A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Literature for the Survey of Common Assay Methods
2.2. Surface Web Plate Fabrication
2.3. Surface Web Degradation Assay
2.4. Human Neutrophil Isolation
2.5. Immunofluorescence Microscopy
2.6. NETosis Assay
2.7. Human Samples
2.8. Surface Web Degradation Assay with Antiphospholipid Syndrome Patient Serum
2.9. Statistical Analysis
3. Results
3.1. A Non-Comprehensive Survey of Serum- and Plasma-Mediated NET Degradation Assays
3.2. Surface Webs Can Be Used as a Simplified Mimetic of NET Degradation Assays
3.3. The Surface Web Assay Degrades with Typical NET Degradation Controls as Expected Within the Same Timeframe as Neutrophil-Derived NETs
3.3.1. Using YOYO-1 Rather than SYTOX Green Improves Sample Resolution and Differentiation
3.3.2. Degradation with DNase I and Two Pools of Healthy Human Serum
3.4. Surface Web Plates Are Viable After Storage at Room Temperature
3.5. Testing Antiphospholipid Syndrome Patient Serum Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Negative or Above 100% Remaining from Background Subtraction and Calculations
References
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Septic Blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Bonaventura, A.; Liberale, L.; Carbone, F.; Vecchié, A.; Diaz-Cañestro, C.; Camici, G.G.; Montecucco, F.; Dallegri, F. The Pathophysiological Role of Neutrophil Extracellular Traps in Inflammatory Diseases. Thromb. Haemost. 2018, 118, 6–27. [Google Scholar] [CrossRef]
- Urban, C.F.; Ermert, D.; Schmid, M.; Abu-Abed, U.; Goosmann, C.; Nacken, W.; Brinkmann, V.; Jungblut, P.R.; Zychlinsky, A. Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida Albicans. PLoS Pathog. 2009, 5, e1000639. [Google Scholar] [CrossRef]
- Boeltz, S.; Amini, P.; Anders, H.-J.; Andrade, F.; Bilyy, R.; Chatfield, S.; Cichon, I.; Clancy, D.M.; Desai, J.; Dumych, T.; et al. To NET or Not to NET: Current Opinions and State of the Science Regarding the Formation of Neutrophil Extracellular Traps. Cell Death Differ. 2019, 26, 395–408. [Google Scholar] [CrossRef]
- Yang, H.; Biermann, M.H.; Brauner, J.M.; Liu, Y.; Zhao, Y.; Herrmann, M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front. Immunol. 2016, 7, 302. [Google Scholar] [CrossRef]
- Schönrich, G.; Raftery, M.J. Neutrophil Extracellular Traps Go Viral. Front. Immunol. 2016, 7, 366. [Google Scholar] [CrossRef]
- Santocki, M.; Kolaczkowska, E. On Neutrophil Extracellular Trap (NET) Removal: What We Know Thus Far and Why So Little. Cells 2020, 9, 2079. [Google Scholar] [CrossRef]
- Khoruts, A.; Sadowsky, M.J. Understanding the Mechanisms of Faecal Microbiota Transplantation. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 508–516. [Google Scholar] [CrossRef]
- Braian, C.; Hogea, V.; Stendahl, O. Mycobacterium Tuberculosis-Induced Neutrophil Extracellular Traps Activate Human Macrophages. J. Innate Immun. 2013, 5, 591–602. [Google Scholar] [CrossRef]
- Rabinovitch, M. NETs Activate Pulmonary Arterial Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2035–2037. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-L.; Zhang, H.; Tang, Q.; Bai, J.; He, Z.-Y.; Zhang, J.-Q.; Li, M.-H.; Deng, J.-M.; Liu, G.-N.; Zhong, X.-N. Neutrophil Extracellular Traps Induced by Cigarette Smoke Activate Plasmacytoid Dendritic Cells. Thorax 2017, 72, 1084–1093. [Google Scholar] [CrossRef]
