Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Isolation of Cells, PLTs, Collagen-Activated PLT Supernatants, and PMPs
2.3. PBMC and PLT Staining for Flow Cytometry Analysis
2.4. Co-Culture of PLTs with PBMCs
2.5. Determination of Cytokine and Chemokine Concentration in Culture Supernatants
2.6. Determination of Cytokine Secretion
2.7. Quantification of Anti-Citrullinated Antibodies and Rheumatoid Factor Levels
2.8. Proteomics of Platelets
2.9. Statistical Analysis
3. Results
3.1. Impact of PLTs from HD and RA Patients on T Lymphocyte Stimulation
3.2. Differential Effects of PLTs from HD and RA Patients on Cytokine Production and Correlation with Disease Activity
3.3. Proteomic Profiling of PLTs from HD and RA Patients
3.4. Differential Effects of Supernatants and PMPs from Activated PLTs on T Lymphocyte Function in RA
3.5. PLT-Derived Molecules in Collagen-Activated PLTs and Correlation with IFNγ Production
3.6. Predictive Value of sCD40L Concentration for Remission in RA Patients Treated with Anti-IL6R
3.7. Impact of sCD40L on PLT-Mediated Regulation of T Lymphocyte Activation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HD | Healthy donors |
PLT | Platelets |
ACPA | Anti-cyclic citrullinated peptide antibodies |
RF | Rheumatoid factor |
DAS | Disease activity score |
ESR | Erythrocyte sedimentation rate |
PBMC | Peripheral mononuclear cell |
Aggr | aggregates |
PMP | Platelet microparticle |
MFI | Mean fluorescence intensity |
References
- Cope, A.P. T cells in rheumatoid arthritis. Arthritis Res. Ther. 2008, 10 (Suppl. S1), S1. [Google Scholar] [CrossRef]
- Kinne, R.W.; Brauer, R.; Stuhlmuller, B.; Palombo-Kinne, E.; Burmester, G.R. Macrophages in rheumatoid arthritis. Arthritis Res. 2000, 2, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, G.; Bartoloni, E.; Alunno, A.; Gerli, R. Platelets: A potential target for rheumatoid arthritis treatment? Expert Rev. Clin. Immunol. 2019, 15, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Rachidi, S.; Metelli, A.; Riesenberg, B.; Wu, B.X.; Nelson, M.H.; Wallace, C.; Paulos, C.M.; Rubinstein, M.P.; Garrett-Mayer, E.; Hennig, M.; et al. Platelets subvert T cell immunity against cancer via GARP-TGFbeta axis. Sci. Immunol. 2017, 2, eaai7911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhou, J.; Xie, Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun. Inflamm. Dis. 2024, 12, e70011. [Google Scholar] [CrossRef]
- Kasper, B.; Brandt, E.; Bulfone-Paus, S.; Petersen, F. Platelet factor 4 (PF-4)-induced neutrophil adhesion is controlled by src-kinases, whereas PF-4-mediated exocytosis requires the additional activation of p38 MAP kinase and phosphatidylinositol 3-kinase. Blood 2004, 103, 1602–1610. [Google Scholar] [CrossRef]
- Mulet, M.; Zamora, C.; Porcel, J.M.; Nieto, J.C.; Pajares, V.; Muñoz-Fernandez, A.M.; Calvo, N.; Esquerda, A.; Vidal, S. Platelet factor 4 regulates T cell effector functions in malignant pleural effusions. Cancer Lett. 2020, 491, 78–86. [Google Scholar] [CrossRef]
- Etulain, J.; Martinod, K.; Wong, S.L.; Cifuni, S.M.; Schattner, M.; Wagner, D.D. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015, 126, 242–246. [Google Scholar] [CrossRef]
- Suzuki, J.; Hamada, E.; Shodai, T.; Kamoshida, G.; Kudo, S.; Itoh, S.; Koike, J.; Nagata, K.; Irimura, T.; Tsuji, T. Cytokine secretion from human monocytes potentiated by P-selectin-mediated cell adhesion. Int. Arch. Allergy Immunol. 2013, 160, 152–160. [Google Scholar] [CrossRef]
- Cognasse, F.; Duchez, A.C.; Audoux, E.; Ebermeyer, T.; Arthaud, C.A.; Prier, A.; Eyraud, M.A.; Mismetti, P.; Garraud, O.; Bertoletti, L.; et al. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front. Immunol. 2022, 13, 825892. [Google Scholar] [CrossRef]
