Treatment-free remission (TFR) is a key therapeutic goal for chronic myeloid leukemia (CML) patients in deep molecular response (DMR). While predicting patient outcome remains challenging, different NK cell populations seem crucial. We conducted an immunological sub-study from the Argentina Stop Trial (AST), including
[...] Read more.
Treatment-free remission (TFR) is a key therapeutic goal for chronic myeloid leukemia (CML) patients in deep molecular response (DMR). While predicting patient outcome remains challenging, different NK cell populations seem crucial. We conducted an immunological sub-study from the Argentina Stop Trial (AST), including 46 patients in 2019 (AST I) and 35 new patients between 2022 and 2023 (AST II). To characterize NK cell subsets in patients attempting TFR, peripheral blood mononuclear cell samples were collected before stopping treatment and phenotype and functional characteristics were assessed by flow cytometry. Non-relapsing patients from AST I exhibited NK cell subpopulations with cytomegalovirus-related memory features, high expression of cytotoxicity markers, and robust functionality. Remarkably, though clinical variables were very similar between cohorts, significant immune differences were observed. NK cell percentage and CD16 and CD57 receptor expression levels were significantly reduced in AST II (
p = 0.0051;
p = 0.0222;
p = 0.0033, respectively), whereas NKp46, NKp44 and PD-1 expression levels were significantly increased (
p = 0.0081;
p < 0.0001;
p < 0.0001, respectively). NK cells from AST II patients demonstrated higher overall functionality and more memory-like subpopulations, characterized mainly by the expression of CD57, NKG2C, NKp30 and NKp46 receptors among CD56
dim NK cells, also with enhanced functional performance. However, in AST II, we were unable to report an association with clinical outcome. Given the enrollment time of both cohorts and that they appear to be clinically homogeneous, we consider that COVID could be impacting the immune landscape; accordingly, serum samples from AST II, but not AST I, confirmed the presence of anti-SARS-CoV-2 IgG. The influence of the COVID pandemic and the different vaccine platforms on NK cells cannot be underestimated when evaluating the role of the immune system in cancer.
Full article