Previous Issue
Volume 14, April-2
 
 

Cells, Volume 14, Issue 9 (May-1 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 26805 KiB  
Article
Combined Transplantation of Mesenchymal Progenitor and Neural Stem Cells to Repair Cervical Spinal Cord Injury
by Seok Voon White, Yee Hang Ethan Ma, Christine D. Plant, Alan R. Harvey and Giles W. Plant
Cells 2025, 14(9), 630; https://doi.org/10.3390/cells14090630 - 23 Apr 2025
Abstract
Mesenchymal progenitor cells (MPC) are effective in reducing tissue loss, preserving white matter, and improving forelimb function after a spinal cord injury (SCI). We proposed that by preconditioning the mouse by the intravenous delivery (IV) of MPCs for 24 h following SCI, this [...] Read more.
Mesenchymal progenitor cells (MPC) are effective in reducing tissue loss, preserving white matter, and improving forelimb function after a spinal cord injury (SCI). We proposed that by preconditioning the mouse by the intravenous delivery (IV) of MPCs for 24 h following SCI, this would provide a more favorable tissue milieu for an NSC intraspinal bridging transplantation at day three and day seven. In combination, these transplants will provide better anatomical and functional outcomes. The intravenous MSCs would provide cell protection and reduce inflammation. NSCs would provide a tissue bridge for axonal regeneration and myelination and reconnect long tract spinal pathways. Results showed that initial protection of the injury site by IV MPCs transplantation resulted in no increased survival of the NSCs transplanted at day seven. However, integration of transplanted NSCs was increased at the day three timepoint, indicating MPCs influence very early immune signaling. We show, in this study, that MPC transplantation resulted in a co-operative NSC cell survival improvement on day three post-SCI. In addition to increased NSC survival on day three, there was an increase in NSC-derived mature oligodendrocytes at this early timepoint. An in vitro analysis confirmed MPC-driven oligodendrocyte differentiation, which was statistically increased when compared to control NSC-only cultures. These observations provide important information about the combination, delivery, and timing of two cellular therapies in treating SCI. This study provides important new data on understanding the MPC inflammatory signaling within the host tissue and timepoints for cellular transplantation survival and oligodendroglia differentiation. These results demonstrate that MPC transplantation can alter the therapeutic window for intraspinal transplantation by controlling both the circulating inflammatory response and local tissue milieu. Full article
(This article belongs to the Special Issue Stem Cell, Differentiation, Regeneration and Diseases)
Show Figures

Figure 1

14 pages, 2980 KiB  
Review
Inflammatory Factors: A Key Contributor to Stress-Induced Major Depressive Disorder
by Qian Liu, Baowen Nie, Xuemin Cui, Wang Wang and Dongxiao Duan
Cells 2025, 14(9), 629; https://doi.org/10.3390/cells14090629 - 23 Apr 2025
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder with a complex pathogenesis influenced by various factors. Recent research has highlighted a significant connection between psychological stress and MDD, with inflammation playing a central role in this relationship. Studies have demonstrated that peripheral [...] Read more.
Major depressive disorder (MDD) is a prevalent psychiatric disorder with a complex pathogenesis influenced by various factors. Recent research has highlighted a significant connection between psychological stress and MDD, with inflammation playing a central role in this relationship. Studies have demonstrated that peripheral immune changes in patients with MDD and in mouse models of social stress are closely linked to depressive symptoms. These findings suggest that targeting peripheral immune factors could represent a novel approach for treating stress-related neuropsychiatric disorders. Stress triggers a cascade of inflammatory responses, leading to disruptions in neurotransmitter metabolism and reduced synaptic plasticity. These changes exacerbate depression and contribute to cognitive decline. This study examines the bidirectional relationship between MDD and stress, focusing on the role of inflammation in this complex interplay. Recent studies have identified specific immune factors that are elevated in the serum of patients with MDD and stress-exposed mice, indicating a mechanism by which peripheral immune responses can affect central nervous system function and behavior. Furthermore, proteins, such as nuclear factor kappa-B (NF-κB), reportedly play a critical role in the regulation of stress hormones and are associated with depressive behaviors. Understanding these mechanisms is essential for advancing diagnostic, intervention, and treatment strategies for MDD. Full article
Show Figures