- Gudbrandsdottir, S.; Hasselbalch, H.C.; Nielsen, C.H. Activated platelets enhance IL-10 secretion and reduce TNF-alpha secretion by monocytes. J. Immunol. 2013, 191, 4059–4067. [Google Scholar] [CrossRef]
- Tamura, N.; Kobayashi, S.; Kato, K.; Bando, H.; Haruta, K.; Oyanagi, M.; Kuriyama, M.; Kipps, T.J.; Hashimoto, H. Soluble CD154 in rheumatoid arthritis: Elevated plasma levels in cases with vasculitis. J. Rheumatol. 2001, 28, 2583–2590. [Google Scholar] [PubMed]
- Habets, K.L.; Trouw, L.A.; Levarht, E.W.; Korporaal, S.J.; Habets, P.A.; de Groot, P.; Huizinga, T.W.; Toes, R.E. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 209. [Google Scholar] [CrossRef] [PubMed]
- Li, N. Platelet-lymphocyte cross-talk. J. Leukoc. Biol. 2008, 83, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Starossom, S.C.; Veremeyko, T.; Yung, A.W.; Dukhinova, M.; Au, C.; Lau, A.Y.; Weiner, H.L.; Ponomarev, E.D. Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation. Circ. Res. 2015, 117, 779–792. [Google Scholar] [CrossRef]
- Zamora, C.; Canto, E.; Nieto, J.C.; Ortiz, M.A.; Diaz-Torné, C.; Diaz-Lopez, C.; Llobet, J.M.; Juarez, C.; Vidal, S. Functional consequences of platelet binding to T lymphocytes in inflammation. J. Leukoc. Biol. 2013, 94, 521–529. [Google Scholar] [CrossRef]
- Jiang, S.Z.; To, J.L.; Hughes, M.R.; McNagny, K.M.; Kim, H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front. Immunol. 2022, 13, 977828. [Google Scholar] [CrossRef]
- Mariscal, A.; Zamora, C.; Diaz-Torne, C.; Ortiz, M.À.; de Agustín, J.J.; Reina, D.; Estrada, P.; Moya, P.; Corominas, H.; Vidal, S. Increase of Circulating Monocyte-Platelet Conjugates in Rheumatoid Arthritis Responders to IL-6 Blockage. Int. J. Mol. Sci. 2022, 23, 5748. [Google Scholar] [CrossRef]
- Zamora, C.; Toniolo, E.; Diaz-Torne, C.; Cantó, E.; Magallares, B.; Ortiz, M.A.; Perea, L.; Corominas, H.; Vidal, S. Association of Platelet Binding to Lymphocytes with B Cell Abnormalities and Clinical Manifestations in Systemic Lupus Erythematosus. Mediat. Inflamm. 2019, 2019, 2473164. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef]
- Prevoo, M.L.; van ‘t Hof, M.A.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.; van Riel, P.L. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Valeri, C.R.; Ragno, G.; Khuri, S. Freezing human platelets with 6 percent dimethyl sulfoxide with removal of the supernatant solution before freezing and storage at −80 degrees C without postthaw processing. Transfusion 2005, 45, 1890–1898. [Google Scholar] [CrossRef]
- Zamora, C.; Cantó, E.; Nieto, J.C.; Bardina, J.; Diaz-Torné, C.; Moya, P.; Magallares, B.; Ortiz, M.A.; Julià, G.; Juarez, C.; et al. Binding of Platelets to Lymphocytes: A Potential Anti-Inflammatory Therapy in Rheumatoid Arthritis. J. Immunol. 2017, 198, 3099–3108. [Google Scholar] [CrossRef]
- Paletta, A.; Di Diego García, F.; Varese, A.; Diaz, F.E.; García, J.; Cisneros, J.C.; Ludueña, G.; Mazzitelli, I.; Pisarevsky, A.; Cabrerizo, G.; et al. Platelets modulate CD4+ T-cell function in COVID-19 through a PD-L1 dependent mechanism. Br. J. Haematol. 2022, 197, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Scherlinger, M.; Guillotin, V.; Douchet, I.; Vacher, P.; Boizard-Moracchini, A.; Guegan, J.-P.; Garreau, A.; Merillon, N.; Vermorel, A.; Ribeiro, E.; et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci. Transl. Med. 2021, 13, eabi4994. [Google Scholar] [CrossRef]
- Scherlinger, M.; Richez, C.; Tsokos, G.C.; Boilard, E.; Blanco, P. The role of platelets in immune-mediated inflammatory diseases. Nat. Rev. Immunol. 2023, 23, 495–510. [Google Scholar] [CrossRef]