- Schauer, C.; Janko, C.; Munoz, L.E.; Zhao, Y.; Kienhöfer, D.; Frey, B.; Lell, M.; Manger, B.; Rech, J.; Naschberger, E.; et al. Aggregated Neutrophil Extracellular Traps Limit Inflammation by Degrading Cytokines and Chemokines. Nat. Med. 2014, 20, 511–517. [Google Scholar] [CrossRef]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef]
- Jiménez-Alcázar, M.; Rangaswamy, C.; Panda, R.; Bitterling, J.; Simsek, Y.J.; Long, A.T.; Bilyy, R.; Krenn, V.; Renné, C.; Renné, T.; et al. Host DNases Prevent Vascular Occlusion by Neutrophil Extracellular Traps. Science 2017, 358, 1202–1206. [Google Scholar] [CrossRef]
- Farrera, C.; Fadeel, B. Macrophage Clearance of Neutrophil Extracellular Traps Is a Silent Process. J. Immunol. 2013, 191, 2647–2656. [Google Scholar] [CrossRef]
- Hamutcu, R.; Rowland, J.M.; Horn, M.V.; Kaminsky, C.; MacLaughlin, E.F.; Starnes, V.A.; Woo, M.S. Clinical Findings and Lung Pathology in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2002, 165, 1172–1175. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular Histones Are Major Mediators of Death in Sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef]
- Cheng, O.Z.; Palaniyar, N. NET Balancing: A Problem in Inflammatory Lung Diseases. Front. Immunol. 2013, 4, 1. [Google Scholar] [CrossRef]
- Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.; Küttner, V.; et al. Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science 2018, 361, eaao4227. [Google Scholar] [CrossRef]
- Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil Elastase and Myeloperoxidase Regulate the Formation of Neutrophil Extracellular Traps. J. Cell Biol. 2010, 191, 677–691. [Google Scholar] [CrossRef]
- Bertolaccini, M.L.; Amengual, O.; Andreoli, L.; Atsumi, T.; Chighizola, C.B.; Forastiero, R.; de Groot, P.; Lakos, G.; Lambert, M.; Meroni, P.; et al. 14th International Congress on Antiphospholipid Antibodies Task Force. Report on Antiphospholipid Syndrome Laboratory Diagnostics and Trends. Autoimmun. Rev. 2014, 13, 917–930. [Google Scholar] [CrossRef]
- Knight, J.S.; Branch, D.W.; Ortel, T.L. Antiphospholipid Syndrome: Advances in Diagnosis, Pathogenesis, and Management. BMJ 2023, 380, e069717. [Google Scholar] [CrossRef]
- Yalavarthi, S.; Gould, T.J.; Rao, A.N.; Mazza, L.F.; Morris, A.E.; Núñez-Álvarez, C.; Hernández-Ramírez, D.; Bockenstedt, P.L.; Liaw, P.C.; Cabral, A.R.; et al. Release of Neutrophil Extracellular Traps by Neutrophils Stimulated with Antiphospholipid Antibodies: A Newly Identified Mechanism of Thrombosis in the Antiphospholipid Syndrome. Arthritis Rheumatol. 2015, 67, 2990–3003. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, M.; van den Hoogen, L.L.; Westerlaken, G.H.A.; Fritsch-Stork, R.D.E.; van Roon, J.A.G.; Radstake, T.R.D.J.; Meyaard, L. Neutrophil Extracellular Trap Release Is Associated with Antinuclear Antibodies in Systemic Lupus Erythematosus and Anti-Phospholipid Syndrome. Rheumatology 2018, 57, 1228–1234. [Google Scholar] [CrossRef]