Figure 1

11 pages, 4908 KiB  
Brief Report
The Influence of the COVID-19 Pandemic in NK Cell Subpopulations from CML Patients Enrolled in the Argentina Stop Trial
by María Belén Sanchez, Bianca Vasconcelos Cordoba, Carolina Pavlovsky, Beatriz Moiraghi, Ana Ines Varela, Isabel Giere, Mariana Juni, Nicolas Flaibani, José Mordoh, Julio Cesar Sanchez Avalos, Estrella Mariel Levy and Michele Bianchini
Cells 2025, 14(9), 628; https://doi.org/10.3390/cells14090628 - 23 Apr 2025
Abstract
Treatment-free remission (TFR) is a key therapeutic goal for chronic myeloid leukemia (CML) patients in deep molecular response (DMR). While predicting patient outcome remains challenging, different NK cell populations seem crucial. We conducted an immunological sub-study from the Argentina Stop Trial (AST), including [...] Read more.
Treatment-free remission (TFR) is a key therapeutic goal for chronic myeloid leukemia (CML) patients in deep molecular response (DMR). While predicting patient outcome remains challenging, different NK cell populations seem crucial. We conducted an immunological sub-study from the Argentina Stop Trial (AST), including 46 patients in 2019 (AST I) and 35 new patients between 2022 and 2023 (AST II). To characterize NK cell subsets in patients attempting TFR, peripheral blood mononuclear cell samples were collected before stopping treatment and phenotype and functional characteristics were assessed by flow cytometry. Non-relapsing patients from AST I exhibited NK cell subpopulations with cytomegalovirus-related memory features, high expression of cytotoxicity markers, and robust functionality. Remarkably, though clinical variables were very similar between cohorts, significant immune differences were observed. NK cell percentage and CD16 and CD57 receptor expression levels were significantly reduced in AST II (p = 0.0051; p = 0.0222; p = 0.0033, respectively), whereas NKp46, NKp44 and PD-1 expression levels were significantly increased (p = 0.0081; p < 0.0001; p < 0.0001, respectively). NK cells from AST II patients demonstrated higher overall functionality and more memory-like subpopulations, characterized mainly by the expression of CD57, NKG2C, NKp30 and NKp46 receptors among CD56dim NK cells, also with enhanced functional performance. However, in AST II, we were unable to report an association with clinical outcome. Given the enrollment time of both cohorts and that they appear to be clinically homogeneous, we consider that COVID could be impacting the immune landscape; accordingly, serum samples from AST II, but not AST I, confirmed the presence of anti-SARS-CoV-2 IgG. The influence of the COVID pandemic and the different vaccine platforms on NK cells cannot be underestimated when evaluating the role of the immune system in cancer. Full article
Show Figures

Figure 1

27 pages, 4283 KiB  
Article
Revitalizing the Epigenome of Adult Jaw Periosteal Cells: Enhancing Diversity in iPSC-Derived Mesenchymal Stem Cells (iMSCs)
by Felix Umrath, Valerie Wendt, Gilles Gasparoni, Yasser Narknava, Jörn Walter, Bernd Lethaus, Josefin Weber, Victor Carriel, Meltem Avci-Adali and Dorothea Alexander
Cells 2025, 14(9), 627; https://doi.org/10.3390/cells14090627 - 22 Apr 2025
Abstract
Induced pluripotent stem cells (iPSCs) are rapidly emerging as a transformative resource in regenerative medicine. In a previous study, our laboratory achieved a significant milestone by successfully reprograming jaw periosteal cells (JPCs) into iPSCs, which were then differentiated into iPSC-derived mesenchymal stem cells [...] Read more.
Induced pluripotent stem cells (iPSCs) are rapidly emerging as a transformative resource in regenerative medicine. In a previous study, our laboratory achieved a significant milestone by successfully reprograming jaw periosteal cells (JPCs) into iPSCs, which were then differentiated into iPSC-derived mesenchymal stem cells (iMSCs). Using an optimized protocol, we generated iMSCs with a remarkable osteogenic potential while exhibiting lower expression levels of the senescence markers p16 and p21 compared to the original JPCs. This study aimed to explore the epigenetic landscape by comparing the DNA methylation and transcription profiles of iMSCs with their JPC precursors, seeking to uncover key differences. Additionally, this analysis provided an opportunity for us to investigate the potential rejuvenation effects associated with cellular reprogramming. To assess the safety of the generated cells, we evaluated their ability to form teratomas through subcutaneous injection into immunodeficient mice. Our findings revealed that, while the methylation profile of iMSCs closely mirrored that of JPCs, distinct iMSC-specific methylation patterns were evident. Strikingly, the application of DNA methylation (DNAm) clocks for biological age estimation showed a dramatic reduction in DNAm age to approximately zero in iPSCs—a rejuvenation effect that persisted in the derived iMSCs. This profound reset in biological age, together with our transcriptome data, indicate that iMSCs could possess an enhanced regenerative potential compared to adult MSCs. Future in vivo studies should validate this hypothesis. Full article
(This article belongs to the Special Issue Updates of Stem Cell Applications in Bone Tissue Engineering)
Show Figures

