Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes
Abstract
:1. Introduction
Literature Search Methodology
2. Conveying Visual Information to the Brain: Retinal Skill
3. From the Optic Tectum to the Superior Colliculus
3.1. Evolutionary Conservation of Multisensory Integration
3.2. Evolutionary Divergence and Convergence in Avian and Mammalian Visual Systems
4. Advantage of the Retinocollicular–Extrastriate Pathway
5. Mechanisms of Multimodal Sensitivity
6. Compensatory Mechanisms to Recover Visual Function
7. Multisensory Integration in the Non-Mammalian Retina
8. Intrinsically Photosensitive Retinal Ganglion Cells and Their Role in Complex Behavioral Responses
Compensatory Pathways in Visual Damage
9. Neural Mechanisms of Compensatory Pathway Formation
10. Optogenetic Strategies
11. Clinical Implications and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meredith, M.A.; Stein, B.E. Descending efferents from the superior colliculus relay integrated multisensory information. Science 1985, 227, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Barutchu, A.; Spence, C.; Humphreys, G.W. Multisensory enhancement elicited by unconscious visual stimuli. Exp. Brain Res. 2018, 236, 409–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seifert, M.; Baden, T.; Osorio, D. The retinal basis of vision in chicken. Semin. Cell Dev. Biol. 2020, 106, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, S.; Albert, L.; Balaji, V.; Němec, P.; Dedek, K. Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. J. Comp. Neurol. 2021, 529, 3171–3193. [Google Scholar] [CrossRef] [PubMed]
- Ketter-Katz, H.; Lev-Ari, T.; Katzir, G. Vision in chameleons-A model for non-mammalian vertebrates. Semin. Cell Dev. Biol. 2020, 106, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Reches, A.; Gutfreund, Y. Auditory and multisensory responses in the tectofugal pathway of the barn owl. J. Neurosci. 2009, 29, 9602–9613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martorell, N.; Medan, V. Audiovisual integration in the Mauthner cell enhances escape probability and reduces response latency. Sci. Rep. 2022, 12, 1097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 2021, 12, 4004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perrault, T.J., Jr.; Rowland, B.A.; Stein, B.E. The Organization and Plasticity of Multisensory Integration in the Midbrain. In The Neural Bases of Multisensory Processes; Murray, M.M., Wallace, M.T., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012; Chapter 15. Available online: https://www.ncbi.nlm.nih.gov/books/NBK92858/ (accessed on 22 April 2025).
- Miller, R.L.; Stein, B.E.; Rowland, B.A. Multisensory Integration Uses a Real-Time Unisensory-Multisensory Transform. J. Neurosci. 2017, 37, 5183–5194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ito, S.; Si, Y.; Litke, A.M.; Feldheim, D.A. Nonlinear visuoauditory integration in the mouse superior colliculus. PLoS Comput. Biol. 2021, 17, e1009181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol. 2021, 31, R741–R762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.T.; Meister, M. Functional cell types in the mouse superior colliculus. Elife 2023, 12, e82367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, W.J.; Colombo, M. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog. Neurobiol. 2020, 195, 101781. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Del Negro, C.; Giret, N. Multisensory processes in birds: From single neurons to the influence of social interactions and sensory loss. Neurosci. Biobehav. Rev. 2022, 143, 104942. [Google Scholar] [CrossRef] [PubMed]
- Melleu, F.F.; Canteras, N.S. Pathways from the Superior Colliculus to the Basal Ganglia. Curr. Neuropharmacol. 2024, 22, 1431–1453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Truszkowski, T.L.; Carrillo, O.A.; Bleier, J.; Ramirez-Vizcarrondo, C.M.; Felch, D.L.; McQuillan, M.; Truszkowski, C.P.; Khakhalin, A.S.; Aizenman, C.D. A cellular mechanism for inverse effectiveness in multisensory integration. Elife 2017, 6, e25392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hunt, D.L.; Castillo, P.E. Synaptic plasticity of NMDA receptors: Mechanisms and functional implications. Curr. Opin. Neurobiol. 2012, 22, 496–508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stein, B.E.; Rowland, B.A. Using superior colliculus principles of multisensory integration to reverse hemianopia. Neuropsychologia 2020, 141, 107413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.A.; Blohm, G.; Huang, J.; Boehnke, S.E.; Munoz, D.P. Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biol. Psychol. 2017, 129, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.I. Evolution of neural processing for visual perception in vertebrates. J. Comp. Neurol. 2020, 528, 2888–2901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, G.R. Avian vision. Curr. Biol. 2022, 32, R1079–R1085. [Google Scholar] [CrossRef] [PubMed]