- Meng, H.; Yalavarthi, S.; Kanthi, Y.; Mazza, L.F.; Elfline, M.A.; Luke, C.E.; Pinsky, D.J.; Henke, P.K.; Knight, J.S. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody–Mediated Venous Thrombosis. Arthritis Rheumatol. 2017, 69, 655–667. [Google Scholar] [CrossRef]
- Mazetto, B.d.M.; Hounkpe, B.W.; da Silva Saraiva, S.; Vieira-Damiani, G.; dos Santos, A.P.R.; Jacinto, B.C.; Vaz, C.d.O.; Mesquita, G.T.V.; Annichino-Bizzacchi, J.M.; De Paula, E.V.; et al. Association between Neutrophil Extracellular Traps (NETs) and Thrombosis in Antiphospholipid Syndrome. Thromb. Res. 2022, 214, 132–137. [Google Scholar] [CrossRef]
- Leffler, J.; Stojanovich, L.; Shoenfeld, Y.; Bogdanovic, G.; Hesselstrand, R.; Blom, A.M. Degradation of Neutrophil Extracellular Traps Is Decreased in Patients with Antiphospholipid Syndrome. Clin. Exp. Rheumatol. 2014, 32, 66–70. [Google Scholar]
- Zuo, Y.; Yalavarthi, S.; Gockman, K.; Madison, J.A.; Gudjonsson, J.E.; Kahlenberg, J.M.; Joseph McCune, W.; Bockenstedt, P.L.; Karp, D.R.; Knight, J.S. Anti–Neutrophil Extracellular Trap Antibodies and Impaired Neutrophil Extracellular Trap Degradation in Antiphospholipid Syndrome. Arthritis Rheumatol. 2020, 72, 2130–2135. [Google Scholar] [CrossRef]
- Najmeh, S.; Cools-Lartigue, J.; Giannias, B.; Spicer, J.; Ferri, L.E. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. J. Vis. Exp. 2015, 2015, 52687. [Google Scholar] [CrossRef]
- Hoffmann, J.H.O.; Schaekel, K.; Gaiser, M.R.; Enk, A.H.; Hadaschik, E.N. Interindividual Variation of NETosis in Healthy Donors: Introduction and Application of a Refined Method for Extracellular Trap Quantification. Exp. Dermatol. 2016, 25, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Kenny, E.F.; Herzig, A.; Krüger, R.; Muth, A.; Mondal, S.; Thompson, P.R.; Brinkmann, V.; von Bernuth, H.; Zychlinsky, A. Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways. eLife 2017, 6, e24437. [Google Scholar] [CrossRef]
- Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; Gizinski, A.; Yalavarthi, S.; Knight, J.S.; Friday, S.; Li, S.; Patel, R.M.; Subramanian, V.; et al. NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis. Sci. Transl. Med. 2013, 5, 178ra40. [Google Scholar] [CrossRef]
- Petretto, A.; Bruschi, M.; Pratesi, F.; Croia, C.; Candiano, G.; Ghiggeri, G.; Migliorini, P. Neutrophil Extracellular Traps (NET) Induced by Different Stimuli: A Comparative Proteomic Analysis. PLoS ONE 2019, 14, e0218946. [Google Scholar] [CrossRef]
- Yousefi, S.; Mihalache, C.; Kozlowski, E.; Schmid, I.; Simon, H.U. Viable Neutrophils Release Mitochondrial DNA to Form Neutrophil Extracellular Traps. Cell Death Differ. 2009, 16, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Vanecko, S.; Laskowski, M. Studies of the Specificity of Deoxyribonuclease I: III. HYDROLYSIS OF CHAINS CARRYING A MONOESTERIFIED PHOSPHATE ON CARBON 5′. J. Biol. Chem. 1961, 236, 3312–3316. [Google Scholar] [CrossRef]
- Song, Y.; Kadiyala, U.; Weerappuli, P.; Valdez, J.J.; Yalavarthi, S.; Louttit, C.; Knight, J.S.; Moon, J.J.; Weiss, D.S.; VanEpps, J.S.; et al. Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps. Adv. Mater. 2019, 31, 1807436. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.N.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil Extracellular Traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef]
