for Intervertebral Disc and Associated Back Pain: From Diagnosis to Disease Prognosis and Personalized Treatment. JOR Spine 2023, 6, e1280. [Google Scholar] [CrossRef]
- Roussel, P.; Zhou, M.; Stringari, C.; Preat, T.; Plaçais, P.-Y.; Genovesio, A. In Vivo Autofluorescence Lifetime Imaging of the Drosophila Brain Captures Metabolic Shifts Associated with Memory Formation. eLife 2025, 14, RP106040. [Google Scholar] [CrossRef]
- Xu, X.; Yadav, N.N.; Knutsson, L.; Hua, J.; Kalyani, R.; Hall, E.; Laterra, J.; Blakeley, J.; Strowd, R.; Pomper, M.; et al. Dynamic Glucose-Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Glioma Patients. Tomography 2015, 1, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Silva-Correia, J.; Correia, S.I.; Oliveira, J.M.; Reis, R.L. Tissue Engineering Strategies Applied in the Regeneration of the Human Intervertebral Disk. Biotechnol. Adv. 2013, 31, 1514–1531. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jung, T.-G.; Kim, H.-S.; Jang, J.-S.; Lee, S.-H. Analysis of the Incidence and Clinical Effect of the Heterotopic Ossification in a Single-Level Cervical Artificial Disc Replacement. Spine J. 2010, 10, 676–682. [Google Scholar] [CrossRef]
- Lv, Z.; Wu, W.; Ge, S.; Jia, R.; Lin, T.; Yuan, Y.; Kuang, H.; Yang, B.; Wu, L.; Wei, J.; et al. Naringin Protects against Perfluorooctane Sulfonate-Induced Liver Injury by Modulating NRF2 and NF-κB in Mice. Int. Immunopharmacol. 2018, 65, 140–147. [Google Scholar] [CrossRef]
- Nan, L.-P.; Wang, F.; Ran, D.; Zhou, S.-F.; Liu, Y.; Zhang, Z.; Huang, Z.-N.; Wang, Z.-Y.; Wang, J.-C.; Feng, X.-M.; et al. Naringin Alleviates H2O2-Induced Apoptosis via the PI3K/Akt Pathway in Rat Nucleus Pulposus-Derived Mesenchymal Stem Cells. Connect. Tissue Res. 2020, 61, 554–567. [Google Scholar] [CrossRef]
- Krupkova, O.; Handa, J.; Hlavna, M.; Klasen, J.; Ospelt, C.; Ferguson, S.J.; Wuertz-Kozak, K. The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2016, 7031397. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Jian, X.; Sun, H.; Qin, J.; Wang, Y.; Zhang, J.; Shen, Z.; Yang, D.; Li, C.; Zhao, P.; et al. Cartilage Endplate Stem Cells Inhibit Intervertebral Disc Degeneration by Releasing Exosomes to Nucleus Pulposus Cells to Activate Akt/Autophagy. Stem Cells 2021, 39, 467–481. [Google Scholar] [CrossRef]
- Stevens, R.C.; Sancho, J.; Martinez, A. Rescue of Misfolded Proteins and Stabilization by Small Molecules. Methods Mol. Biol. 2010, 648, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Kolb, P.S.; Ayaub, E.A.; Zhou, W.; Yum, V.; Dickhout, J.G.; Ask, K. The Therapeutic Effects of 4-Phenylbutyric Acid in Maintaining Proteostasis. Int. J. Biochem. Cell Biol. 2015, 61, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Xue, P.; Ying, J.; Cheng, S.; Liu, Y.; Ruan, D. The Role of Unfolded Protein Response in Human Intervertebral Disc Degeneration: Perk and IRE1-α as Two Potential Therapeutic Targets. Oxid. Med. Cell. Longev. 2021, 2021, 6492879. [Google Scholar] [CrossRef]