- Pusch, R.; Clark, W.; Rose, J.; Güntürkün, O. Visual categories and concepts in the avian brain. Anim. Cogn. 2023, 26, 153–173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pettigrew, J.D.; Konishi, M. Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 1976, 193, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayana, S.M.; Pérez-Fernández, J.; Robertson, B.; Grillner, S. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol. 2020, 4, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Grasso, P.A.; Gallina, J.; Bertini, C. Shaping the visual system: Cortical and subcortical plasticity in the intact and the lesioned brain. Neuropsychologia 2020, 142, 107464. [Google Scholar] [CrossRef] [PubMed]
- Guillamón-Vivancos, T.; Favaloro, F.; Dori, F.; López-Bendito, G. The superior colliculus: New insights into an evolutionarily ancient structure. Curr. Opin. Neurobiol. 2024, 89, 102926. [Google Scholar] [CrossRef] [PubMed]
- Medori, M.; Spelzini, G.; Scicolone, G. Molecular complexity of visual mapping: A challenge for regenerating therapy. Neural Regen. Res. 2020, 15, 382–389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zingg, B.; Peng, B.; Huang, J.; Tao, H.W.; Zhang, L.I. Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry. J. Neurosci. 2020, 40, 3250–3267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Dey, O.; Lagos, W.N.; Behnam, N.; Callaway, E.M.; Stafford, B.K. Parallel pathways carrying direction-and orientation-selective retinal signals to layer 4 of the mouse visual cortex. Cell Rep. 2024, 43, 113830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cruz, K.G.; Leow, Y.N.; Le, N.M.; Adam, E.; Huda, R.; Sur, M. Cortical-subcortical interactions in goal-directed behavior. Physiol. Rev. 2023, 103, 347–389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Villalobos, C.A.; Wu, Q.; Lee, P.H.; May, P.J.; Basso, M.A. Parvalbumin and GABA Microcircuits in the Mouse Superior Colliculus. Front. Neural Circuits 2018, 12, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weigel, S.; Kuenzel, T.; Lischka, K.; Huang, G.; Luksch, H. Morphology and Dendrite-Specific Synaptic Properties of Midbrain Neurons Shape Multimodal Integration. J. Neurosci. 2022, 42, 2614–2630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ajina, S.; Pestilli, F.; Rokem, A.; Kennard, C.; Bridge, H. Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 2015, 4, e08935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smyre, S.A.; Bean, N.L.; Stein, B.E.; Rowland, B.A. Predictability alters multisensory responses by modulating unisensory inputs. Front. Neurosci. 2023, 17, 1150168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bach-y-Rita, P.; Collins, C.C.; Saunders, F.A.; White, B.; Scadden, L. Vision substitution by tactile image projection. Trans. Pac. Coast. Otoophthalmol. Soc. Annu. Meet. 1969, 50, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Sabel, B.A.; Flammer, J.; Merabet, L.B. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness—A review. Restor. Neurol. Neurosci. 2018, 36, 767–791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stiles, N.R.B.; Patel, V.R.; Weiland, J.D. Multisensory perception in Argus II retinal prosthesis patients: Leveraging auditory-visual mappings to enhance prosthesis outcomes. Vis. Res. 2021, 182, 58–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, J.; Patel, T.; Sugandh, F.; Dev, J.; Kumar, U.; Adeeb, M.; Kachhadia, M.P.; Puri, P.; Prachi, F.; Zaman, M.U.; et al. Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients With Neurological Disorders: A Narrative Review. Cureus 2023, 15, e41914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bolognini, N.; Rasi, F.; Coccia, M.; Làdavas, E. Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 2005, 128 Pt 12, 2830–2842. [Google Scholar] [CrossRef] [PubMed]