- von Köckritz-Blickwede, M.; Chow, O.A.; Nizet, V. Fetal Calf Serum Contains Heat-Stable Nucleases That Degrade Neutrophil Extracellular Traps. Blood 2009, 114, 5245–5246. [Google Scholar] [CrossRef]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of Neutrophil Extracellular Trap Degradation Is Associated with Lupus Nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef]
- Leffler, J.; Martin, M.; Gullstrand, B.; Tydén, H.; Lood, C.; Truedsson, L.; Bengtsson, A.A.; Blom, A.M. Neutrophil Extracellular Traps That Are Not Degraded in Systemic Lupus Erythematosus Activate Complement Exacerbating the Disease. J. Immunol. 2012, 188, 3522–3531. [Google Scholar] [CrossRef] [PubMed]
- Leffler, J.; Gullstrand, B.; Jönsen, A.; Nilsson, J.-Å.; Martin, M.; Blom, A.M.; Bengtsson, A.A. Degradation of Neutrophil Extracellular Traps Co-Varies with Disease Activity in Patients with Systemic Lupus Erythematosus. Arthritis Res. Ther. 2013, 15, R84. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, X.; Tian, X.; Chen, F.; Lu, X.; Wang, G. Enhanced Formation and Impaired Degradation of Neutrophil Extracellular Traps in Dermatomyositis and Polymyositis: A Potential Contributor to Interstitial Lung Disease Complications. Clin. Exp. Immunol. 2014, 177, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.K.; Rai, R.; Singh, V.V.; Rai, M.; Rai, G. Differential Clearance Mechanisms, Neutrophil Extracellular Trap Degradation and Phagocytosis, Are Operative in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities. Immunol. Lett. 2015, 168, 254–259. [Google Scholar] [CrossRef]
- Jiménez-Alcázar, M.; Napirei, M.; Panda, R.; Köhler, E.C.; Kremer Hovinga, J.A.; Mannherz, H.G.; Peine, S.; Renné, T.; Lämmle, B.; Fuchs, T.A. Impaired DNase1-mediated Degradation of Neutrophil Extracellular Traps Is Associated with Acute Thrombotic Microangiopathies. J. Thromb. Haemost. 2015, 13, 732–742. [Google Scholar] [CrossRef]
- Leffler, J.; Ciacma, K.; Gullstrand, B.; Bengtsson, A.A.; Martin, M.; Blom, A.M. A Subset of Patients with Systemic Lupus Erythematosus Fails to Degrade DNA from Multiple Clinically Relevant Sources. Arthritis Res. Ther. 2015, 17, 205. [Google Scholar] [CrossRef]
- White, P.; Sakellari, D.; Roberts, H.; Risafi, I.; Ling, M.; Cooper, P.; Milward, M.; Chapple, I. Peripheral Blood Neutrophil Extracellular Trap Production and Degradation in Chronic Periodontitis. J. Clin. Periodontol. 2016, 43, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Leffler, J.; Prohászka, Z.; Mikes, B.; Sinkovits, G.; Ciacma, K.; Farkas, P.; Réti, M.; Kelen, K.; Reusz, G.S.; Szabó, A.J.; et al. Decreased Neutrophil Extracellular Trap Degradation in Shiga Toxin-Associated Haemolytic Uraemic Syndrome. J. Innate Immun. 2017, 9, 12–21. [Google Scholar] [CrossRef]
- Jeremic, I.; Djuric, O.; Nikolic, M.; Vlajnic, M.; Nikolic, A.; Radojkovic, D.; Bonaci-Nikolic, B. Neutrophil Extracellular Traps-Associated Markers Are Elevated in Patients with Systemic Lupus Erythematosus. Rheumatol. Int. 2019, 39, 1849–1857. [Google Scholar] [CrossRef]