- Luo, R.; Liao, Z.; Song, Y.; Yin, H.; Zhan, S.; Li, G.; Ma, L.; Lu, S.; Wang, K.; Li, S.; et al. Berberine Ameliorates Oxidative Stress-Induced Apoptosis by Modulating ER Stress and Autophagy in Human Nucleus Pulposus Cells. Life Sci. 2019, 228, 85–97. [Google Scholar] [CrossRef]
- Wang, W.; Qing, X.; Wang, B.; Ma, K.; Wei, Y.; Shao, Z. Tauroursodeoxycholic Acid Protects Nucleus Pulposus Cells from Compression-Induced Apoptosis and Necroptosis via Inhibiting Endoplasmic Reticulum Stress. Evid. Based Complement. Altern. Med. 2018, 2018, 6719460. [Google Scholar] [CrossRef]
- Fujii, T.; Fujita, N.; Suzuki, S.; Tsuji, T.; Takaki, T.; Umezawa, K.; Watanabe, K.; Miyamoto, T.; Horiuchi, K.; Matsumoto, M.; et al. The Unfolded Protein Response Mediated by PERK Is Casually Related to the Pathogenesis of Intervertebral Disc Degeneration. J. Orthop. Res. 2018, 36, 1334–1345. [Google Scholar] [CrossRef]
- Rodriguez-Cuenca, S.; Cochemé, H.M.; Logan, A.; Abakumova, I.; Prime, T.A.; Rose, C.; Vidal-Puig, A.; Smith, A.C.; Rubinsztein, D.C.; Fearnley, I.M.; et al. Consequences of Long-Term Oral Administration of the Mitochondria-Targeted Antioxidant MitoQ to Wild-Type Mice. Free Radic. Biol. Med. 2010, 48, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Liu, S.; Li, J.; Tian, Y.; Xue, Y.; Liu, X. The Mitochondria-Targeted Anti-Oxidant MitoQ Protects against Intervertebral Disc Degeneration by Ameliorating Mitochondrial Dysfunction and Redox Imbalance. Cell Prolif. 2020, 53, e12779. [Google Scholar] [CrossRef]
- Cheng, Z.; Xiang, Q.; Wang, J.; Zhang, Y. The Potential Role of Melatonin in Retarding Intervertebral Disc Ageing and Degeneration: A Systematic Review. Ageing Res. Rev. 2021, 70, 101394. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Wang, X.; Li, Z.; Zhang, J.; Pei, Y.; Zheng, Z.; Wang, J. Melatonin Activates Autophagy via the NF-κB Signaling Pathway to Prevent Extracellular Matrix Degeneration in Intervertebral Disc. Osteoarthr. Cartil. 2020, 28, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, J.; Tian, N.; Wu, Y.; Zhou, Y.; Wang, C.; Wang, Q.; Jin, H.; Chen, T.; Nisar, M.; et al. Melatonin Protects Vertebral Endplate Chondrocytes against Apoptosis and Calcification via the Sirt1-autophagy Pathway. J. Cell. Mol. Med. 2019, 23, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Shi, H.; Wang, J.; Zheng, Z.; Chen, J.; Chen, X.; Zhang, Z.; Xu, D.; Wang, X.; et al. Melatonin Ameliorates Intervertebral Disc Degeneration via the Potential Mechanisms of Mitophagy Induction and Apoptosis Inhibition. J. Cell. Mol. Med. 2019, 23, 2136–2148. [Google Scholar] [CrossRef]
- Krupkova, O.; Cambria, E.; Besse, L.; Besse, A.; Bowles, R.; Wuertz-Kozak, K. The Potential of CRISPR/Cas9 Genome Editing for the Study and Treatment of Intervertebral Disc Pathologies. JOR Spine 2018, 1, e1003. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, Z.; Cui, M.; Liu, S.; Wu, W.; Chen, M.; Wu, Y.; Qu, Y.; Lin, H.; Chen, S.; et al. HIF1A Alleviates Compression-Induced Apoptosis of Nucleus Pulposus Derived Stem Cells via Upregulating Autophagy. Autophagy 2021, 17, 3338–3360. [Google Scholar] [CrossRef]