- Alwashmi, K.; Meyer, G.; Rowe, F.J. Audio-visual stimulation for visual compensatory functions in stroke survivors with visual field defect: A systematic review. Neurol. Sci. 2022, 43, 2299–2321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sans-Dublanc, A.; Chrzanowska, A.; Reinhard, K.; Lemmon, D.; Nuttin, B.; Lambert, T.; Montaldo, G.; Urban, A.; Farrow, K. Optogenetic fUSI for brain-wide mapping of neural activity mediating collicular-dependent behaviors. Neuron 2021, 109, 1888–1905.e10. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rios, M.; Agayby, B.; Balezeau, F.; Haag, M.; Rima, S.; Cadena-Valencia, J.; Schmid, M.C. Optogenetic stimulation of the primary visual cortex drives activity in the visual association cortex. Curr. Res. Neurobiol. 2023, 4, 100087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Passamonti, C.; Bertini, C.; Làdavas, E. Audio-visual stimulation improves oculomotor patterns in patients with hemianopia. Neuropsychologia 2009, 47, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, C.A.; Spering, M. Eye movements in Parkinson’s disease: From neurophysiological mechanisms to diagnostic tools. Trends Neurosci. 2024, 47, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Purpura, G.; Cioni, G.; Tinelli, F. Multisensory-Based Rehabilitation Approach: Translational Insights from Animal Models to Early Intervention. Front. Neurosci. 2017, 11, 430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bigelow, F.J.; Clark, G.M.; Lum, J.A.G.; Enticott, P.G. Facial emotion processing and language during early-to-middle childhood development: An event related potential study. Dev. Cogn. Neurosci. 2022, 53, 101052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noppeney, U. The influence of early audiovisual experience on multisensory integration and causal inference (commentary on Smyre et al., 2021). Eur. J. Neurosci. 2022, 55, 637–639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fetsch, C.R.; Noppeney, U. How the brain controls decision making in a multisensory world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, L.; Maaswinkel, H.; Li, L. Olfactoretinal centrifugal input modulates zebrafish retinal ganglion cell activity: A possible role for dopamine-mediated Ca2+ signalling pathways. J. Physiol. 2005, 569 Pt 3, 939–948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esposti, F.; Johnston, J.; Rosa, J.M.; Leung, K.M.; Lagnado, L. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 2013, 79, 97–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holmes, N.P.; Calvert, G.A.; Spence, C. Multimodal Integration. In Encyclopedia of Neuroscience; Binder, M.D., Hirokawa, N., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Marrese, M.; Lonardoni, D.; Boi, F.; van Hoorn, H.; Maccione, A.; Zordan, S.; Iannuzzi, D.; Berdondini, L. Investigating the Effects of Mechanical Stimulation on Retinal Ganglion Cell Spontaneous Spiking Activity. Front. Neurosci. 2019, 13, 1023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nilsson, D.E. The Evolution of Visual Roles—Ancient Vision Versus Object Vision. Front. Neuroanat. 2022, 16, 789375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ball, G.F.; Balthazart, J. Evolutionary neuroscience: Are the brains of birds and mammals really so different? Curr. Biol. 2021, 31, R840–R842. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, H.; Yamamoto, N.; Ito, H. Tectal neurons that participate in centrifugal control of the quail retina: A morphological study by means of retrograde labeling with biocytin. Vis. Neurosci. 1996, 13, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, H.; Ito, H. Target cells for the isthmo-optic fibers in the retina of the Japanese quail. Neurosci. Lett. 1993, 154, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Repérant, J.; Miceli, D.; Vesselkin, N.P.; Molotchnikoff, S. The centrifugal visual system of vertebrates: A century-old search reviewed. Int. Rev. Cytol. 1989, 118, 115–171. [Google Scholar] [CrossRef] [PubMed]