Figure 1

23 pages, 2416 KiB  
Article
On the Quest for Biomarkers: A Comprehensive Analysis of Modified Nucleosides in Ovarian Cancer Cell Lines
by Daniel A. Mohl, Simon Lagies, Alexander Lonzer, Simon P. Pfäffle, Philipp Groß, Moritz Benka, Markus Jäger, Matthias C. Huber, Stefan Günther, Dietmar A. Plattner, Ingolf Juhasz-Böss, Clara Backhaus and Bernd Kammerer
Cells 2025, 14(9), 626; https://doi.org/10.3390/cells14090626 - 22 Apr 2025
Abstract
Ovarian carcinoma is a gynecological cancer with poor long-term survival rates when detected at advanced disease stages. Early symptoms are non-specific, and currently, there are no adequate strategies to identify this disease at an early stage when much higher survival rates can be [...] Read more.
Ovarian carcinoma is a gynecological cancer with poor long-term survival rates when detected at advanced disease stages. Early symptoms are non-specific, and currently, there are no adequate strategies to identify this disease at an early stage when much higher survival rates can be expected. Ovarian carcinoma is a heterogeneous disease, with various histotypes originating from different cells and tissues, and is characterized by distinct somatic mutations, progression profiles, and treatment responses. Our study presents a targeted metabolomics approach, characterizing seven different ovarian (cancer-) cell lines according to their extracellular, intracellular, and RNA-derived modified nucleoside profiles. Moreover, these data were correlated with transcriptomics data to elucidate the underlying mechanisms. Modified nucleosides are excreted in higher amounts in cancer cell lines due to their altered DNA/RNA metabolism. This study shows that seven different ovarian cancer cell lines, representing different molecular subtypes, can be discriminated according to their specific nucleoside pattern. We suggest modified nucleosides as strong biomarker candidates for ovarian cancer with the potential for subtype-specific discrimination. Extracellular modified nucleosides have the highest potential in the distinguishing of cell lines between control cell lines and themselves, and represent the closest to a desirable, non-invasive biomarker, since they accumulate in blood and urine. Full article
Show Figures

Figure 1

17 pages, 2551 KiB  
Article
Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis
by Carlos Zamora, Cesar Diaz-Torne, Maria Angels Ortiz, Patricia Moya, Hye Sang Park, Concepció Pitarch, Elisabet Cantó, Ruben Osuna-Gomez, Maria Mulet, Maisa Garcia-Arguinzonis, Diego Collado, Hector Corominas and Silvia Vidal
Cells 2025, 14(9), 625; https://doi.org/10.3390/cells14090625 - 22 Apr 2025
Abstract
Background: Platelets (PLTs) from healthy donors (HD) modulate T lymphocyte responses but PLTs from rheumatoid arthritis (RA) patients contribute to persistent systemic inflammation. This suggests that PLTs from RA patients and HD have different immunomodulatory effects. Methods: Using cell culture, flow cytometry, proteomics, [...] Read more.
Background: Platelets (PLTs) from healthy donors (HD) modulate T lymphocyte responses but PLTs from rheumatoid arthritis (RA) patients contribute to persistent systemic inflammation. This suggests that PLTs from RA patients and HD have different immunomodulatory effects. Methods: Using cell culture, flow cytometry, proteomics, and ELISA, we compared PLTs from HD and RA patients and their effects on T lymphocyte activation and cytokine production. Results: HD PLTs suppressed T lymphocyte proliferation and IFNγ and TNF production, while RA PLTs exhibited reduced suppressive capacity. In the presence of RA PLTs, IFNγ levels correlated with T lymphocyte proliferation, greater disease activity, and anti-citrullinated protein antibodies (ACPA). Proteomic analysis revealed that RA PLTs show upregulation of proteins linked to acute-phase response and complement activation. RA PLTs secreted higher levels of soluble CD40L (sCD40L) and PDGF-BB that correlated with enhanced IFNγ production. Seropositive RA patients had higher levels of sCD40L, and these levels were predictive of disease remission in RA patients treated with anti-IL6R. sCD40L was found to enhance T lymphocyte activation and to contribute to increased pro-inflammatory cytokine production. Conclusions: This study highlights the diminished ability of RA PLTs to suppress T lymphocyte activation and that sCD40L can be a potential biomarker and therapeutic target in RA. Full article
(This article belongs to the Special Issue Molecular and Cellular Insights into Platelet Function)
Show Figures