- Xia, C.; Zeng, Z.; Fang, B.; Tao, M.; Gu, C.; Zheng, L.; Wang, Y.; Shi, Y.; Fang, C.; Mei, S.; et al. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Intervertebral Disc Degeneration via Anti-Oxidant and Anti-Inflammatory Effects. Free Radic. Biol. Med. 2019, 143, 1–15. [Google Scholar] [CrossRef]
- Townsend, D.M.; Tew, K.D.; Tapiero, H. The Importance of Glutathione in Human Disease. Biomed. Pharmacother. 2003, 57, 145–155. [Google Scholar] [CrossRef]
- Li, F.; Li, S.; Shi, Y.; Lin, F.; Rui, L.; Shi, J.; Sun, K. Glutathione: A Key Regulator of Extracellular Matrix and Cell Death in Intervertebral Disc Degeneration. Mediat. Inflamm. 2024, 2024, 4482642. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, D.; Shimer, A.; Shen, F.H.; Li, X.; Yang, X. Glutathione Protects Human Nucleus Pulposus Cells from Cell Apoptosis and Inhibition of Matrix Synthesis. Connect. Tissue Res. 2014, 55, 132–139. [Google Scholar] [CrossRef]
- Ma, K.-G.; Shao, Z.-W.; Yang, S.-H.; Wang, J.; Wang, B.-C.; Xiong, L.-M.; Wu, Q.; Chen, S.-F. Autophagy Is Activated in Compression-Induced Cell Degeneration and Is Mediated by Reactive Oxygen Species in Nucleus Pulposus Cells Exposed to Compression. Osteoarthr. Cartil. 2013, 21, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, X.; Yan, M.; Yang, M.; Wang, S.; Pan, J.; Li, L.; Tan, J. Oxidative Damage Induces Apoptosis and Promotes Calcification in Disc Cartilage Endplate Cell through ROS/MAPK/NF-κB Pathway: Implications for Disc Degeneration. Biochem. Biophys. Res. Commun. 2019, 516, 1026–1032. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Folta, K.M.; Krishna, V.; Bai, W.; Indeglia, P.; Georgieva, A.; Nakamura, H.; Koopman, B.; Moudgil, B. Polyhydroxy Fullerenes (Fullerols or Fullerenols): Beneficial Effects on Growth and Lifespan in Diverse Biological Models. PLoS ONE 2011, 6, e19976. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, L.; Shen, F.H.; Balian, G.; Li, X.J. Fullerol Nanoparticles Suppress Inflammatory Response and Adipogenesis of Vertebral Bone Marrow Stromal Cells—A Potential Novel Treatment for Intervertebral Disc Degeneration. Spine J. 2013, 13, 1571–1580. [Google Scholar] [CrossRef]
- Yang, X.; Jin, L.; Yao, L.; Shen, F.H.; Shimer, A.L.; Li, X. Antioxidative Nanofullerol Prevents Intervertebral Disk Degeneration. Int. J. Nanomed. 2014, 9, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, Y.; Mi, J.; Mao, L.; Han, X.; Zhao, J. Resveratrol Protects against Sodium Nitroprusside Induced Nucleus Pulposus Cell Apoptosis by Scavenging ROS. Int. J. Mol. Med. 2018, 41, 2485–2492. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, A.; Zhao, K.; Gao, H.; Shi, P.; Chen, Y.; Cheng, Z.; Zhou, W.; Zhang, Y. The Role of Oxidative Stress in Intervertebral Disc Degeneration: Mechanisms and Therapeutic Implications. Ageing Res. Rev. 2024, 98, 102323. [Google Scholar] [CrossRef]
- Hernansanz-Agustín, P.; Enríquez, J.A. Generation of Reactive Oxygen Species by Mitochondria. Antioxidants 2021, 10, 415. [Google Scholar] [CrossRef]