- Moonen, C.G.; Buurma, K.G.; Faruque, M.R.; Balta, M.G.; Liefferink, E.; Bizzarro, S.; Nicu, E.A.; Loos, B.G. Periodontal Therapy Increases Neutrophil Extracellular Trap Degradation. Innate Immun. 2019, 26, 331–340. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Tu, L.; Zou, J.-S.; Zhu, S.-Q.; Zhao, Y.-J.; Qin, Y.-H. The Involvement of Neutrophil Extracellular Traps in Disease Activity Associated With IgA Vasculitis. Front. Immunol. 2021, 12, 668974. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ruiz, J.; Absalón-Aguilar, A.; Nuñez-Aguirre, M.; Pérez-Fragoso, A.; Carrillo-Vázquez, D.A.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; Llorente, L.; Alcalá-Carmona, B.; Lira-Luna, J.; et al. Neutrophil Extracellular Traps Contribute to COVID-19 Hyperinflammation and Humoral Autoimmunity. Cells 2021, 10, 2545. [Google Scholar] [CrossRef]
- Carmona-Rivera, C.; Zhang, Y.; Dobbs, K.; Markowitz, T.E.; Dalgard, C.L.; Oler, A.J.; Claybaugh, D.R.; Draper, D.; Truong, M.; Delmonte, O.M.; et al. Multicenter Analysis of Neutrophil Extracellular Trap Dysregulation in Adult and Pediatric COVID-19. JCI Insight 2022, 7, e160332. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, D.; Kuley, R.; Wang, T.; Hermanson, P.; Grayson, P.C.; Cuthbertson, D.; Khalidi, N.A.; Koening, C.L.; Langford, C.A.; McAlear, C.A.; et al. Neutrophil Extracellular Trap Formation in Anti-Neutrophil Cytoplasmic Antibody-Associated and Large-Vessel Vasculitis. Clin. Immunol. 2023, 249, 109274. [Google Scholar] [CrossRef]
- Oliveira, C.B.; Byrd, A.S.; Okoye, G.A.; Kaplan, M.J.; Carmona-Rivera, C. Neutralizing Anti-DNase 1 and -DNase 1L3 Antibodies Impair Neutrophil Extracellular Traps Degradation in Hidradenitis Suppurativa. J. Investig. Dermatol. 2023, 143, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Lipka, S.; Ostendorf, L.; Schneider, U.; Hiepe, F.; Apel, F.; Alexander, T. Increased Levels of Immature and Activated Low Density Granulocytes and Altered Degradation of Neutrophil Extracellular Traps in Granulomatosis with Polyangiitis. PLoS ONE 2023, 18, e0282919. [Google Scholar] [CrossRef]
- Wasielewski, M.L.; Nguyen, K.; Yalavarthi, S.; Ekbote, P.; Weerappuli, P.D.; Knight, J.S.; Takayama, S. Visualization of Nuclease- and Serum-Mediated Chromatin Degradation with DNA–Histone Mesostructures. Int. J. Mol. Sci. 2023, 24, 3222. [Google Scholar] [CrossRef]
- Oto, J.; Herranz, R.; Fuertes, M.; Plana, E.; Verger, P.; Baixauli, F.; Amaya, J.V.; Medina, P. Dysregulated Neutrophil Extracellular Traps and Haemostatic Biomarkers as Diagnostic Tools and Therapeutic Targets in Periprosthetic Joint Infection. Bone Jt. J. 2024, 106-B, 1021–1030. [Google Scholar] [CrossRef]
- Grimberg, B.T. Methodology and Application of Flow Cytometry for Investigation of Human Malaria Parasites. J. Immunol. Methods 2011, 367, 1–16. [Google Scholar] [CrossRef]
- Nucleic Acid Stains—Section 8.1. Available online: https://www.thermofisher.com/us/en/home/references/molecular-probes-the-handbook/nucleic-acid-detection-and-genomics-technology/nucleic-acid-stains.html (accessed on 3 December 2024).
- National Center for Biotechnology Information. Yoyo 1;Yoyo1. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/119190 (accessed on 10 October 2024).