Figure 1

21 pages, 2478 KiB  
Review
Beyond Infection: The Role of Secreted Viral Proteins in Pathogenesis, Disease Severity and Diagnostic Applications
by Luis Herrera-Moro Huitron, Víctor Javier Cruz-Holguin, José Manuel Ulloa-Aguilar, Luis Adrián De Jesús-González, Juan Fidel Osuna-Ramos, Mario Guzmán-Huerta, Mercedes Piedad de León-Bautista, Guadalupe León-Reyes, Julio García-Cordero, Leticia Cedillo-Barrón, Jorge Francisco Cerna-Cortes and Moisés León-Juárez
Cells 2025, 14(9), 624; https://doi.org/10.3390/cells14090624 - 22 Apr 2025
Abstract
Secreted viral proteins are crucial in virus–host interactions, as they modify the host microenvironment to promote infection. These secreted proteins could alter immune and inflammatory responses, allowing viruses to evade defense mechanisms such as cytotoxic T cell activation and antibody neutralization. Some secreted [...] Read more.
Secreted viral proteins are crucial in virus–host interactions, as they modify the host microenvironment to promote infection. These secreted proteins could alter immune and inflammatory responses, allowing viruses to evade defense mechanisms such as cytotoxic T cell activation and antibody neutralization. Some secreted proteins mimic host molecules to suppress antiviral responses, making them valuable targets for antivirals and diagnostics. Notable examples include BARF1 from Epstein–Barr virus, associated with gastric cancer; vIL-10 from Epstein–Barr virus, which regulates immune responses and contributes to autoimmune diseases; NS1 from dengue virus, associated with vascular permeability and early diagnosis; and NSP4 from rotavirus as an enterotoxin, among others. The study of these proteins improves our understanding of viral pathogenesis and helps to develop innovative treatments for infectious and non-infectious diseases, taking advantage of the evolutionary adaptations of viruses. This review explores their impact on the infection cycle, disease progression, and key processes, such as cell cycle regulation, apoptosis, and cell signaling. Research on these proteins deepens our basic knowledge of virology and generates alternative methods for detecting biomarkers and creating more effective therapies, as well as implementing some emerging technologies, such as biosensors and plasmon resonance, for the diagnosis of viral diseases. Full article
Show Figures

Figure 1

14 pages, 3340 KiB  
Article
Let-7 Family microRNAs Regulate the Expression of the Urokinase-Receptor in Acute Myeloid Leukemia Cells
by Anna Li Santi, Mariaevelina Alfieri, Luigia Meo and Pia Ragno
Cells 2025, 14(9), 623; https://doi.org/10.3390/cells14090623 - 22 Apr 2025
Abstract
The urokinase-receptor (uPAR) exerts multiple functions supporting most cancer hallmarks. Increased uPAR expression is associated with an unfavorable prognosis in several cancer types, including hematologic malignancies. We previously reported that three oncosuppressor microRNAs (miRNAs) can target the 3′untranslated region (3′UTR) of the uPAR [...] Read more.
The urokinase-receptor (uPAR) exerts multiple functions supporting most cancer hallmarks. Increased uPAR expression is associated with an unfavorable prognosis in several cancer types, including hematologic malignancies. We previously reported that three oncosuppressor microRNAs (miRNAs) can target the 3′untranslated region (3′UTR) of the uPAR mRNA and that uPAR mRNA is a competitive endogenous RNA (ceRNA) able to recruit oncosuppressor miRs, thus impairing their activity. We now show that uPAR mRNA can also be targeted by oncosuppressor members of the let-7 miRNA family in acute myeloid leukemia (AML) cell lines. Indeed, let-7a, let7d and let-7g directly target the 3′UTR of uPAR mRNA, thus down-regulating uPAR expression. These let-7 miRNAs are expressed in KG1 and U937 AML cells; their levels are high in KG1 cells, which express low uPAR levels, and low in the U937 cell line, expressing high levels of uPAR. Overexpression of these miRNAs down-regulates uPAR expression and impairs the adhesion to fibronectin and migration of U937 cells, without affecting their proliferation. Accordingly, the overexpression of specific inhibitors targeting these let-7 miRNAs efficiently increases uPAR expression in KG1 cells. These results indicate that selected let-7 miRNAs regulate uPAR expression and impair the adhesion and migration of AML cells. Full article
(This article belongs to the Special Issue Non-Coding and Coding RNAs in Targeted Cancer Therapy)
Show Figures

Figure 1

4 pages, 2369 KiB  
Correction
Correction: Belisario et al. ABCA1/ABCB1 Ratio Determines Chemo- and Immune-Sensitivity in Human Osteosarcoma. Cells 2020, 9, 647
by Dimas Carolina Belisario, Muhlis Akman, Martina Godel, Virginia Campani, Maria Pia Patrizio, Lorena Scotti, Claudia Maria Hattinger, Giuseppe De Rosa, Massimo Donadelli, Massimo Serra, Joanna Kopecka and Chiara Riganti
Cells 2025, 14(9), 622; https://doi.org/10.3390/cells14090622 - 22 Apr 2025
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Bone Sarcomas)
Show Figures

Figure 1

Previous Issue
Back to TopTop