- Warwick, R.A.; Riccitelli, S.; Heukamp, A.S.; Yaakov, H.; Swain, B.P.; Ankri, L.; Mayzel, J.; Gilead, N.; Parness-Yossifon, R.; Di Marco, S.; et al. Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus. Sci. Adv. 2024, 10, eadk4062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raja, S.; Milosavljevic, N.; Allen, A.E.; Cameron, M.A. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Front. Cell Neurosci. 2023, 16, 1095787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, S.; Field, G.D. Dopaminergic modulation of retinal processing from starlight to sunlight. J. Pharmacol. Sci. 2019, 140, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Schmidt, T.M. Divergent projection patterns of M1 ipRGC subtypes. J. Comp. Neurol. 2018, 526, 2010–2018. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmidt, T.M.; Chen, S.K.; Hattar, S. Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends Neurosci. 2011, 34, 572–580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonoda, T.; Li, J.Y.; Hayes, N.W.; Chan, J.C.; Okabe, Y.; Belin, S.; Nawabi, H.; Schmidt, T.M. A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science 2020, 368, 527–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rupp, A.C.; Ren, M.; Altimus, C.M.; Fernandez, D.C.; Richardson, M.; Turek, F.; Hattar, S.; Schmidt, T.M. Distinct ipRGC subpopulations mediate light’s acute and circadian effects on body temperature and sleep. Elife 2019, 8, e44358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mure, L.S. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front. Neurol. 2021, 12, 636330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matynia, A. Blurring the boundaries of vision: Novel functions of intrinsically photosensitive retinal ganglion cells. J. Exp. Neurosci. 2013, 7, 43–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzerini Ospri, L.; Prusky, G.; Hattar, S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu. Rev. Neurosci. 2017, 40, 539–556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, F.; Ma, J.; Yu, Y.Q.; Gao, X.F.; Bai, Y.; Sun, Y.; Liu, J.; Liu, X.; Barry, D.M.; Wilhelm, S.; et al. A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior. Cell Rep. 2022, 41, 111444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chakraborty, R.; Ostrin, L.A.; Nickla, D.L.; Iuvone, P.M.; Pardue, M.T.; Stone, R.A. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol. Opt. 2018, 38, 217–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rukmini, A.V.; Milea, D.; Aung, T.; Gooley, J.J. Pupillary responses to short-wavelength light are preserved in aging. Sci. Rep. 2017, 7, 43832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahel, J.A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J.N.; Esposti, S.D.; Delaux, A.; de Saint Aubert, J.B.; de Montleau, C.; et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 2021, 27, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Too, L.K.; Shen, W.; Protti, D.A.; Sawatari, A.; Black, D.A.; Leamey, C.A.; Huang, J.Y.; Lee, S.R.; Mathai, A.E.; Lisowski, L.; et al. Optogenetic restoration of high sensitivity vision with bReaChES, a red-shifted channelrhodopsin. Sci. Rep. 2022, 12, 19312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, W.; He, Y.; Zhang, W.; Sun, Y.; Wang, J.; Liu, S.; Ming, D. A novel non-invasive brain stimulation technique: “Temporally interfering electrical stimulation”. Front. Neurosci. 2023, 17, 1092539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Feature | Non-Mammalian Optic Tectum | Reference | Mammalian Superior Colliculus | Reference |
---|---|---|---|---|
Primary Sensory Inputs | Retina (direct), auditory nuclei, lateral line (fish) | [3,5,6,7] | Retina (direct + via cortex), auditory/somatosensory cortex | [8,9,10,11] |
Multisensory Layers | Deep tectal laminae (stratified) | [6,12] | Intermediate/deep layers (interlaminated) | [8,13] |
Motor Output Targets | Spinal cord (orienting), nucleus rotundus (thalamus) | [14,15] | Brainstem (saccades), pulvinar (cortex) | [8,16] |
Plasticity Mechanisms | Spike-timing-dependent plasticity (STDP) | [7,17] | NMDA receptor-dependent LTP/LTD | [3,18] |
Functional Role | Prey capture, predator avoidance | [5,7] | Visual attention, spatial navigation | [19,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusciano, D.; Bagnoli, P. Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes. Cells 2025, 14, 635. https://doi.org/10.3390/cells14090635
Rusciano D, Bagnoli P. Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes. Cells. 2025; 14(9):635. https://doi.org/10.3390/cells14090635
Chicago/Turabian StyleRusciano, Dario, and Paola Bagnoli. 2025. "Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes" Cells 14, no. 9: 635. https://doi.org/10.3390/cells14090635
APA StyleRusciano, D., & Bagnoli, P. (2025). Multimodality in the Collicular Pathway: Towards Compensatory Visual Processes. Cells, 14(9), 635. https://doi.org/10.3390/cells14090635