- Harifi, G.; Sibilia, J. Pathogenic role of platelets in rheumatoid arthritis and systemic autoimmune diseases. Perspectives and therapeutic aspects. Saudi Med. J. 2016, 37, 354–360, Erratum in Nat. Rev. Immunol. 2023, 23, 409. [Google Scholar] [CrossRef] [PubMed]
- Agbanoma, G.; Li, C.; Ennis, D.; Palfreeman, A.C.; Williams, L.M.; Brennan, F.M. Production of TNF-alpha in macrophages activated by T cells, compared with lipopolysaccharide, uses distinct IL-10-dependent regulatory mechanism. J. Immunol. 2012, 188, 1307–1317. [Google Scholar] [CrossRef]
- Sharma, V.; Pope, B.J.; Santiago, N.V.; Boland, M.T.; Sun, D.; Reynolds, R.J.; Szalai, A.J.; Bridges, S.L.; Raman, C. Decreased Levels of STAT1 and Interferon-gamma-Induced STAT1 Phosphorylation in Rheumatoid Arthritis CD4 and CD8 T Cells. ACR Open Rheumatol. 2021, 3, 277–283. [Google Scholar] [CrossRef]
- Liu, F.; Huang, Y.; Liu, F.; Wang, H. Identification of immune-related genes in diagnosing atherosclerosis with rheumatoid arthritis through bioinformatics analysis and machine learning. Front. Immunol. 2023, 14, 1126647. [Google Scholar] [CrossRef]
- Ghoshal, K.; Bhattacharyya, M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. Sci. World J. 2014, 2014, 781857. [Google Scholar] [CrossRef] [PubMed]
- Scopelliti, F.; Cattani, C.; Dimartino, V.; Mirisola, C.; Cavani, A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int. J. Mol. Sci. 2022, 23, 8370. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.W.; Lee, K.W.; Park, H.; Kim, H.; Lee, J.H.; Song, J.W.; Yang, J.; Kwon, Y.; Kim, T.M.; Park, J.B.; et al. Therapeutic effects of anti-CD154 antibody in cynomolgus monkeys with advanced rheumatoid arthritis. Sci. Rep. 2018, 8, 2135. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, S.; Corr, M.; Boyle, D.L. Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res. Ther. 2010, 12, R65. [Google Scholar] [CrossRef]
- Xu, M.; Du, R.; Xing, W.; Chen, X.; Wan, J.; Wang, S.; Xiong, L.; Nandakumar, K.S.; Holmdahl, R.; Geng, H. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front. Immunol. 2023, 14, 1084283. [Google Scholar] [CrossRef]
RA (N = 92) | HD (N = 40) | P | |
---|---|---|---|
Sex (women) (N) | 74 | 32 | ns (#) |
ACPA+ (N) | 75 | ||
RF+ (N) | 60 | ||
Age (years) | 60.3 ± 12.9 | 56.2 ± 12.1 | ns (*) |
DAS28 | 5.4 ± 1.2 | ||
SDAI | 29.2 ± 11.3 | ||
CDAI | 27.4 ± 10.8 | ||
ESR (mm/h) | 39.6 ± 22.4 | ||
CRP (mg/dL) | 1.7 ± 1.6 | ||
IgG (mg/dL) | 1182.1 ± 280 | ||
IgA (mg/dL) | 294.1 ± 178 | ||
IgM (mg/dL) | 167.3 ± 179 | ||
Monocytes (103/µL) | 0.7 ± 0.3 | ||
Neutrophils (103/µL) | 6.4 ± 2.9 | ||
Lymphocytes (103/µL) | 1.9 ± 0.8 | ||
Platelets (103/µL) | 293 ± 80.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora, C.; Diaz-Torne, C.; Ortiz, M.A.; Moya, P.; Park, H.S.; Pitarch, C.; Cantó, E.; Osuna-Gomez, R.; Mulet, M.; Garcia-Arguinzonis, M.; et al. Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis. Cells 2025, 14, 625. https://doi.org/10.3390/cells14090625
Zamora C, Diaz-Torne C, Ortiz MA, Moya P, Park HS, Pitarch C, Cantó E, Osuna-Gomez R, Mulet M, Garcia-Arguinzonis M, et al. Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis. Cells. 2025; 14(9):625. https://doi.org/10.3390/cells14090625
Chicago/Turabian StyleZamora, Carlos, Cesar Diaz-Torne, Maria Angels Ortiz, Patricia Moya, Hye Sang Park, Concepció Pitarch, Elisabet Cantó, Ruben Osuna-Gomez, Maria Mulet, Maisa Garcia-Arguinzonis, and et al. 2025. "Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis" Cells 14, no. 9: 625. https://doi.org/10.3390/cells14090625
APA StyleZamora, C., Diaz-Torne, C., Ortiz, M. A., Moya, P., Park, H. S., Pitarch, C., Cantó, E., Osuna-Gomez, R., Mulet, M., Garcia-Arguinzonis, M., Collado, D., Corominas, H., & Vidal, S. (2025). Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis. Cells, 14(9), 625. https://doi.org/10.3390/cells14090625