- Hahn, J.; Schauer, C.; Czegley, C.; Kling, L.; Petru, L.; Schmid, B.; Weidner, D.; Reinwald, C.; Biermann, M.H.C.; Blunder, S.; et al. Aggregated Neutrophil Extracellular Traps Resolve Inflammation by Proteolysis of Cytokines and Chemokines and Protection from Antiproteases. FASEB J. 2019, 33, 1401–1414. [Google Scholar] [CrossRef]
- Yang, T.; Yu, J.; Ahmed, T.; Nguyen, K.; Nie, F.; Zan, R.; Li, Z.; Han, P.; Shen, H.; Zhang, X.; et al. Synthetic Neutrophil Extracellular Traps Dissect Bactericidal Contribution of NETs under Regulation of α-1-Antitrypsin. Sci. Adv. 2023, 9, eadf2445. [Google Scholar] [CrossRef] [PubMed]
- Hamam, H.J.; Palaniyar, N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Cortjens, B.; de Jong, R.; Bonsing, J.G.; van Woensel, J.B.M.; Antonis, A.F.G.; Bem, R.A. Local Dornase Alfa Treatment Reduces NETs-Induced Airway Obstruction during Severe RSV Infection. Thorax 2018, 73, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.; Darwish, C.; Taylor, M.; Harlacher, J.; Darwish, R. The Use of Dornase Alfa in the Management of COVID-19-Associated Adult Respiratory Distress Syndrome. Crit. Care Res. Pract. 2021, 2021, e8881115. [Google Scholar] [CrossRef]
- Porter, J.C.; Inshaw, J.; Solis, V.J.; Denneny, E.; Evans, R.; Temkin, M.I.; De Vasconcelos, N.; Aramburu, I.V.; Hoving, D.; Basire, D.; et al. Anti-Inflammatory Therapy with Nebulized Dornase Alfa for Severe COVID-19 Pneumonia: A Randomized Unblinded Trial. eLife 2024, 12, RP87030. [Google Scholar] [CrossRef]
Citation | Method | Data Reporting Method | Degradation Time | Serum or Plasma % | Negative Control | Positive Control |
---|---|---|---|---|---|---|
von Köckritz-Blickwede et al., Blood. 2009 [39] | DNA and myeloperoxidase (MPO) were stained and measured using fluorescence microscopy. | Fluorescence images. | 1 h | 2%, 5%, and 10% serum (bovine) | Serum-free media | 500 mU/mL MNase |
Hakkim et al., PNAS. 2010 [40] | DNA was stained and measured using fluorescence spectrometry. | % degradation normalized, healthy neutrophil donor’s serum is 100%. | 6 h | 10% serum for experiments comparing patient sera, 1, 5, 10, 15, and 20% serum for DNase-mediated degradation experiments | 1 U/mL MNase/ DNase I | |
Leffler et al., J Immunol. 2012 [41] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | Some NET degradation experiment data are shown as fluorescence units, some data are shown as the ratio to MNase standard, some data are shown as fold change. | 45–60 min | 10% serum | 50 mU MNase | |
Leffler et al., Arthritis Res Ther. 2013 [42] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | Compared to the mean degradation of pooled healthy sera. | 1 h | 10% serum | ||
Leffler et al., Clin Exp Rheumatol. 2014 [28] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | Compared to the mean degradation of pooled healthy sera. | 1 h | 10% serum | ||
Zhang et al., Clin Exp Immunol. 2014 [43] | DNA was stained and fluorescence was measured with a microplate reader or by manually counting using fluorescence microscopy. | % degradation normalized, negative control is 0% and DNase I positive control is 100%. | 2 h | 10% plasma | Untreated | 0.55 U/mL DNase I |
Chauhan et al., Immunol Lett. 2015 [44] | DNA was stained and fluorescence was measured with a microplate reader or by manually counting using fluorescence microscopy. | Relative fluorescence units of DNA released in solution. | 1 h | Serum | ||
Jimmenz-Alcazar et al., J Thromb Haemost. 2015 [45] | DNA was stained and measured with a fluorescence microplate reader or by using fluorescence microscopy. | % DNA remaining normalized, negative control is 100%. | 6 h | 5% plasma | Buffer | |
Leffler et al., Arthritis Res Ther. 2015 [46] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | Compared to the mean degradation of pooled healthy sera. | 1 h | 10% serum | ||