- Kimura, T.; Horibe, T.; Sakamoto, C.; Shitara, Y.; Fujiwara, F.; Komiya, T.; Yamamoto, A.; Hayano, T.; Takahashi, N.; Kikuchi, M. Evidence for Mitochondrial Localization of P5, a Member of the Protein Disulphide Isomerase Family. J. Biochem. 2008, 144, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Battié, M.C.; Videman, T.; Levälahti, E.; Gill, K.; Kaprio, J. Genetic and Environmental Effects on Disc Degeneration by Phenotype and Spinal Level: A Multivariate Twin Study. Spine 2008, 33, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Paassilta, P.; Lohiniva, J.; Göring, H.H.; Perälä, M.; Räinä, S.S.; Karppinen, J.; Hakala, M.; Palm, T.; Kröger, H.; Kaitila, I.; et al. Identification of a Novel Common Genetic Risk Factor for Lumbar Disk Disease. JAMA 2001, 285, 1843–1849. [Google Scholar] [CrossRef]
- Feil, R.; Fraga, M.F. Epigenetics and the Environment: Emerging Patterns and Implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.K.; Naidoo, N. The Endoplasmic Reticulum Stress Response in Aging and Age-Related Diseases. Front. Physiol. 2012, 3, 263. [Google Scholar] [CrossRef]
- Yaniv, Y.; Juhaszova, M.; Sollott, S.J. Age-Related Changes of Myocardial ATP Supply and Demand Mechanisms. Trends Endocrinol. Metab. 2013, 24, 495–505. [Google Scholar] [CrossRef]
- Hussen, N.H.A.; Abdulla, S.K.; Ali, N.M.; Ahmed, V.A.; Hasan, A.H.; Qadir, E.E. Role of Antioxidants in Skin Aging and the Molecular Mechanism of ROS: A Comprehensive Review. Aspects Mol. Med. 2025, 5, 100063. [Google Scholar] [CrossRef]
- Rybka, J.; Kupczyk, D.; Kędziora-Kornatowska, K.; Pawluk, H.; Czuczejko, J.; Szewczyk-Golec, K.; Kozakiewicz, M.; Antonioli, M.; Carvalho, L.A.; Kędziora, J. Age-Related Changes in an Antioxidant Defense System in Elderly Patients with Essential Hypertension Compared with Healthy Controls. Redox Rep. 2011, 16, 71–77. [Google Scholar] [CrossRef]
- Ikuno, A.; Akeda, K.; Takebayashi, S.; Shimaoka, M.; Okumura, K.; Sudo, A. Genome-Wide Analysis of DNA Methylation Profile Identifies Differentially Methylated Loci Associated with Human Intervertebral Disc Degeneration. PLoS ONE 2019, 14, e0222188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Kelley, J.; Ye, Y.; Ye, Z.-W.; Townsend, D.M.; Zhang, J.; Wu, Y. REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells 2025, 14, 613. https://doi.org/10.3390/cells14080613
Li H, Kelley J, Ye Y, Ye Z-W, Townsend DM, Zhang J, Wu Y. REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells. 2025; 14(8):613. https://doi.org/10.3390/cells14080613
Chicago/Turabian StyleLi, Hui, Joshua Kelley, Yiqing Ye, Zhi-Wei Ye, Danyelle M. Townsend, Jie Zhang, and Yongren Wu. 2025. "REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction" Cells 14, no. 8: 613. https://doi.org/10.3390/cells14080613
APA StyleLi, H., Kelley, J., Ye, Y., Ye, Z.-W., Townsend, D. M., Zhang, J., & Wu, Y. (2025). REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells, 14(8), 613. https://doi.org/10.3390/cells14080613