White et al., J Clin Periodontol. 2016 [47] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | % degradation normalized, positive control is 100%. | 3 h | 10% plasma | 1 U/mL MNase | |
Jimmenz-Alcazar et al., Science. 2017 [15] | DNA was stained and measured with a fluorescence microplate reader or by calculating the area coverage in images. | % NET remaining normalized, negative control is 100%. | 6 h | 10% serum (murine) or 10% plasma (human) | Buffer | |
Leffler et al., J Innate Immun. 2017 [48] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | Compared to the mean degradation of pooled healthy sera. | 1 h | 5–10% serum | ||
Jeremic et al., Rheumatol Int. 2019 [49] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | Concentration of DNA released in solution after degradation. | 1 h | 10% serum | MNase | |
Moonen et al., Innate Immun. 2019 [50] | After incubation with patient samples, NET DNA was unbound via incubation with MNase. DNA in the supernatant was stained and measured with a fluorescence microplate reader. | % degradation normalized, positive control is 100%, negative control is 0%. | 3 h | 10% plasma | Untreated | 75 mIU/mL MNase |
Zuo et al., Arthritis and Rheumatol. 2020 [29] | DNA was stained and measured with a fluorescence microplate reader. | % degradation | 1.5 h | 5% serum | 10 U/mL MNase | |
Chen et al., Front Immunol. 2021 [51] | DNA of degraded NETs that were released into solution was stained and measured with a fluorescence microplate reader. | % degradation normalized, negative control is 0%, positive control is 100%. | 1 h | |||
Zuo et al., JCI Insight. 2021 [38] | DNA was stained and measured with a fluorescence microplate reader. | % NET remaining normalized, negative control is 100%. | 1.5 h | 5% serum | Untreated | 10 U/mL MNase |
Torres-Ruiz et al., Cells. 2021 [52] | DNA and myeloperoxidase (MPO) were stained and measured with fluorescence microscopy. | Fluorescence images and % degradation normalized, negative control is 0%. | Overnight | 10% serum | Untreated | MNase or 1 U/mL DNase |
Carmona-Rivera et al., JCI Insight. 2022 [53] | DNA was stained and measured with a fluorescence microplate reader. | Relative fluorescence units of NETs remainingand accompanying fluorescence images. | 16 h | 5% serum | Untreated | DNase I |
Michailidou et al., Clinical Immunology. 2023 [54] | DNA was stained and measured with a fluorescence microplate reader. | Ratio of residual NETs in treated groups to those in untreated groups. | 1.5 h | 2.5% plasma | MNase | |
Oliveira et al., J Invest Dermatol. 2023 [55] | DNA was stained and measured with a fluorescence microplate reader. | Relative fluorescence units of NETs remaining and accompanying fluorescence images. | 16 h | 5% serum | Untreated | |
Lipka et al., Plos One. 2023 [56] | DNA was stained and measured with a fluorescence microplate reader. | % degradation normalized, positive control is 100%, percent degraded measured per well. | 4, 5, and 21 h | 25% serum | Untreated | DNase I |
Wasielewski et al., Int J Mol Sci. 2023 [57] | DNA was stained, and the surface area change over time was tracked using live fluorescent imaging. | Some experiment data are shown as the surface area over time, some data are shown as endpoint % remaining calculated from the surface area, some data are shown as fluorescence images. | 2, 12, and 24 h | 5% serum | Buffer | DNase I |
Oto et al., Bone Joint J. 2024 [58] | DNA was stained and measured with a fluorescence microplate reader. | % remaining normalized, negative control is 100%, shown using fluorescence images. | 6 h | 5% plasma | Buffer |
Citation | Degradation Calculated Per Well by Comparing Initial to Final? | DNA Stained Pre/Post Degradation Step | Dye |
---|---|---|---|
von Köckritz-Blickwede et al., Blood. 2009 [39] | Post | PicoGreen for quantification of NET release, Alexa-488-labeled myeloperoxidase antibodies with DAPI for the degradation assay | |
Hakkim et al., PNAS. 2010 [40] | Post | PicoGreen | |
Leffler et al., J Immunol. 2012 [41] | Post | PicoGreen for quantification, propidium iodide or SYTOX Green for visualization | |
Leffler et al., Arthritis Res Ther. 2013 [42] | Post | PicoGreen | |
Leffler et al., Clin Exp Rheumatol. 2014 [28] | Post | PicoGreen for quantification, SYTOX Green for visualization | |
Zhang et al., Clin Exp Immunol. 2014 [43] | Post | SYTOX Green or DAPI | |
Chauhan et al., Immunol Lett. 2015 [44] | Post | SYTOX Orange | |
Jimmenz-Alcazar et al., J Thromb Haemost. 2015 [45] | Post | SYTOX Green or anti-DNA antibodies | |
Leffler et al., Arthritis Res Ther. 2015 [46] | PicoGreen | ||
White et al., J Clin Periodontol. 2016 [47] | Post | SYTOX Green | |
Jimmenz-Alcazar et al., Science. 2017 [15] | Post | SYTOX Green | |
Leffler et al., J Innate Immun. 2017 [48] | Post | PicoGreen | |
Jeremic et al., Rheumatol Int. 2019 [49] | Post | PicoGreen | |
Moonen et al., Innate Immun. 2019 [50] | Post | SYTOX Green | |
Zuo et al., Arthritis and Rheumatol. 2020 [29] | Y | Pre | SYTOX Green |
Chen et al., Front Immunol. 2021 [51] | Post | PicoGreen | |
Zuo et al., JCI Insight. 2021 [38] | Y | Pre | SYTOX Green |
Torres-Ruiz et al., Cells. 2021 [52] | Y | Pre | Alexa-Fluor-555-labeled MPO antibodies with DAPI |
Carmona-Rivera et al., JCI Insight. 2022 [53] | Post | SYTOX Green | |
Michailidou et al., Clinical Immunology. 2023 [54] | Y | Pre | SYTOX Green |
Oliveira et al., J Invest Dermatol. 2023 [55] | Post | SYTOX Green | |
Lipka et al., Plos One. 2023 [56] | Y | Pre | PicoGreen |
Wasielewski et al., Int J Mol Sci. 2023 [57] | Y | Pre | SYTOX Green |
Oto et al., Bone Joint J. 2024 [58] | Post | SYTOX Green |
NETs | Previously Published NET Mimetic: DHMs | NET Mimetic: Surface Webs | |
---|---|---|---|
Degradation measurement method | Typically, fluorescence-microplate-reader based. While less frequent, fluorescence microscopy is also used. | Fluorescence microscopy. | Fluorescence microplate reader. |
Time for degradation | 1–21 h | 24–48 h | 4 h |
Approximate structure shape and distribution | Multiple structures with longer strands; distributed throughout the bottom of the whole well. | Around 60 μm diameter circular structure; one structure in the center of the well. | Multiple particle structures; evenly distributed throughout the bottom of the whole well. |
DNA type | Neutrophil nucleus and mitochondrial. | Lambda-phage methylated. | From salmon testes. |
Approximate amount of DNA per well | 180–240 ng from 20–40 k NETotic cells stimulated with 20 nM PMA. | 30 ng | 250 ng |
Ratio of DNA:Histone (w/w) | Approximately 1:1. | 1:10 | 1:1 |
Additional components | Citrullinated histone; neutrophil granule proteins. | Non-citrullinated histone; no additional granule proteins. | Non-citrullinated histone; no additional granule proteins. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, K.H.; Wasielewski, M.L.; Yalavarthi, S.; Qu, X.; Knight, J.S.; Takayama, S. A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs. Cells 2025, 14, 615. https://doi.org/10.3390/cells14080615
Nguyen KH, Wasielewski ML, Yalavarthi S, Qu X, Knight JS, Takayama S. A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs. Cells. 2025; 14(8):615. https://doi.org/10.3390/cells14080615
Chicago/Turabian StyleNguyen, Katherine H., Midori L. Wasielewski, Srilakshmi Yalavarthi, Xianggui Qu, Jason S. Knight, and Shuichi Takayama. 2025. "A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs" Cells 14, no. 8: 615. https://doi.org/10.3390/cells14080615
APA StyleNguyen, K. H., Wasielewski, M. L., Yalavarthi, S., Qu, X., Knight, J. S., & Takayama, S. (2025). A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs. Cells, 14(8), 615. https://doi.org/10.3390/cells14080615